
Contents

Computational Complexity: CS41103: Autumn 2021

Instructor: Sudebkumar Prasant Pal

IIT Kharagpur

email: spp@cse.iitkgp.ac.in
c©Copyrights reserved

October 5, 2022

1 / 82



Contents

1 Contents
2 Preliminaries: Turing machine simulations
3 Tape compression
4 Halting space bounded computations
5 Linear speedup
6 Hierarchy theorems
7 Time hierarchy theorem
8 Nondeterministic space computations

Savitch’s theorem
Immerman-Szelepscenyi theorem

9 Interactive protocols
10 Nondeterminism, randomization and communication protocols

An interactive protocol for the graph non-isomorphism problem
[Pap94]

The use of private coins

11 Randomized complexity classes and Circuits
Classes BPP and RP
Probabilistic Turing machines and the class BPP from [AB06]

1 / 82



Preliminaries: Turing machine simulations

Probability amplification
Derandomizing BPP
A simpler circuit construction as in [AB06]

12 Circuits
Uniform families of circuits
Boolean functions with large circuits
The class NC and its logspace relationships

13 PH
Examples higher up in the hierarchy
The EXPCOM oracle
The PSPACE oracle
Karp-Lipton theorem
Meyer’s theorem
Computing with advice

2 / 82



Preliminaries: Turing machine simulations

Preliminary Background

We know that a single tape Turing machine with one-sided potentially
infinite tape, and tape cell alphabet {0,1}, is equivalent
computationally as well as within polynomially bounded complexities
to a k-tape Turing machine with arbitrary alphabet K [HU79].

Apart from 0 and 1, the tape may have the ‘blank’ and the
‘start’/‘end’ characters.

What matters is the number of tape cells thus, and not the number
of symbols in the tape alphabet.

The machine will have a finite set S of states, and a transition
function δ, deterministic or non-deterministic.

Formally, a Turing machine is a quadruple M = (K , S , δ, s). Here K is
a finite set of states, s ∈ K is the initial state, S is a finite set of
symbols (alphabet of M).

2 / 82



Preliminaries: Turing machine simulations

Preliminary Background (cont.)

δ maps K × S to (K ∪ {h, “yes ′′, “no ′′})× S × {l , r ,−}.
Theorem 2.1 [Pap94]: Given any k-string Turing machine M
operating within time f (n), we can construct a Turing machine M ′

operating within time O(f (n)2) and such that, for any input x ,
M(x) = M ′(x).

One way to do this would be to maintain in the string of M ′, the
“concatenation” of the k strings of M. See [Pap94].

It is clear that a k2 term in Theorem 2.1 of [Pap94] will be hidden in
the constant factor of the O(f (n)2) time complexity of M ′ because
we are simply concatenating the k strings !

3 / 82



Preliminaries: Turing machine simulations

Preliminary Background

A smarter way to do the same simulation would be to first list all the
first cells of the k tapes, followed by the second k cells and then the
third cells, and so on, stated below as in the proof of Claim 1.6 in
[AB06].

A single-tape Turing machine has only one read-write tape which is
used for input, work, as well as output. For every function f :
{0, 1} → {0, 1}, and a time-constructible function T : N → N, if f is
computable in time T (n) by a TM M using k tapes, then it is
computable in time 5kT (n)2 by a single-tape TM M ′.

This simulation on a single-tape TM cannot cut down the quadratic
growth in the T (n) term though; for this we can view the example of
recognizing palindromes and its lower bounds as in Problems 2.8.4
and 2.8.5 in Chapter 2 of [Pap94].

4 / 82



Preliminaries: Turing machine simulations

Preliminary Background (cont.)

However, Problem 2.8.6 of [Pap94] is about cutting down one k
factor by representing the k strings, by not concatenating them
serially, but instead, by placing them “on top of each other”.

5 / 82



Tape compression

Tape compression

Space and time are the two most important and commonly studied
computational resources.

We study space and time complexities of algorithms on TMs because
TMs are very simple machines with finite state control and transition
rules, and potentially infinite memory on tape(s).

By the Church-Turing thesis, all other ‘reasonable’ computational
models are equivalent to TMs in computability, as well as,
polynomially related in terms of time and space complexities.

It is expected that using a bigger alphabet set for symbols on the
tapes can help in reducing the number of tape cells necessary for
computations.

Definition 1: If for every input string of length n, the TM M scans at
most S(n) cells on any writable storage or work tape, then M is said
to be an S(n)-space bounded TM, or of space complexity S(n).

6 / 82



Tape compression

Tape compression (cont.)

Definition 2: If for every input word of length n, the TM M makes at
most T (n) moves before halting, then M is said to be a T (n)-time
bounded TM, or of time complexity T (n).

Tape compression: [Theoreom 12.1 [HU79]]
It is instructive to first get familiar with tape cell symbol manipulation
to the extent that one machine M2 is used to simulate another
machine M1 where each tape cell of M2 encodes several (say r) cells
of M1.

The purpose of doing such a compression is to use a smaller number
of richer cells on the tape by using a more powerful and matching
finite-state control and transition function, essentially implying we
have better hardware machine.

7 / 82



Tape compression

Tape compression (cont.)

Using such an encoding dS(n)
r e cells suffice in M2 for S(n) cells in

M1; dS(n)
r e is upper bounded by d cS(n)

2 e ≤ cS(n), if rc > 2, for any
choice of c > 0.

Also if S(n) < r , then M2 needs just one tape cell. So, M2 can
simulate M1 in cS(n) tape cells with compression factor r , where
rc > 2.

In other words, we can reduce the space complexity by a factor of c ,
c > 0, by packing every r tape cells of the first machine into a single
tape cell of the better machine where rc > 2.

8 / 82



Halting space bounded computations

Halting space bounded computations

See Lemma 12.1 in [HU79]. The number of configurations of a
S(n)-space bounded machine M1 is at most (n + 2)sS(n)tS(n), where
s is the number of states and t is the number of tape symbols.

So, a simulating TM M2 can use a 4st base counter with a sufficient
number of cells, at least log n cells but not exceeding S(n) cells, to
count the number of moves.

It is worthwhile working out the details of the simulation where this
additional counter cell is appended every time a new tape cell is first
visited by the simulating machine M2 for this counter.

In fact, if M2 keeps looping having used only i counter cells then the
counter will know this when its count reaches (4st)max(i ,log n), which
should be at least (n + 2)sS(n)tS(n).

9 / 82



Halting space bounded computations

Halting space bounded computations (cont.)

So, we see that languages accepted by space bounded computations
are also accepted within the same space bounds by a machine that
halts.

Exercise 1:
Show that (4st)S(n) exceeds the number of configurations of machine
M1 above. All this is about deterministic TMs. What happens if the
machines were non-deterministic?

10 / 82



Linear speedup

Linear speedup theorem

Just as we can reduce the number of tape cells by compression, we
can achieve similar gains in time complexity as well, using the method
of encoding several tape symbols in one tape cell.

So, in order to speedup by a factor of c > 0, we may require to encode
some m cells into one cell; we now need to estimate m in terms of c .

It turns out that as long as infn→∞
T (n)
n =∞, choosing m such that

mc > 16 works out. For details see Theorem 12.3 in [HU79].

It is also interesting to note that Theorem 7.2 in [HU79] achieves a
multitape T (n)-time TM’s simulation using a single tape TM in
6(T (n))2 time. If the multitape machine is apriori speeded up to run

in T (n)√
6

time using Theorem 12.3 of [HU79], then the simulation by

the single tape TM can be done in (T (n))2 time as per Theorem 7.2
in [HU79].

11 / 82



Linear speedup

Linear speedup theorem (cont.)

Such single-tape simulation results hold also for non-deterministic
TMs.

Compare this with the results in Theorem 2.1 of [Pap94] and Claim
1.6 in [AB06].

A machine M2 can simulate T (n) steps of of a T (n)-time machine
M1.

So, M2 requires the following number of moves n (reading the input
tape of M1)+dn/me (encoding m cells of M1 into a single cell of
M2)+8× dT (n)/me (simulating T (n) moves of M1 on M2),
≤ n + (n/m + 1) + (8T (n)/m) + 8 ≤ n + n/m + 8T (n)/m + 9.

If infn→∞
T (n)
n =∞, then for any constant d (however large), there is

an nd so that for n ≥ nd , we have T (n)/n ≥ d or, equivalently,
n ≤ T (n)/d .

12 / 82



Linear speedup

Linear speedup theorem (cont.)

Also, putting n ≥ 9 (thus n + 9 ≤ 2n), we have the above upper
bound on the number of steps of M2 as T (n)(2/d + 1/(md) + 8/m),
for n ≥ nd . [These terms come from respectively, n + 9, n/m and
8T (n)/m.]

Now choosing m ≥ 16/c and d = m/4 + 1/8, we have the simulation
time of M2 at most cT (n).

Note that 2/d + 1/(md) is the same as 8/m if d = m/4 + 1/8. Also,
8/m is less than c/2. See [HU79].

13 / 82



Hierarchy theorems

Time hierarchy theorem I

Given more space, we expect to be able to recognize more languages.
However, we have seen the linear speed-up and compression
theorems; they imply that raising time or space avaiability by merely
constant factors will not be helpful.

In Theorem 12.7 of [HU79], we see that there are recursive languages
not in DTIME (T (n)) for any total recursive time-bound T (n).
Certainly there is a halting TM M that computes T (n).

Let the ith multitape TM be Mi , whose description is the ith
canonical binary string xi . Define L = {xi |Mi does not accept xi
within T (|xi |) moves}.
It is not difficult to see that L is indeed recursive.

We now show that L is not in DTIME (T (n)). For the sake of
contradiction, we assume that L is in DTIME (T (n)).

14 / 82



Hierarchy theorems

Time hierarchy theorem I (cont.)

Let Mi be such that L = L(Mi ).

If xi is in L then Mi accepts xi in T (n) steps where n = |xi |. In that
case, by the definition of L, we have xi is not in L, a contradiction.

If Xi is not in L, then Mi does not accept xi , and so by the definition
of L, we have xi is in L, a contradiction again.

So, the assumption that Mi is T (n) time bounded is incorrect. So, L
is not in DTIME (T (n)).

15 / 82



Hierarchy theorems

Space hierarchy theorem I

Now we see the main result in Theorem 12.8 of [HU79]. What is the
encoding of TMs in the proof Theorem 12.8? Why is it that an
arbitrary length prefix of 1’s is attached to encodings of TMs as
defined in Chapter 8?

How is the simulating machine M forced to use (only) S2(n) space?

We argue that a UTM M simulates machine Mw on input w in
DSPACE (S2(n)). It first marks S2(n) cells on the tape. Here,
n = |w |.
Why would Mw ’s tape symbol set cardinality t, determine the amount
of space required, dlog te times times S1(n) for M to simulate Mw on
input w? Why is the number k of tapes not playing any role?

Assume (for the sake of contradiction) that L(M) = L(M ′) where M ′

is an S1(n)-space bounded TM with t tape symbols.

16 / 82



Hierarchy theorems

Space hierarchy theorem I (cont.)

We show that there is a long string w of such length n that, dlog te
times S1(n) is dominated by S2(n) (shorter strings may not satistfy
this S2(n) upper bound), and Mw is M ′.

The simulation by M on input w of TM Mw is such that M accepts
w if and only if Mw halts on w rejecting w .

Observe the way M acts (in terms of accepting or rejecting, in its
simulation of Mw on input w); it follows that L(M) is not equal to
L(Mw ) = L(M ′).

In particular, note that L(M) and L(Mw ) differ on how they act on w
of sufficient length n as required above.

We conclude therefore that M ′ being in DSPACE (S1(n)) is
impossible.

17 / 82



Time hierarchy theorem

Time hierarchy theorem II [HU79]

We use two-tape simulations for a sharper bound, with only a
logarithmic slowdown.

We will also assume T (n) is fully time constructible. There must be a
TM that uses T (n) time on all inputs of length n.

Let T2(n) be a fully time constructible function and

infn→∞
T1(n) log T1(n)

T2(n) = 0

Then we must have a language not in DTIME (T1(n)) but in
DTIME (T2(n)).

We design a T2(n) time bounded TM M which gets an input w .

M ′ treats input w as an encoding of a TM M ′ and M simulates M ′

on w .

The simulation of T1(n) moves of M ′ by M requires time
cT (n) logT1(n), where c depends on M ′ but not on |w |.

18 / 82



Time hierarchy theorem

Time hierarchy theorem II [HU79] (cont.)

After doing T2(n) steps machine M stops simulation and accepts w
only if the simulation of M ′ is completed and M ′ rejects w .

Now M ′ has arbitrarily long encodings. This, if M ′ is T1(n)
time-bounded, there will be a long enough w encoding M ′ so that
cT1(|w |) logT1(|w |) ≤ T2(|w |), so that the simulation can be
completed in T2(n) time.

We observe that w is in L(M) if and only if w is not in L(M ′). Thus,
L(M) 6= L(M ′) for any M ′ that is T1(n) time-bounded.

19 / 82



Nondeterministic space computations

Reachability

Reachability is a fundamental problem is graphs that tests for
connectivity between two specified vertices. There being n = |V |
vertices in the graph G (V ,E ), we need only dlog ne vertices to store
the encoding of a vertex.

BFS and DFS are linear time algorithms but they are not space
efficient; sublinear space efficient but time consuming ‘middle first’
search is what we will resort to in establishing Savitch’s theorem
[HU79] yielding a deterministic O((log n)2)-space algorithm.

We first note that reachability can be solved in nondeterministic
O(log n) space. As long as there is a path Π from a vertex s to a
vertex t, there is a valid guess for the next vertex on this path
towards t from s.

20 / 82



Nondeterministic space computations

Reachability (cont.)

All we need to store is the last guessed move on this path Π by
erasing all so far previously visited (guessed) vertices until we make
the last guess t, moving from t’s previous vertex in Π.

Clearly, we need no more than O(log n) space to store store a few
vertices. Note that the entire graph can be stored with its edges on a
differnt read-only input tape, where we never write anything but can
read by moving along the input tape as required.

21 / 82



Nondeterministic space computations Savitch’s theorem

Savitch’s theorem

Following the notation of [Pap94], we say that predicate PATH(x , y , i)
holds if there is a path from x to y in G , of length at most 2i .

So, all we need to do is determine whether PATH(x , y , dlog ne) holds.

If i = 0, we can tell whether x and y are connected by an edge or if
x = y .

If i > 1, then we compute PATH(x , y , i) by testing for each z
whether PATH(x , z , i − 1) as well as PATH(z , y , i − 1) hold; any path
of length 2i from x to y must have an intermediate vertex z , such
that both x and y are at most 2i−1 away from z .

To realize this idea in a space-efficient manner, we generate all nodes
z , one after the other, reusing space.

A triple (x , z , i − 1) is added to the main work tape and we recurse.

22 / 82



Nondeterministic space computations Savitch’s theorem

Savitch’s theorem (cont.)

On returning from the recursion if a negative answer to
PATH(x , z , i − 1) is returned, we erase this triple and move to the
next z , rewriting this triple.

The other case is if a positive answer is returned, we erase the triple
(x , z , i − 1), and write write (z , y , i − 1) after consulting the triple
(x , y , i), to the left, to obtain y , and work on deciding whether
PATH(z , y , i − 1) holds.

If this is negative, we erase the triple and try the next z ; if it is
positive, we detect by comparing with triple (x , y , i) to the left that
this is the second recursive call, and return a positive answer to
PATH(x , y , i).

So, the work tape acts like a stack of activation records to implement
recursion.

23 / 82



Nondeterministic space computations Savitch’s theorem

Savitch’s theorem (cont.)

Note that the number of triples stored at any moment of time is at
most dlog ne, the maximum level of recursion.

Each triple uses at most 3 log n space. So, in total we used O(log n)2

space.

24 / 82



Nondeterministic space computations Immerman-Szelepscenyi theorem

Immerman-Szelepscenyi theorem

Following the notation of [Pap94], we would like to count the number
of nodes in a graph G (V ,E ) reachable from a node s ∈ V using only
logarithmic space.

This would also help us determine the number of nodes not reachable
from s within the same space complexity bound.

Since we wish to use nondeterminism and also restrict to logarithmic
space, we must be able to reuse space and operate on only a constant
number of log n-sized entities in the work tape.

Now consider problem of non-deterministically computing the
cardinality of the set of vertices reachable from a source vertex s in a
directed graph G (V ,E ) in space proportional to log |V |. Here
|V | = n.

25 / 82



Nondeterministic space computations Immerman-Szelepscenyi theorem

Immerman-Szelepscenyi theorem (cont.)

We only elaborate on the subtle steps exploiting space reuse and
nondeterminism. Only a constant number of index variables of length
log n are used in the computation.

Also note that only the “last step” uses nondeterminism, where we
determine whether there is a path of length at most k − 1 from the
node s to a node v ∈ V .

We define S(k) to be the set of all vertices reachable from s with at
most k steps or hops.

Also s(k) is defined as the number |S(k)| of vertices in S(k). Clearly
s(0) = 1 and S(0) = {s}.
The crucial step is the penultimate level where a conjunction over an
iterator is computed for determining whether a certain vertex u ∈ V
is in S(k).

26 / 82



Nondeterministic space computations Immerman-Szelepscenyi theorem

Immerman-Szelepscenyi theorem (cont.)

This is done by checking for all vertices v ∈ V whether (i)
v ∈ S(k − 1), and whether (ii) u = v or u is directly reachable from v
by an edge, that is, whether G (v , u) holds.

If u ∈ S(k) then for some v this must hold.

So, we can write
for u = 1, 2, ..., |V | {if u ∈ S(k) then l ← l + 1 };
s(k) = l ;
thereby discovering all u ∈ V that are in S(k) and computing s(k) as
the final value of l above.

However, if we are trying to determine whether this v ∈ S(k − 1),
using only a nondeterminsitic guessing method, then the path of
computation making a wrong guess would fail to verify that v is
indeed in S(k − 1).

27 / 82



Nondeterministic space computations Immerman-Szelepscenyi theorem

Immerman-Szelepscenyi theorem (cont.)

So, the way we resolve this problem is by running the “for loop” over
all v and keeping the count of successes where we actually get
certified that a vertex v is indeed discovered to be in S(k − 1).

If this count matches s(k − 1) = |S(k − 1)|, which is already
pre-computed and stored in a counter (in the induction process), then
we succeed.

Otherwise, we reject the entire computation in the “for loop”.

The correctness follows from the fact that there is always a correct
guessing path for the ‘for loop’ iterating over each of the vertices
v ∈ V .

function for determining u ∈ S(k)

m← 0;

answer ← false;

for v ∈ V

28 / 82



Nondeterministic space computations Immerman-Szelepscenyi theorem

Immerman-Szelepscenyi theorem (cont.)

{if v ∈ S(k − 1) them m← m + 1; if G (v , u) then answer ← true; }
if m < |S(k − 1)| then “no” fail, else return answer ;

To find if v ∈ S(k − 1) we use k − 1 guesses w1 to wk−1, one after
another, starting w0 = s and ending with wk−1, so that for each of
the k − 1 wp’s guessed we have G (wp−1,wp). That is, either
wp−1 = wp or there is an edge from wp−1 to wp.

No wonder this method is called ‘inductive counting’, using s(k − 1),
to compute s(k). Now we state all the steps of the full algorithm
below.

Exercises:

(1) Show that NSPACE (S(n)) = co − NSPACE (S(n)) for
S(n) ≥ logn, where S(n) is a fully space constructible function.

(2) Show that reachability is in co − NSPACE (log n).

29 / 82



Nondeterminism, randomization and communication protocols

Interactive protocols

The centralized setting of a computing agent that uses either
randomization or simply deterministic computation, is just one end of
the spectrum of computational problems.

If there are multiple agents which are mutually independent but need
to co-operate with each other through rules of communication using
some protocols, then we may be able to characterize some interesting
and non-trivial complexity classes being realized in the languages
accepted in such protocols.

A simple example is the case of Alice and Bob where Alice is all
powerful and can use exponential time computations, whereas Bob
can only use polynomial time computations.

In such a scenario, given a boolean formula f in CNF, Bob can ask
Alice for a truth asssignment which Alice can always determine as
long as the given formula f is satisfiable.

30 / 82



Nondeterminism, randomization and communication protocols

Interactive protocols (cont.)

However, if the formula f is unsatisfiable then whatever Alice replies
to Bob trying to convince Bob that f is satisfiable, Bob will succeed
in frustrating such attempts of Alice using polynomial time
verification of any claimed assignment to the variables in f .

This way the protocol captures he class NP.

A different scenario results if Bob had randomization capabilities
based on truly random bits that Bob can generate.

In that case even if Alice is ignored, Bob can act in such a way that it
can accept input strings with bounded error probabilities capturing
the power of the class BPP.

One meaningful notion of realistic computation is enshrined in the
class BPP containing all languages L for which there is a
nondeterministic polynomially bounded Turing machine N (whose
computations are all of the same length) with the following property.

31 / 82



Nondeterminism, randomization and communication protocols

Interactive protocols (cont.)

For all inputs x , if x ∈ L then at least 3
4 of the computations of N on

x accept; and if x /∈ L then at least 3
4 of them reject.

We can tolerate false positives and negatives with an exponentially
small error probability.

Bob can then independently of Alice, decide all languages in BPP by
running the BPP algorithm a sufficient number of times and declaring
the answer as the majority result.

A third possibility is that Alice uses its exponential computing
capabilities and Bob uses randomization. We now show that this
scenario can help running a protocol that captures graph
non-isomorphism.

32 / 82



Nondeterminism, randomization and communication protocols
An interactive protocol for the graph non-isomorphism problem

[Pap94]

Graph nonisomorphism

If two graphs given as inputs to Alice by Bob are always isomorphic
then Alice will only be getting one kind of information from Bob as
long as Bob sends one of these graphs or isomorphs of these graphs
to Alice in the interacting steps of a protocol running between them.

However, if the two graphs given to Alice and Bob as inputs are
non-isomorphic then Alice will get some distinguishable information if
Bob sends isomorphs or these graphs to Alice in the steps of the
protocol.

So, we can design a protocol accordingly where both are given two
graphs G and G ′.

If G and G ′ are isomorphic then it will be difficult for Alice to
convince Bob that the two graphs are non-isomorphic.

33 / 82



Nondeterminism, randomization and communication protocols
An interactive protocol for the graph non-isomorphism problem

[Pap94]

Graph nonisomorphism (cont.)

If the given graphs are non-isomorphic then Alice can always
distinguish between two graphs sent by Bob to Alice or even if their
isomorphs are sent by Bob to Alice.

This forms the basis of the folowing protocol for the graph
non-isomorphism problem.

(The graph isomorphism problem is not yet know to be NP-complete
but it is in the class NP. Why? The graph non-isomorphism problem
is in co-NP therefore. Graph Isomorphism is also not known to be in
co-NP, or BPP.)

34 / 82



Nondeterminism, randomization and communication protocols
An interactive protocol for the graph non-isomorphism problem

[Pap94]

Graph nonisomorphism

Bob has to play several rounds. Alice can discriminate if two
non-isomorphic graphs are send by Bob in a round.

However, if Bob sends two isomorphic graphs to Alice, Alice will have
no way to distinguish between the two cases (i) both given input
graphs are isomorphic, and (ii) the two input graphs are
non-isomorphic but Bob decides to send the same graph’s isomorphs
to Alice as two graphs.

How will Bob use randomization so that Alice has a small probability
of success in fooling/convincing Bob that the two inputs are
non-isomorphic even when the two graphs given as input are
isomorphic?

Let us propose that Bob must always send G as one of the graphs to
Alice.

35 / 82



Nondeterminism, randomization and communication protocols
An interactive protocol for the graph non-isomorphism problem

[Pap94]

Graph nonisomorphism (cont.)

Then, for the second graph to send to Alice, Bob has the choice of
sending an isomorph of G or G ′.

For generating an isomorph, Bob generates a random permutation π.
If he chooses to send π(G ) (π(G ′)) as the second graph then he
remembers this by setting a bit b as 1 (0).

Alice will simply check if the two graphs sent by Bob are isomorphic
and send a 1 (0) to Bob if they are checked by Alice to be isomorphic
(non-isomorphic).

This answer of Alice will tally with the bit b of Bob if G and G ′ are
indeed non-isomorphic. So, the round succeeds with probability 1 in
this case.

However, if G and G ′ are isomprphic, then no matter which graphs
Bob sends to Alice, that is, irrespective of the value 1 (0) of the bit b,
Alice will always find the graphs sent to her as isomorphic.

36 / 82



Nondeterminism, randomization and communication protocols
An interactive protocol for the graph non-isomorphism problem

[Pap94]

Graph nonisomorphism (cont.)

The only way to convince Bob is to get a correct guess for the 1 (0)
value of b, which is private to Bob and not known to Alice.

This she can guess with only probability of success 1
2 .

Playing this round |x | times is necessary to reflect the size of the input
x = (G ,G ′), whence the probability of success in the protocol is 100%
when the two graphs are non-isomorphic, and at most 1

2|x|
, otherwise.

This shows the power of ‘private coins’ of the ‘verifier’ Bob, wheres
the tosses are guessed by the ‘prover’ Alice.

37 / 82



Randomized complexity classes and Circuits Classes BPP and RP

BPP and RP

Comparing complexity classes, we find that non-determinism and
randomization enable capabilities of different kinds.

Whereas, randomization has relevance in practice in the design of fast
algorithms albeit with error probabilities, non-determinism is not
realizable in any pragmatic computing model.

The interest in the relationship between classes like NP and BPP is
central and open in complexity theory.

Surely, NP is very assymetric, with no false positives for
non-membership, but with false negatives for membership.

On the other hand, BPP is symmetric, with both false negatives and
false positives.

It seems BPP and NP are quite incomparable. In fact it is known
that NP ⊆ BPP implies BPP = RP; asymmetry as in NP enters if
NP ⊆ BPP.

38 / 82



Randomized complexity classes and Circuits Classes BPP and RP

BPP and RP (cont.)

The class RP has no false positives but has false negatives. The class
co − RP has no false negatives but has false positives.

39 / 82



Randomized complexity classes and Circuits Probabilistic Turing machines and the class BPP from [AB06]

Probabilistic TMs and BPP

The class BPP can be defined with probability of failure at most 1
4 , or

1
3 , or even any fraction strictly lesser than 1

2 , in deciding membership
of strings in its languages. The precise definitions are as follows.

A probabilistic Turing machine (PTM) is a Turing machine with two
transition functions.

To execute a PTM M on an input x , we choose in each step one of
the two transition functions with probability 1

2 each.

This choice is independent of all previous choices in the computation.
We denote by M(x) the random variable corresponding to the 0/1
value that M writes for output.

For a function T : N → N, we say that M runs in T (n)-time if for
any input x , M halts on x within T (|x |) steps in any of the possible
random paths.

40 / 82



Randomized complexity classes and Circuits Probabilistic Turing machines and the class BPP from [AB06]

Probabilistic TMs and BPP (cont.)

The classes BPTIME and BPP:
For T : N → N and L ⊆ {0, 1}∗ we say that a PTM M decides L in
time T (n) if for every x ∈ {0, 1}∗, M halts in T (|x |) steps,
independently of its random choices, and Pr [M(x) = L(x)] ≥ 2

3 .

We let BPTIME (T (n)) be the class of languages decided by PTMs in
O(T (n)) time and define BPP = ∪cBPTIME (nc).

(BPP, alternative definition) A language L is in BPP if there exists a
polynomial-time TM M and a polynomial p : N → N such that for
every x ∈ {0, 1}∗, Prr∈R{0, 1}p(|x |)[M(x , r) = L(x)] ≥ 2

3 .

For c > 0, let BPP 1
2

+n−c denote the class of languages L for which

there is a polynomial-time PTM M satisfying
Pr [M(x) = L(x)] ≥ 1

2 + |x |−c for every x ∈ {0, 1}∗. Then
BPP 1

2
+n−c = BPP.

41 / 82



Randomized complexity classes and Circuits Probabilistic Turing machines and the class BPP from [AB06]

Probabilistic TMs and BPP (cont.)

Claim (Probability amplification): Let L ⊆ {0, 1}∗ be a language and
suppose that there exists a polynomial-time PTM M such that for
every x ∈ {0, 1}∗,Pr [M(x) = L(x)] ≥ 1

2 + |x |−c . Then for every
constant d > 0 there exists a polynomial-time PTM M ′ such that for
every x ∈ {0, 1}∗, Pr [M ′](x) = L(x)] ≥ 1− 2−|x |

d
.

The machine M ′ is as follows. For every input x ∈ {0, 1}∗, M ′ runs
M(x) for k = 8|x |2c+d times obtaining k outputs y1, ..., yk ∈ {0, 1}.
If the majority of these outputs is 1, then it outputs 1; otherwise, it
outputs 0. We use the Chernoff bound to establish the above claim.

42 / 82



Randomized complexity classes and Circuits Probability amplification

Probability amplification

We discuss the details of tail bounds for BPP amplification from
[MR00].

The probability upper bound of the deviation of the sum of n
variables (with probability p of being 1), θnp below the mean np, is

e−
npθ2

2 (Theorem 4.2 [MR00]).

So, if p = ε+ 1
2 , θ = ε

1
2

+ε
then θnp = nε, whence

(1− θ)np = np − θnp = n
2 , the majority vote.

The tail probability is thus at most e−2npε2
.

Setting n = k
ε2 , we get the bound as e−2kp, where this is e−k as ε can

be very small.

So, we can choose any k for the inverse exponential error bound.

Here, n is the number of times we run the basic BPP algorithm on
input x . So, n and k are polynomial in |x |.

43 / 82



Randomized complexity classes and Circuits Probability amplification

Probability amplification (cont.)

Now choose ε = |x |−c and k = |x |d .

44 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and PH

The presentation below is from lecture notes of Prof. Jonathan Katz
in 2011.

Say S ⊆ {0, 1}m is large if |S | ≥ (1− 1
m )2m , and small if |S | < 2m

m .

For a string z ∈ {0, 1}m define S ⊕ z = {s ⊕ z |s ∈ S}.
If S is small, then for all z1, ..., zm ∈ {0, 1}m we have
∪i (S ⊕ zi ) 6= {0, 1}m.

Otherwise (that is, when S is big), there exists z1, ..., zm ∈ {0, 1}m
such that ∪i (S ⊕ zi ) = {0, 1}m.

This is because | ∪i (S ⊕ zi )| ≤ Σi |(S ⊕ zi )| = m.|S | < 2m, when S is
small.

Here we had m strings of m bits each. So we see that m translates of
S cannot cover the whole space when S is small, and when S is big,
some set of m translates of S can cover the space.

45 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and PH (cont.)

This later part is shown using a probabilistic argument1.
Note here that the space is of m-bit vectors and also the number of
strings is m.
We now use these results as follows.
Given L ∈ BPP, there exist a polynomial m and an algorithm M such
that M uses m(|x |) random strings and errs with probability less than
1/m.
For any input x , let Sx ⊆ {0, 1}m(|x |) denote the set of random strings
for which M(x ; r) outputs 1.
Thus, if x ∈ L, taking m = m(|x |)) we have |Sx | > (1− 1

m )2m , while if
x /∈ L then |Sx | < 2m

m .
This leads to the following Σ2 characterization of L:
x ∈ L if and only if ∃z1, ..., zm ∈ {0, 1}m∀y{0, 1}my ∈ ∪i (Sx ⊕ zi ).
The condition y ∈ ∪i (Sx ⊕ zi ) can be efficiently verified by checking if
M(x ; y ⊕ zi ) = 1 for some i .

1Consider the probability that some specific y is not in ∪i (S ⊕ zi ). This is given by:
Prz1,...,zm∈{0,1}m [y /∈ ∪i (S ⊕ zi )] = ΠiPrz∈{0,1}m [y /∈ (S ⊕ z)] ≤ ( 1

m
)m. The probability

that some y is not covered is at most 2m times, that is, ( 2
m

)m. So, there is an
overwhelming probability of 1− ( 2

m
)m that all y are covered (by some m m-bit random

strings zi ).

46 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and Circuits

We will use the probabilistic method, whereby we show only the
existence of a circuit family for any language L ∈ BPP.

Let N be the probabilistc TM that accepts the BPP language L in
p(n) time, where n is the input size.

For each x ∈ {O, l}n, at most one quarter of the computations are
bad for deciding the language L ∈ BPP for input x of length n.

Consider a sequence of bit strings An = (a1, ..., am) with
ai ∈ {O, 1}p(n) for i = 1, ...,m, where p(n) is the length of the
computations of N on inputs of length n, and m = 12(n + 1).

The circuit Cn, on input x , simulates N with each string of choices in
the sequence An, and then takes the majority of the m outcomes for
declaring its output.

So, Cn has a polynomial number of gates.

47 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and Circuits (cont.)

By a probablistic argument, we must show that there is a sequence
An such that Cn works correctly, for every input x of size n !

So, we will show that for all n > 0 there is a sequence An of
m = 12(n + 1) bit strings such that for all inputs x with |x | = n,
fewer than half of the choices in that sequence An are bad strings.

We do not care about which of the m strings are bad for any x but
we know that the same sequence An works for every x .

Since the strings in An were picked randomly and independently, the
expected number of bad strings is at most m

4 for input x .

By the Chernoff bound (Lemma 11.9), the probability that the
number of bad bit strings in the randomly chosen An is m

2 or more, is
at most 1

2n+1
2 .

This inequality holds for each x ∈ {O, 1}n, separately.

48 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and Circuits (cont.)

So, the probability that there is an x with no accepting sequence An

for Cn is at most the sum of these probabilities among all
x ∈ {O, 1}n, and this sum probability is at most 1

2 .

2Lemma 11.9 of [Pap94] uses θ = 1, p = 0.25 and n as m to get probability less than
e−

m
12 < 1

2n+1 .
49 / 82



Randomized complexity classes and Circuits Derandomizing BPP

BPP and Circuits

So, at most half of the possible 2p(n)(12(n+1)) An sequences of
p(|x |)-length strings are bad for some x of length n.

Subtracting from the total number of possible An sequences of m
p(|x |)-length strings, we can conclude that at least half of the
elements of this space are selections that have an accepting choice for
each x in Cn.

Which ones are these we do not know.

50 / 82



Randomized complexity classes and Circuits A simpler circuit construction as in [AB06]

Simpler circuit

Suppose L ∈ BPP. By the alternative definition of BPP we can
reduce the error to show a TM M that on any input of size n needs m
random bits and such that for every x ∈ {0, 1}n,
Prr [M(x , r) 6= L(x)] ≤ 2n−1.

A string r ∈ {0, 1}m is called bad for an input x ∈ {0, 1}n if
M(x , r) 6= L(x) and, good otherwise.

For a given x , at most 2m

2n+1 strings r are bad for x .

Adding over all x ∈ {0, 1}n, there are at most 2n 2m

2n+1 = 2m

2 strings r
that are bad for some x .

Therefore there is at least one string r0 ∈ {0, 1}m that is good for
every x ∈ {0, 1}n.

We can burn in string r0 in a circuit C that on input x outputs
M(x , r0).

The circuit C will satisfy C (x) = L(x) for every x ∈ {0, 1}n.

51 / 82



Circuits

Circuits

Polynomial sized Boolean circuits may have logarithmic or even
polynomial depth.

We will look at some basic circuit characterizations of important
complexity classes, including those for parallel computation as circuits
present a natural model for parallel computing.

Caution is used while defining infinite families of circuits so that the
accepted languages may remain decidable (see Proposition 11.2
[Pap94], for an undecidable language with a polynomial family of
circuits)3.

To avoid this we have the following notion. So, we carefully define
what we call uniformly polynomial circuits as follows.

A family C = (C0,C1, ...) of circuits is said to be uniform if there is a
log n-space bounded Turing machine N which on input 1n outputs Cn.

52 / 82



Circuits

Circuits (cont.)

We say that a language L has uniformly polynomial circuits if there is
a uniform family of polynomial circuits (C0,C1, ...) that decides L.

It turns out that the class P is precisely the class of uniformly
polynomial circuits (see Theorem 11.4 in [Pap94]).

We will also see that all languages in BPP too have polynomial
circuits, though may not be polynomially uniform citcuits ! (Theorem
11.6 of [Pap94]).

It remains open whether BPP = P.

We note that some (many) Boolean functions may need large circuits.

In Theorem 4.3 of [Pap94] (by Shannon in 1949), we see that an
n-ary Boolean function can be computed only by circuits of more than
2n

2n gates.

How many circuits can we have for n-ary Boolean function
computations with m gates?

53 / 82



Circuits

Circuits (cont.)

We can have a gate of n + 5 types, AND, OR, NOT, 0 and 1, and the
n inputs. Since there are m gates, each of the at most two inputs can
be from the outputs of at most m2 combinations of gates, giving a
very gross upper bound of m gates with at most (n + 5)m2

possibilities.

So, for m gates we have no more than ((n + 5)m2)m possibilities
computing one of 22n possible Boolean functions.

Putting m = 2n

2n , we see that we have more functions than circuits.

So, clearly just m = 2n

2n gates will not suffice !

However, we know that languages in P have polynomial (sized)
circuits, by virtue of the proof of the P-completeness of CVP using a
logarithmic space reduction (see Theorem 8.1 of [Pap94]).

Note that every Boolean expression has a CNF and a DNF
representation.

54 / 82



Circuits

Circuits (cont.)

It is also interesting that unsatisfiable expressions are difficult to
construct since they must be false under all truth assignments (see
Example 4.2 in [Pap94]).

Exercises for practice: Problems 4.4.5, 4.4.8, 4.4.10, 4.4.12 and
15.5.4.

Theorem 15.1: If L ⊆ {0, 1}∗ is in PT/WK (f (n), g(n)), then there is
a uniform PRAM that computes the corresponding function FL
mapping {O, 1}∗ to {O, 1} in parallel time O(f (n)) using O(g(n)

f (n) )
processors.

55 / 82



Circuits

Circuits (cont.)

Theorem 15.2: Suppose that a function F can be computed by a
uniform PRAM in parallel time f (n) with g(n) processors, where f (n)
and g(n) can be computed from 1n in logarithmic space. Then there
is a uniform family of circuits of depth O(f (n)(f (n) + logn)) and size
O(g(n)f (n)(nk f (n) + g(n))) which computes the binary
representation of F , where nk is the time bound of the logarithmic
space Turing machine which on input 1n outputs the nth PRAM in
the family.

Let NC = PT/WK (logk n, nk) to be the class of all problems solvable
in polylogarithmic parallel time with polynomial amount of total work.

We now observe that NC1 ⊆ L ⊆ NL ⊆ NC2.

We show that the non-trivial first and third inclusions hold; the
second one is trivial.

56 / 82



Circuits

Circuits (cont.)

For showing the first inclusion we cascade a set of three logspace
transformations so that the whole process is also a logspace
transformation.

The first one is the building of the circuit for the NC1 language by its
characterization as a uniform family of circuits. The output of this
step is the description of all the gates of the constructed circuit.

In a circuit, a gate may have outdegree more than one; this is the
sharing of common subexpressions, possible in circuits.

The second logarithmic space-bounded algorithm takes this circuit
and transforms it into an equivalent circuit with all out degrees one.

This is done by considering all possible paths in the original circuit.
Trace the paths starting from the output and reaching the inputs.

57 / 82



Circuits

Circuits (cont.)

A path is not represented by the names of the gates in the path.
Instead an economical bit string of length equal to that of the path is
used where each bit indicates whether the next gate visited in the
path is the first or the second predecessor of the previous gate.

For the single branch out of a NOT gate we use 0.

Since the given circuit has logarithmic depth, these paths have
logarithmic length representations.

The output gate will be labeled as ε, the empty-string.

Its first predecessor will be labeled 0, its second 1, the first
predecessor of 1 will be labeled 10, and so on.

Gates reachable by several paths will are naturally represented many
times, once for every path that reaches them.

The gates and the connections in this new circuit can be generated
one-by-one, reusing space.

58 / 82



Circuits

Circuits (cont.)

In the end we have an equivalent tree-like circuit whose gates are
labeled by bit strings of logarithmic length.

So, the new circuit is a list of bit strings.

The third algorithm evaluates the output gate of the tree-like circuit.

To evaluate an AND gate labeled by the string g , the algorithm
recursively evaluates its first predecessor g0.

If the first predecessor’s value is true, then we must also evaluate the
second predecessor, g1.

For OR gates the roles of true and false are reversed.

For NOT gates we simply evaluate the unique input and return the
opposite value, and in the case of true or false gates there is nothing
to do.

59 / 82



Circuits

Circuits (cont.)

Once the evaluation of a gate is finished, the evaluation of its
successor (the unique gate to which it is a predecessor, recall that we
are evaluating a tree-like circuit) is resumed.

The label of the successor can be obtained by simply omitting the last
bit of the current label.

When we finish the evaluation of the output, we have the value of the
circuit and we are done.

3Proposition 11.2 of [Pap94] shows an example of an unrealistic model of
computation where we are allowed to use unbounded amounts of computation to
construct each circuit in the family.

60 / 82



PH

PH

Recall the definition of the class NP in Proposition 9.1 of [Pap94].

See that this is generalized for defining/characterizing PH in Corollary
2 in Chapter 17 of [Pap94]; the equivalent definition for PH is seen in
Definition 5.3 in [AB06], following the Definition 5.1 of Σp

2 in [AB06].

Note that as per the above definitions, Σp
1 = NP.

For every i , we define Πp
i = co − Σp

1 = {Lc |L ∈ Σp
1}, where Lc is the

complement language Σ∗ \ L of L.

61 / 82



PH

PH

So, Πp
1 = co − NP. Σp

2 = NPSAT = NPNP , since SAT is
NP-complete. Πp

2 = co − NPSAT = co − NPNP .

Later, in Theorem 5.12 of Section 5.5 of [AB06], the characterization
of the polynomial hierarchy in presented via oracles machines, as in
Definition 17.24 of Section 17.2 in [Pap94].

4The polynomial hierarchy is the following sequence of classes: ∆P
0 = ΣP

0 = ΠP
0 = P;

and for all i > 0, ∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i , ΠP
i+1 = co − NPΣP

i , and PH = ∪iΣ
P
i .

62 / 82



PH

PH

Note that although we can simulate all the non-determinism / oracles
in the definition of PH within PSPACE , we do not know whether
PH = PSPACE .

Note that for every i , ΣP
i ⊆ ΠP

i+1 ⊆ ΣP
i+2.

Thus, PH = ∪i>0ΣP
i = ∪i>0Πi . Try problems 5.1, 5.3, 5.10, 5.12

from [AB06].

63 / 82



PH

PH

Suppose that the cities in a Euclidean instance of the TSP are the
vertices of a convex polygon.

Then not only is the optimum tour easy to find (it is the perimeter of
the polygon) but the instance has the master tour property: There is
a tour such that the optimum tour of any subset of cities is obtained
by simply omitting from the master tour the cities not in the subset.

Problem 1: Show that deciding whether a given instance of the TSP
has the master tour property is in the second level of PH, in ΣP

2

(Problem 17.3.11 [Pap94]).

64 / 82



PH

PH

Firstly, we can guess an optimal TSP solution/tour/permutation Π
for the full instance.

Then for every subset S of cities, and for every (sub)permutation of
S , we must verify that none of these permutations of S has tour cost
lesser than that of the permutation ΠS subsumed by Π on S .

We know that converting Boolean expressions in disjunctive normal
form to conjunctive normal form can be exponential in the worst case,
simply because the output may be exponentially long in the input.

But suppose the output is small. In particular, consider the following
problem: We are given a Boolean expression in disjunctive normal
form, and an integer B.

65 / 82



PH

PH

We are asked whether the conjunctive normal form has B or fewer
clauses.

Problem 2: [Problem 17.3.12 in [Pap94]] Show that the problem of
determining whether a CNF has fewer clauses than the given DNF is
in the second level of PH. Hint: Show that it is in ΣP

2 .

Guess a CNF formula of B or fewer clauses and check for all inputs
whether the DNF agrees with the guessed CNF.

Now consider the problem: MINIMUM CIRCUIT: Given a Boolean
circuit C , is it true that there is no circuit with fewer gates that
computes the same Boolean function?

66 / 82



PH

PH

Problem 3: Show that MINIMUM CIRCUIT is in ΠP
2 . For hints, see

[Pap94].

Whatever be a circuit C ′ with fewer gates, we must have an input x
so that C ′(x) 6= C (x).

So, universal quantification for C ′ would choose all such possibilities
and for each such possibility a guessed certificate x will be used for
verifying in polynomial time that the two circuits differ on outcomes
for x .

67 / 82



PH

PH

Problem 4: In the SUCCINCT SET COVER problem [AB06], we are
given a collection S = {φ1, φ2, ..., φm} of 3-DNF formulas on n
variables, and an integer k .

We need to find whether there is a subset S ′ ⊆ {1, 2, ...,m} of at
most k elements for which ∨i∈S ′φi evaluates to 1 for every
assignment to the variables.

SUCCINCT SET COVER is thus in ΣP
2 .

68 / 82



PH

PH

Problem 5: The Vapnik-Chervonenkis (VC) dimension:
If S = {S1, S2, ...,Sm} is a collection of subsets of a finite set U, the
VC dimension of S, denoted VC (S), is the size of the largest set
X ⊆ U such that for every X ′ ⊆ X , there is an i for which
Si ∩ X = X ′.

We say that X is shattered by S; every non-empty subset of X is the
projection of X in some set Si ∈ S.

A Boolean circuit C succinctly represents collection S if Si consists of
exactly those elements x ∈ U for which C (i , x) = 1.

Now let VC −DIMENSION = {< C , k >: C represents a collection S
such that VC (S) ≥ k}.
Show that VC − DIMENSION ∈ ΣP

3 . Hint: Guess X and for all
X ′ ⊆ X see whether for some Si , X

′ = X ∪ Si .

69 / 82



PH The EXPCOM oracle

EXPCOM

Let EXPCOM be the following language
{< M, x , 1n > : M outputs 1 on input x within 2n steps}.
Then PEXPCOM = NPEXPCOM = EXP = ∪cDTIME (2n

c
) [AB06].

An oracle to EXPCOM allows one to perform an exponential-time
computation in one call, so that EXP ⊆ PEXPCOM .

To see this, let L ∈ EXP be decided by a DTM ML running in time
nc , c > 0.

A DTM running in polynomial time can pass on < ML, x , 1
|x |c > as a

query for EXPCOM so as to decide the behaviour of ML on x in 2|x |
c

time.

So, L ∈ PEXPCOM . Thus EXP ⊆ PEXPCOM .

It is trivial that PEXPCOM ⊆ NPEXPCOM .

70 / 82



PH The EXPCOM oracle

EXPCOM

On the other hand, if M is a nondeterministic polynomial-time oracle
TM, we can simulate its execution with a EXPCOM oracle, in
exponential time.

Exponential time suffices both to enumerate all of M’s
nondeterministic choices, and also to answer the EXPCOM oracle
queries.

To see this let L ∈ NPEXPCOM .

So, a polynomial length guess is provided as a query to EXPCOM by
an NDTM M.

However, an EXP machine can not only try out all guesses of M in
exponential time but also answer all the queries made by M in
exponential time.

So, L ∈ EXP, forcing NPEXPCOM ⊆ EXP.

Thus EXP ⊆ PEXPCOM ⊆ NPEXPCOM ⊆ EXP.

71 / 82



PH The PSPACE oracle

PSPACE oracle

There is an oracle A for which PA = NPA [Pap94].

Take A to be any PSPACE-complete language.

We have PSPACE ⊆ PA ⊆ NPA ⊆ NPSPACE ⊆ PSPACE . Hence,
PA = NPA.

The second inclusion above is trivial and the fourth inclusion is due to
Savitch’s theorem.

For the first one, let L be any PSPACE language.

The language L can be decided by a polynomial-time deterministic
Turing machine that performs the reduction from L to A in
polynomial time, and then uses the oracle for A only once.

For the third inclusion, any nondeterministic polynomial-time Turing
machine with oracle A can be simulated by a nondeterministic
polynomial space-bounded Turing machine, which resolves the queries
to A by itself, in polynomial space.

72 / 82



PH Karp-Lipton theorem

Karp-Lipton theorem

We now prove the Karp-Lipton theorem.

We show that if NP ⊆ P/poly then ΠP
2 ⊆ ΣP

2 .

We know that this implies ∀k ≥ 2, ΣP
k = ΣP

2 .

Let L ∈ ΠP
2 . So, there is a polynomial p() and a polynomial-time

computable F () such that
x ∈ L iff ∀y1, |y1| ≤ p(|x |)∃y2, |y2| ≤ p(|x |),F (x , y1, y2) = 1.

This is by the definition/characterization of ΠP
2 .

73 / 82



PH Karp-Lipton theorem

Karp-Lipton theorem contd.

We can show that, for every n, there is a circuit Cn of size polynomial
in n such that for every x of length n and every y1, |y1| ≤ p(|x |), we
have
∃y2, |y2| ≤ p(|x |)F (x , y1, y2) = 1 if and only if
F (x , y1,Cn(x , y1)) = 1,
due to the premise of the Karp-Lipton theorem that NP ∈ P/poly5.

(Here, y1 is inherited as an argument in F () by definition and y2 is
the second existential guess string captured within the NP
characterization as a certificate, which is in turn realized by the
circuit Cn for F () with arguments x , y1 as y2 = Cn(x , y1).)

5This needs some elaboration which we skip here.
74 / 82



PH Karp-Lipton theorem

Karp-Lipton theorem contd.

Let q(n) be a polynomial upper bound on the size of Cn.

So, for inputs x of length n, we can write
x ∈ L iff ∃C , |C | ≤ q(n),∀y1, |y1| ≤ p(n),F (x , y1,C (x , y1)) = 1,
showing that L is in ΣP

2 .

75 / 82



PH Meyer’s theorem

Meyer’s theorem

If EXP ⊆ P/poly then EXP = ΣP
2 .

For any L ∈ EXP, L is decided in 2p(n) time by an oblivious TM M,
where p is some polynomial.

We show that L ∈ ΣP
2 by showing that

∃C ∈ {0, 1}q(n)∀i , i1, ..., ik ∈ {0, 1}p(n)T (x ,C (i),C (i1), ...,C (ik)) =
1.

Here, C is a polynomial q(n)-size described circuit and T () is a
polynomial tiem computable function with k + 2 arguments.

We use the oblivious TM convention of Claim 1.6 and Remark 1.7, as
used nicely in Theorem 6.6 and elsewhere in [AB06] for simulating
k-tape TMs based on local snapsshots at each step of the TM in the
vicinity of the head positions on the tapes.

76 / 82



PH Meyer’s theorem

Meyer’s theorem contd.

Let x ∈ {0, 1}n be some input string. For every i ∈ [2p(n)], we denote
by zi the encoding of the ith snapshot of Ms execution on input x as
in the proof of Theorem 6.6 [AB06].
Since M has k tapes, we have
x ∈ L iff for every k + 1 indices i , i1, ..., ik , the snapshots zi , zi1 , ..., zik
satisfy some easily checkable criteria.

If zi is the last snapshot, then it should encode outputting 1, and if
i1, ..., ik are the last indices where Ms heads were in the same
locations as in i , then the values read in zi should be consistent with
the input and the values written in zi1 , ..., zik .

(These indices can be represented in polynomial time.)

77 / 82



PH Meyer’s theorem

Meyer’s theorem contd.

Since EXP ⊆ P/poly by assumption in the premise of this theorem,
there is a q(n)-sized circuit C , for some polynomial q that computes
zi from i .

Now the main point is that the correctness of the transcript implicitly
computed by this circuit can be expressed as a co-NP predicate that
checks whether the transcript satisfies all local criteria over all steps
of the computation.

Hence, x ∈ L iff the following condition is true
∃C ∈ {0, 1}q(n)∀i , i1, ..., ik ∈ {0, 1}p(n)T (x ,C (i),C (i1), ...,C (ik)) =
1.

78 / 82



PH Computing with advice

Computing with advice.

Let T , a : N → N be functions.

The class of languages decidable by time-T (n) TMs with a(n) bits of
advice, denoted DTIME (T (n))/a(n), contains every L such that
there exists a sequence {αn}n ∈ N of strings with

αn ∈ {0, 1}a(n) and a TM M satisfying

M(x , αn) = 1 iff x ∈ L, for every x ∈ {0, 1}n, where on input (x , αn)
the machine M runs for at most O(T (n)) steps.

Every unary language can be be decided by a polynomial time Turing
machine with 1 bit of advice. The advice string for inputs of length n
is the single bit indicating whether or not 1n is in the language.

79 / 82



PH Computing with advice

Polynomial advice.

If L∈ P/poly , then it is computable by a polynomial-sized circuit
family {Cn}.
We use the description of Cn as an advice string on inputs of size n,
where the TM is simply the polynomial-time TM M that on input a
string x and a string representing an n-input circuit C outputs C (x).

Conversely, if L is decidable by a polynomial-time Turing machine M
with access to an advice family {αn}n∈N in N of size a(n) for some
polynomial a, then we can use the construction of Theorem 6.6 to
construct for every n a polynomial-sized circuit Dn such that
on every x ∈ {0, 1}n, α ∈ {0, 1}a(n), Dn(x , α) = M(x , α).

80 / 82



PH Computing with advice

Polynomial advice.

We let the circuit Cn be the polynomial circuit that given x computes
the value Dn(x , αn).

That is, Cn is equal to the circuit Dn with the string αn hard-wired as
its second input.

81 / 82



PH Computing with advice

References

S. Arora and B. Barak, “Computational complexity: A modern
approach,”, 2006. [Online]. Available:
http://theory.cs.princeton.edu/complexity/.

J. Hopcroft and J. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

R. Motwani and P. Raghavan, Randomized Algorithms.
Cambridge, 2000.

C. H. Papadimitriou, Computational complexity.
Addison-Wesley, 1994, pp. I–XV, 1–523, isbn:
978-0-201-53082-7.

82 / 82

http://theory.cs.princeton.edu/complexity/

	Contents
	Preliminaries: Turing machine simulations
	Tape compression
	Halting space bounded computations
	Linear speedup
	Hierarchy theorems
	Time hierarchy theorem
	Nondeterministic space computations
	Savitch's theorem
	Immerman-Szelepscenyi theorem

	Interactive protocols
	Nondeterminism, randomization and communication protocols
	An interactive protocol for the graph non-isomorphism problem books/daglib/0072413

	Randomized complexity classes and Circuits
	Classes BPP and RP
	Probabilistic Turing machines and the class BPP from arorabarak
	Probability amplification
	Derandomizing BPP
	A simpler circuit construction as in arorabarak

	Circuits
	Uniform families of circuits
	Boolean functions with large circuits
	The class NC and its logspace relationships

	PH
	Examples higher up in the hierarchy
	The EXPCOM oracle
	The PSPACE oracle
	Karp-Lipton theorem
	Meyer's theorem
	Computing with advice

	References

