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Lecture 12

Lecturer: Prof. S. P. Pal Scribe: Sukanth E

This lecture develops the characterization of perfect graphs as graphs which
have a complete subgraph that meets all maximum independent sets and the
generation of perfect graphs by extension of a vertex and the existence of
a complete subgraph in a perfect graph that meets all the maximum inde-
pendent sets of the perfect graph. We go on to prove Lovász’s perfect graph
theorem.

12.1 Characterization of perfect graphs

Claim: A graph is perfect if and only if every induced subgraph has an
independent set (stable set) that intersects with every maximum clique in
that subgraph.

Proof(=>): Consider an arbitary perfect graphG and letH be an arbitary
subgraph of G. Since H is a subgraph of a perfect graph therefore, H is also
perfect. Take any χ(H) colouration of H and let S be a colour class of this
colouration. Assume that S misses a maximum clique C of H. Since S misses
C,

|C| < χ(H) (1)

But, |C| is same as the size of the maximum clique of H. Therefore,

ω(H) < χ(H) (2)

This implies that H is not perfect. But, this is a contradiction since we have
established that H is perfect. Therefore, the initial assumption that S misses
a maximum clique is false. Therefore, S meets all maximum cliques of H.
Since S is a colour class and no two adjacent vertices of G can have the same
colour, S is an independent set. This proves the existence of an independent
set that meets all maximum cliques in every induced subgraph of G. This
completes the proof of the necessary condition of the claim.

Proof(<=): Let G be any arbitrary graph and every arbitary subgraph of
G has an independent set that meets all maximum cliques of the subgraph.
Let H be any arbitary subgraph of G. Trivially for any graph we require
atleast as many colours as the maximum clique size to colour it. Therefore,

χ(H) ≥ ω(H) (3)
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Proof of the other direction of the inequality is done by induction on the
number of vertices of H. Base cases of K1 and K2 satisfy the inequality
trivially. Let S be an independent set of H that meets all maximum cliques
of H. Any proper colouration of H will not require one more colour than
χ(H − S). Therefore,

χ(H) ≤ χ(H − S) + 1 (4)

Also, since S meets every maximum clique of H, adding S to H − S will
increase the size of any maximum clique by atleast 1. Therefore,

ω(H) ≥ ω(H − S) + 1 (5)

Since, the subgraph H−S is perfect by the inductive hypothesis we can write
expression (5) as

ω(H) ≥ χ(H − S) + 1 (6)

Hence, using (4) expression (5) becomes

ω(H) ≥ χ(H) (7)

Hence, by (3) and (7) we have

ω(H) = χ(H) (8)

Since every subgraph H of G satisfies the perfect graph property we can
conclude that G is perfect. This completes the proof for the sufficient condi-
tion.

12.2 Generating perfect graphs by extension of a ver-
tex

Construction: A vertex x in any perfect graph G is expanded by adding
a new vertex x′ and connecting x′ to x and all neighbours of x in G, thus
obtaining the expanded graph G′.

Claim: G′ is perfect

Proof: To establish that every proper induced subgraph of G′ is perfect
we use induction on the number of vertices of G. Base Case: Consider the
vertex expansion of K1 into K2. Both K1 and K2 are perfect. Therefore,
base case is satisfied.
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Inductive step: Let H be any proper induced subgraph of G′. Then H can
be isomorphic to any proper induced subgraph of G or can contain x′ as one
its vertices. If H is isomorphic to any proper induced subgraph of G then H
is perfect since G is perfect and every induced subgraph of G is also perfect.
If H contains x′ then two cases arises. Either H contains both x and x′ or
H contains only x′.

Case 1: H contains only x′

If H contains only x′ then x′ can be replaced by x to get a new graph H ′

since, x′ is connected to all neighbours of x. H and H ′ are isomorphic. H ′

is perfect since it is a proper induced subgraph of G. Therefore, H is also
perfect since it is isomorphic to H ′.

Case 2: H contains both x and x′

H −{x′} is perfect because it is a proper induced subgraph of G. Therefore,
H is a vertex extension of H − {x′} and by the inductive hypothesis H is
also perfect.

Therefore, any proper induced subgraph H of G′ is perfect.

The maximum clique size of G′ can increase by atmost 1. Therefore, ω(G′)
can be either ω(G) or ω(G) + 1. We require atmost 1 extra colour to colour
G′. Therefore,

χ(G′) ≤ χ(G) + 1 (1)

Case 1: If ω(G′) = ω(G) + 1

Since, G is perfect ω(G) = χ(G). Therefore, (1) can be written as

χ(G′) ≤ ω(G) + 1 = ω(G′) (2)

Therefore,

χ(G′) ≤ ω(G′) (3)

Case 2: If ω(G′) = ω(G)

x does not lie in any of the maximum cliques of G (If we assume that it lies in
any maximum clique Kw then Kw+{x′} would form a clique of size ω(G)+1
as x′ is connected to x and all the neighbours of x. Then, ω(G′) is equal to
ω(G)+1 which is a contradiction). Let Kw be any arbitary maximum clique
of G. Then the colour class X of x must meet all such Kw because we need
ω(G) colours to colour both G and Kw as G is perfect and each vertex of Kw
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will get a different colour so, there will be a vertex in each of Kw such that
it has the same colour of x. Let H be G− (X − {x}) then,

ω(H) = ω(G)− 1 (4)

Because every maximum clique in G must lose a vertex and x cannot be con-
nected to all the vertices of any maximum clique of H (If x was connected
then it would be part of a maximum clique of G which is a contradiction).
Since, H is a proper induced subgraph of G it is perfect. Therefore, it can
coloured with ω(H) colours. As X is a colour class it is independent. There-
fore, X − {x} ∪ {x′} is also independent by virtue of the construction of
x′. Therefore, X − {x} ∪ {x′} can be coloured with a single colour. There-
fore, ω(H) colouring of H can be extended into a ω(H) + 1 colouring of G′.
Therefore,

χ(G′) ≤ ω(H) + 1 (5)

Using (4) the expression (5) becomes

χ(G′) ≤ ω(G) (6)

Since, ω(G) = ω(G′) the expression (6) becomes

χ(G′) ≤ ω(G′) (7)

Since, both cases satisfy χ(G′) ≤ ω(G′) and χ(G′) ≥ ω(G′) because, for any
graph we need atleast as many colours as the maximum clique size to colour
it we can conclude that,

χ(G′) = ω(G′) (8)

Since every proper induced subgraph of G′ is perfect and by using expression
(8) we can conclude that G′ is perfect. This completes the proof that G′ is
perfect.

12.3 Existence of a complete subgraph that meets all
maximum independent sets in a perfect graph

Claim: Any arbitary perfect graph has a complete subgraph that meets all
the maximum independent sets.

4



Proof: Let G be any arbitary perfect graph. Let κ denote the set of all
vertex sets of complete subgraphs of G and A be the set of all maximum
independent vertex sets in G. For the sake of contradiction we assume to
the contrary that there is no such complete subgraph K ∈ κ. Then for every
complete subgraph K ∈ κ of G we must have some maximum independent
set AK of G so that K ∩ AK = ϕ. If any vertex x of G is in a AK then we
count such K’s to get k(x), the size of the clique that extends G at vertex
x. Let G′ be the resulting extension of G. So, vertex x of G may vanish in
G′ if k(x) = 0 but this does not affect perfectness of the extension because,
removal of any vertex will result in a proper induced subgraph of a perfect
graph and therefore, it is perfect. Therefore, G′ can be construted from
repeated vertex extension of an induced subgraph of G. Therefore, G′ is
perfect. Therefore,

χ(G′) = ω(G′) (1)

Let Gx denote the complete graph extension at a vertex x. By construction
of G′, every maximal complete subgraph of G′ has the form G′ [⋃

x∈X Gx

]
for some K ∈ κ. So there exists a set X ∈ κ such that

ω(G′) =
∑
x∈X

k(x) (2)

This can be written as,

ω(G′) = |{(x,K) : x ∈ X,K ∈ κ, x ∈ AK}| (3)

Expression (3) can be rewritten as,

ω(G′) =
∑
K∈κ

|X ∩ AK| (4)

Since, X is a complete graph and AK is an independent set |X ∩ AK| ≤ 1
and |X ∩ AX | = 0 by the choice of AX . Therefore, expression (4) becomes

ω(G′) ≤ |κ| − 1 (5)

On the other hand,

|G′| =
∑
x∈V

k(x) (6)

This can be written as,

|G′| = |{(x,K) : x ∈ V,K ∈ κ, x ∈ AK}| (7)
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Expression (7) can be rewritten as,

|G′| =
∑
K∈κ

|AK| (8)

As AK is a maximum independent set of G expression (8) becomes

|G′| = |κ|.α(G) (9)

Since, α(G′) ≤ α(G) because by construction of G′ no new vertices can be
added into any independent set of G but some vertices can vanish. Therefore,
expression (9) becomes

|G′| ≥ |κ|.α(G′) (10)

For any graph χ(G′).α(G′) ≥ |G′| therefore, expression (10) becomes

χ(G′).α(G′) ≥ |κ|.α(G′)

χ(G′) ≥ |κ|
χ(G′) > |κ| − 1 (11)

Using (5) the expression (11) becomes

χ(G′) > ω(G′) (12)

Expression (12) is a contradiction to expression (1). Therefore, our assump-
tion that there is no complete subgraph of G that doesn’t meet any of the
maximum independent sets is false. This completes the proof that any ar-
bitary perfect graph has a complete subgraph that meets all the maximum
independent sets.

12.4 Lovász’s Theorem

Claim: A graph is perfect if and only if its complement is perfect.

Proof: Let G be any arbitary perfect graph and G′ be its complement. We
use induction on the number of vertices of G to establish the theorem.

Base Case: If |G| = 1

|G| = 1 implies that G isK1. Complement ofK1 isK1. K1 is perfect trivially.
Therefore, base case is satisfied.

Base Case: If |G| ≥ 2
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Every proper induced subgraph of G′ is the complement of a proper induced
subgraph of G, and is hence perfect by induction. Since, every perfect graph
has a complete subgraph that meets all its maximum independent sets, let
K be such a complete subgraph of G. As K is a complete subgraph that
meets all the maximum independent sets of G it will be some independent
set in G′ that meets all of its maximum cliques. Therefore, removing K from
G′ will decrease the maximum clique size by atleast 1.Therefore,

ω(G′ −K) < ω(G′) (1)

Since, K is an independent set of G′ we can colour it with a single colour
and we need atmost one extra colour from χ(G′ −K) colouration of G′ −K
to colour G′. Therefore,

χ(G′) ≤ χ(G′ −K) + 1 (2)

Using the inductive hypothesis the expression (2) becomes

χ(G′) ≤ ω(G′ −K) + 1 (3)

Using (1) the expression (3) becomes

χ(G′) ≤ ω(G′) (4)

Since, for any graph we need atleast as many colours as the maximum clique
size to colour it we can write,

χ(G′) ≥ ω(G′) (5)

Using both (4) and (5) we can write,

χ(G′) = ω(G′) (6)

Since every proper induced subgraph of G′ is perfect and by using expression
(6) we can conclude that G′ is perfect. This completes the proof for the
theorem.
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