Computational Complexity (Autumn 2006: CS40007, CS60049) Assignment 1

Instructor: Prof. S. P. Pal Teaching Assistant: Rahul Gokhale

Due on: 16/08/06

Exercise 1 Show that 4st raised to S(n) exceeds the number of configurations of machine M_1 , where s is the number of states of M_1 , t is the cardinality of M_1 's alphabet and S(n) is the space complexity of M_1 .

5

Exercise 2 Show that the decision problem of determining whether an n-vertex undirected graph has a vertex cover of size $\lceil n/3 \rceil$ is NP-complete.

25

Exercise 3 Show that the problem of determining whether the language L(G) generated by a given context-free grammar G is the empty set, is in the class P. (See HU79). What happens for regular grammars? What is the input in these decision problems? [Note that regular grammars and context-free grammars may be nondeterministic.]

20

Exercise 4 We simulate a k > 1 tape TM M_1 compressing m cells into 1 to get the same language recognized in cT(n) time by another TM M_2 , provided $T(n)/n \to \infty$ as $n \to \infty$, when we choose m such that $mc \ge 16$. Show that M_2 can indeed simulate T(n) steps of M_1 as above; show particularly that at least m moves of M_1 can be simulated in 8 moves of M_2 .

20

Exercise 5 Prove: If $\inf_{n\to\infty}T(n)/n=\infty$ and c>0, then DTIME(T(n))=DTIME(cT(n)).

10

Exercise 6 In Theorem 12.3 [HU79], what happens if T(n) is a constant multiple of n.

10

Exercise 7 Extend the above two results to nondeterministic Turing machines.

10

Exercise 8 Study Theorems 12.5 and 12.6 in [HU79].