
1

Coverage
November 1, 2024

Date Covered

31.07.24

1. Prove: ”A graph is bipartite ⇔ ∃ no odd cycle”.

2. Edge Connectivity [λ(G) ≤ δ(G)].

3. Vertex Connectivity [κ(G) ≤ λ(G)].

4. Show that the existence of n− k distinct paths of length
k in a tree T with diameter 2k − 3.

5. Complement graph.

6. Prove: In regular graph |E| = ∆(G)
2 · |V |, where α ≤ |V |

2 .

7. [Bounding triangles in a graph]: Show that the # trian-
gles in any simple graph of n vertices and m edges is at

least 4m
3n · (m− n2

4 ).

01.08.24

1. Def(4.1.7) [1]: Disconnecting Set of edges, Edge cut.

2. Remark(4.1.8)

3. Th(4.1.9) [1](Whitney[1932]): If G is a simple graph,
then κ(G) ≤ κ′(G) ≤ δ(G). [1].

4. Ex(4.1.10) [1]

5. Th(4.1.11) [1]: If G is a 3-regular graph, then κ(G) =
κ′(G).

6. The proof of the Konig-Egervary Theorem using Hall’s
theorem.

02.08.24

1. Proof of Hall’s Theorem using the Konig-Egervary theo-
rem.

2. Revision of the proofs of Mantel’s theorem.

3. Tutorial 1 and discussions on the tutorial.
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07.08.24

1. Lm(1.2.25) [1]: If vertex of graph G has degree at least
2, then G contains a cycle.

2. Prop (1.2.28) [1]: If G is a simple graph in which every
vertex has degree at least k, then G contains a path of
length k. If k ≥ 2, then G also contains a cycle of length
at least k + 1.

3. Cor(1.3.4) [1]: In a graph G, the average vertex degree

is 2|E|
n , and hence δ(G) ≤ 2|E|

n ≤ ∆(G).

4. Cor(1.3.6) [1]: A k−regular graph with n vertices has
nk
2 edges.

5. Prop(1.3.9) [1]: If k > 0, then a k−regular bipartite
graph has the same number of vertices in each partite
set, and the graph also has a perfect matching.

6. Prop(1.3.15) [1]: If G is a simple n-vertex graph with
δ(G) ≥ (n− 1)/2, then G is connected.

08.08.24

1. Proof of Konig-Egervary theorem using alternating
paths.

2. Th(2.1.1) [2] (Konig[1931]): Max|M | =Min|V C| i.e.
α′ = β.

09.08.24

1. Berge’s Theorem.

2. Overview of Tutte’s Theorem.

3. Proof of the necessity of Tutte’s condition.

4. Outline of the main ideas in the sufficiency proof.

14.08.24

1. The maximal graph idea for proving Tutte’s theorem.

2. Properties of the universal set of vertices of a maximally
saturated graph with no perfect matching.

16.08.24 1. Sketch of the proof of Hall’s theorem by induction.

21.08.24

1. (Cont...) Properties of the universal set of vertices of
a maximally saturated graph with no perfect matching,
P-84,85
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22.08.24

1. Overview of the proof of Gallai’s theorem: β′ = α′.

2. The maximal graph idea for proving Tutte’s Theorem.

3. Completion of the details of the equivalence classes prop-
erty of components of G \ V1, by using Berge’s theorem.

28.08.24

1. Proof of Gallai’s theorem using stars and matchings.

2. Proof of Hall’s Theorem by induction.

* Exercise: Tutte’s Theorem ⇒ Hall’s Theorem.

* Exercise: Tutte’s Theorem by Induction.

29.08.24

1. Th(5.1.1) [2]: Every planar graph is 4-colorable.

2. Prop(5.1.2) [2]:Every planar graph is 5-colorable.

3. Th(5.1.1) [2](Grotzsch[1959]): Every planar graph not
containing a triangle is 3-colorable.

4. Prop(5.2.1) [2]: Every graph G with m edges satisfies

χ(G) ≤ 1
2 +

√
2m+ 1

4 .

5. Th(5.1.19) [1] or Prop(5.2.2) [2](Szekeres-Wilf[1968]):
Every graph G satisfies χ(G) ≤ col(G) =
max{δ(H)|H ⊆ G}+ 1.

6. Th(5.2.4) [2](Brooks[1941]): LetG be a connected graph.
If G is neither complete nor an odd cycle then χ(G) ≤
∆(G).

7. Perfect Graphs:

8. Induced subgraphs of perfect graphs are perfect; χ(H) =
ω(H).

9. PG Conj(Berge 1966): A graph G is perfect iff neither
G nor Ḡ contains an odd cycle of length at least 5 as an
induced subgraph.

10. Generating perfect graphs by extension of a vertex.
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04.09.24

1. (Cont...) Generating perfect graphs by extension of a
vertex.

2. Characterizing perfect graphs using overlaps of all max-
imum cliques with an independent set.

05.09.24

1. Proof that bipartite graphs and their complements are
perfect graphs.

2. Generating a perfect graph by the extension at vertices
with perfect graphs.

06.09.24

1. (Contd.) Generating a perfect graph by the extension at
vertices with perfect graphs.

* Exercise: Chordal graphs and their complements are
perfect.

* Exercise: From the slides of ”Proving PGT as in [Die17;
GGL95]”, (I) Why is α′(G) ≤ α(G)? (II) Why χ(G′) ≥
κ? (III) Prove: X being a complete subgraph cannot
contribute more than one vertex to any AK for K ∈ κ,
whereas X ∪AX = ϕ, hence ω(G′) ≤ |κ| − 1.

11.09.24

1. Prop(5.5.1) [2]: A graph is chordal if and only if it
can be constructed recursively by pasting along complete
subgraphs, starting from complete graphs.

2. Prop(5.5.2) [2]: Every chordal graph is perfect.

3. Th(5.5.4) (Lova´sz [1972]): A graph is perfect iff its com-
plement is perfect.

4. Lm(5.5.5) Any graph obtained from a perfect graph by
expanding a vertex is again perfect.

5. Th(5.5.6) [2]: A graph G is perfect iff |H| ≤ α(H).ω(H)
for every induced subgraph H of G.

6. Induced subgraphs of perfect graphs are perfect.
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12.09.24

1. Chromatic index or Edge coloring (χ′):

2. The chromatic index of a bipartite graph G is always
equal to the maximum degree of its vertices; χ′(G) =
∆(G).

3. If L(G) is the line graph of G, then χ′(G) = χ(L(G)).

4. χ′(G) ≥ ∆(G).

5. χ′(G) ≥
⌈

e(G)
β(G)

⌉
.

6. The number of edges should increase by at least χ(G′)

to at least χ(G′)+
(
χ(G′)

2

)
=

(
χ(G′)+1

2

)
in the new graph.

7. In any induced subgraph H of a perfect graph G, we

have χ(H) = ω(H) ≥ n(H)
α(H) .

8. In a proper greedy coloring χ(G) does not exceed ∆(G)+
1.

13.09.24

1. Mentioned about Erdos-Stone theorem.

2. Overview of (I) Turan’s problem and (II) the problem of
K. Zarenkiewicz with an application from geometry.

26.09.24

1. Introducing Turan’s extremal graph, revision. Construc-
tion and counting edges by induction.

2. Sketch of the proof of Hall’s theorem using Tutte’s the-
orem.

27.09.24

1. Sufficient conditions for ascertaining Hamiltonian cir-
cuits in graphs.

2. Allusion to problems about graphs avoiding cycles of size
r. History of the genesis of Extremal graph theory under
the tulilage of Konig. Review of the extremality of Turan
graphs and the uniqueness of Turan graphs. Allusion
to the exclusion of complete bipartite graphs as in the
problem of K. Zarenkiewicz.
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03.10.24

1. Th(9.3) [3] (Turan): Let G be a Kr-free graph with n
vertices. Then |E(G)| ≤ |E(Tr−1(n)|, with quality iff G
is isomorphic to Tr−1(n).

2. Th(9.4) [3] (Erdos): Given any Kr-free graph G with n
vertices, one can always constract an (r−1)-partite graph
H on the same vertex set such that dH(x) ≥ dG(x) ∀x ∈
V (G) = V (H).

* Exercise: For a given graph G with n vertices if you
have Kt

4, is it possible to get Kt
5 by adding one edge?

04.10.24

1. Th(9.10) [3] (Erdos and Stone): Let r ≥ 2, t be fixed nat-
ural numbers, ϵ > 0. Then ∃ an integer n0 = n0(r, t, ϵ)
such that any graph G with n ≥ n0 vertices and at least
n2

2 ·(1− 1
r−1 +ϵ) edges has a complete r-partite subgraph

Kt,t,...t whose classes are of size t.

2. Lm(9.11) [3]: ∃ n1 = n1(r, t, ϵ) such that if G has n ≥ n1

vertices and d(x) ≥ n(1 − 1
r−1 + ϵ) ∀x ∈ V (G), then

G ⊇ Kt,t,...t(r−times).

3. Cor(9.12) [3]: Given a non-empty graph H with chro-

matic number χ(H), ex(n,H) = n2

2 (1− 1
χ(H)−1 )+o(n2).

4. Th(9.1) [3] (Dirac): Let G be a connected graph with
n ≥ 3 vertices such that d(x) + d(y) ≥ 1 for every pair
of non-adjacent vertices x, y ∈ V (G), (I) If r = n, then
g has Hamiltonian Cycle; (II) If r < n, then G ⊇ Pr and
G ⊇ C⌈(r−1)/2⌉.

5. Th(7.1.1) [2] (Turan[1941]): Foe all integer r, n with r >
1, every graph G ̸⊇ Kr with n vertices and ex(n,Kr)
edeges is a Tr−1(n).

6. Th(7.1.2) [2] (Erdos and Stone[1946]): For all integer
r ≥ 2 and s ≥ 1, and every ϵ > 0, ∃ an integer n0

such that every graph with n ≥ n0 vertices and at least
tr−1(n) + ϵn2 edeges contains Ks

r as a subgraph.

7. Cor(7.1.3) [2]: For every graph H with at least one edge,

lim
n→∞

ex(n,H)

(
n

2

)−1

=
χ(H)− 2

χ(H)− 1
.

* Exercise: Is every subgraph of a graph G satisfies
Tutte’s theorem, where G is a perfect graph contains
perfect matching?

* Exercise:Why perfect graph does not have perfect
matching?

* Exercise: Prove by Induction: (I) Hall’s theorem, (II)
Konig-Egervary theorem.
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16.10.24

1. Hypergraph: Vapnik-Chervonenkis dimension (VC-
dimension)

2. Additional ref: [4]

17.10.24 1. Discussion on mid-sem questions.

18.10.24

1. Tutorial 4, HW 3, Ore’s theorem, Proof of Erdos-Stone
theorem, and initial discussion on the outline for the
proof of Lovasz PGT version based on sizes of maximum
independent sets and maximum cliques of all induced
subgraphs.

23.10.24

1. Planarity:

2. Th(6.2) [5] (Kuratowski): A graph is planar iff it does
not have any subgraph homeomorphic to K5 or K3,3.

3. Lm(6.2) [5]: A non-planar connected graph G with min-
imum number of edges that contains no subdivision of
K5 or K3,3 is simple and 3-connected.

4. See also the crucial supporting Proposition 5.26 in [5],
attributed to Thomassen (1981,1985), and used in prov-
ing the sufficiency condition for planarity by Kuratowski
in Theorem 6.2 of [5].

5. See Section 6.2 of [1], Lemmas 6.2.7, 6.2.6, 6.2.5 and
6.2.4, in that order for a detailed top-down presentation
of the main result about considering only 3-connected
graphs, as in Lemma 6.2 of [5]. Definition 6.2.3 for “Ku-
ratowski subgraphs”, “minimal non-planar graphs” in
[1], and Definition 5.2.19 in [1] will be useful.

30.10.24 1. Discussions on term-paper topics and contents.

01.10.24

1. Tutorial 5 discussions on the Chapter 6 planarity charac-
terization of graphs as in [1] based Kuratowski’s graphs.

2. Every “minimal” non-planar graph is 2-connected.

3. Let G be a “minimal” non-planar graph with with all
edges having degrees at least three. Then show that G is
3-connected. By minimality we mean that each proper
subgraph of G is planar. Also, G must be isomorphic to
a K5 or a K3,3.

4. Show that if G is a graph with the fewest number of edges
among all non-planar graphs without Kuratowski sub-
graphs, then G is 3-connected (Theorem 6.2.7 in West’s
book [1]).

5. Uisng item 3 above, show that a graph G that is non-
planar but 3-connected must have a Kuratowski sub-
graph.

Table 1: Summary of Lectures.
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V1 V2

V3V4

Figure 1: T 3
4 (12), the Turan graph of 12 vertices, 4-partite, with three vertices

in each partite and thus also the K3
4 . This graph has multiple K4 but is just

one edge deficient from possessing a K5.

C

u ve u ve

Figure 2: The non-planar cases of K3,3 and K5 respectively, appearing as illus-
trated in Figure 6.7(a) [5].
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Figure 3: The transformations not violating planarity in the planar case, as
illustrated in Figure 6.7(b) [5].

0.1 Class of Wednesday, August 14, 2024

Based on the discussions in the class of August 14, 2024, try the following
exercises.

1. Draw bipartite graphs G(A ∪ B,E) with no perfect matching, or a max-
imum matching that does not match all the vertices in A, given that
|A| < |B|.

2. Explain the dense structure of maximally perfect-matching-free graphs
with respect to bad sets vaiolating Tutte’s condition.

3. Give examples of graphs having perfect matchings and how all subsets of
vertices satisfy the Tutte condition.

0.2 Class of August 16, 2024

Applying Hall’s theorem to show that there is a 2-factor in a graph that is 2k-
regular.

Sketch of the proof of Hall’s theorem by induction.
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0.3 Class of August 21, 2024

Detailed proof of Tutte’s theorem: Use is made of the set V1 of the edge-maximal
simple, even undirected graph G′ with no perfect matching whereas G′ + e has
a perfect matching for any edge e not in G′. This set V1 is the collection of all
vertices with degree n(G′)− 1 in G′. We show that V1 is a bad set for G′.

0.4 Class of August 22, 2024

Sketch of the proof of Galai’s theorem, α′(G) = β′(G).

Completion of the details of the equivalence classes property of components of
G \ V1, by using Berge’s theorem.

0.5 Class of August 28, wednesday, 2024

Proof of Galai’s theorem, α′(G) = β′(G) using stars and matchings.

0.6 Class of August 29, thursday, 2024

Perfect graphs: introduction, motivation and constructions.

0.7 Test 1: August 30

0.8 Class of September 04, 2024

Constructing perfect graphs by extensions of vertices.

Characterizing perfect graphs by the existence of an independent set in every
induced subgraph that meets all maximum cliques in that induced subgraph.

0.9 Class of September 05, 2024

Complements of bipartite graphs are perfect; proof using Galai’s theorem.
Extensions of perfect graphs at vertices by arbitrary perfect graphs generate
perfect graphs.
Exercise: Prove that chordal graphs are perfect using the property that they
are triangulated.
Also show the existence of simplicial vertices and establish their properties.



0.10 Class of September 06, 2024

0.11 Class of September 11, 2024

Building chordal graphs from cliques by pasting two chordal graphs on a com-
mon complete subgraph.
Using the above structural construction of chordal graphs to show that they are
perfect.
These are from [2].
We also considered the proof of PGT again, as in [2].

0.12 Class of Friday, October 04, 2024

Revision of the proof of Hall’s theorem using the Konig-Egervary theorem.
The theorems of Turan and Erdos-Stone, and their proof sketches.

11
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