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Abstract—Data-driven analysis and modeling of music-perceived emotions have widespread applications in MIR, with representations
of perceived musical emotions forming a crucial component. Though some emotion representations are popular in the literature, their
relative merits and demerits in terms of expressiveness and broad applicability have been sparsely studied. The application-specific
emotion representations used in multiple studies lead to incomparability of algorithms and performance metrics and non-reusability of
representation-specific emotion data across studies. In this work, we study an intensity ratings-based, categorical emotion
representation called Emotion-Word Intensity-Value (EWIV) representation, with emotion classes adapted from the aesthetic concept
of Nava Rasa. We also introduce EmoRaga - a novel clip-set annotated with perceived emotions and emotion motifs for emotion
analysis of Hindustani classical music. We explore the applicability of EWIV towards diverse MIR applications, e.g., dominant and
secondary emotion identification, and temporal emotion pattern study. Last, we report a data-driven comparison of EWIV, categorical
and dimensional representations, using statistical out-of-sample goodness of fit tests to measure and compare their
representativeness over both benchmark datasets and collected emotion data. We conclude that EWIV is applicable to a range of MIR
tasks, with higher representative and generalization potential compared to popular representations in certain cases.

Index Terms—Perceived emotions; Music emotion representation; Emotion motifs; Emotion classification; Statistical Emotion
Modeling; Hindustani classical music
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1 INTRODUCTION

THE rapid increase in musical content in various social
media and other platforms has facilitated data-driven

studies of perceived emotions in music. These studies en-
compass a variety of applications like mood-based music
recommendation [1], [2], sentiment-based music genera-
tion [3], music emotion recognition (MER) [4], [5], [6], [7],
etc. Emotion representations are an essential component of
such studies, which determine the measurement (e.g., self-
reports), storage (dataset creation), and processing (e.g.,
machine learning models) of perceived emotion data. The
representation controls the information content extracted
from the emotion annotations given by the subjects and also
defines downstream tasks like dataset formats and problem
formulations, which can then be used by the affective com-
puting community to develop new technology for specific
MIR tasks. For example, the categorical representation (e.g.,
[8]) and dimensional representation (e.g., [9]) are among the
most popular representations of musical emotions. The task
of MER can be formulated either as a classification problem
using categorical representation [4] or a regression prob-
lem using a dimensional representation [7]. Datasets, algo-
rithms, and performance metrics used in the studies vary
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depending on the emotion-representation format. Hence,
the choice of an appropriate emotion representation for a
given task is a widely debated and open research topic. In
this paper, we analyze and compare various emotion repre-
sentations for broad applicability in various MIR tasks.

While the categorical and dimensional representations
are popular, they both have notable limitations like the
number of emotion classes might be too small [10], fuzzy
demarcations between emotions [11], [12], etc. To overcome
these limitations, many researchers use features from mul-
tiple representation models [13], [1] or incorporate addi-
tional measurements in existing representations, e.g., rating
scales for discrete emotions [14], or dynamic annotations
[15], [7]. Many studies use the end task as a motivation
for the selection of emotion representation, e.g., Lee et al.
[1] used mood categories and arousal-valence for mood-
based recommender systems, Shepstone et al. [2] used
12 categorical components and arousal-valence focus for
granularity-adapted emotion classification of audio, Parada
et al. [16] used 10 categorical components of emotion and
intensity labels for MER under adverse conditions, Panda et
al. [17] and Malheiro et al. [6] used mood tags and quad-
rant information to explore MER relevant feature. This ap-
proach of selecting “appropriate” emotion representations
has two major drawbacks: (1) the differences in emotion
representations result in different downstream algorithms
and metrics, which cannot be compared directly, and (2)
emotion information from existing high-quality annotated
datasets cannot be borrowed and re-utilized for the design
of different high-quality AI models and algorithms. These
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drawbacks can be mitigated by using a common general-
purpose representation of musical emotions chosen based
on the broad criterion like maximum information retained
from several self-report datasets under a given statistical
modeling assumption (e.g., normal distribution).

Creating high-quality annotated datasets for perceived
emotions for different types of music clips is a costly en-
deavor. Some notable past efforts of such datasets include
Soleymani et al. [15], which uses the Circumplex model
of affect [9] for representing emotions on western-origin
clips, and Eerola et al. [14], which uses both the discrete
and dimensional representations of emotions on film music-
clips. However, most high-quality freely-available datasets
with annotations of perceived emotions do not include
Hindusthani Classical Music (HCM) clips. Emotion represen-
tations in existing datasets also do not feature emotions-
sets from the Indian Aesthetics literature, e.g., the Nava Rasa
[18], [19] concept. In this paper, we study a dynamic (time-
varying), intensity ratings-based, categorical emotion repre-
sentation inspired by HCM literature (Nava Rasa [18], [19]),
called the Emotion-Word Intensity-Value (EWIV) representa-
tion (section 3). We demonstrate the effectiveness of EWIV
on existing benchmark clip sets [15], [20], and [14], as well as
a newly introduced set of clips from Hindusthani classical
music (HCM), called the EmoRaga clip set for perceived emo-
tion analysis in HCM (section 4.1.2). Estimations of dom-
inant emotions from self-reported emotions data obtained
through crowd-sourced surveys (section 4.3) and analyzed
using the EWIV format match the available ground truth
provided by original studies for the benchmark datasets
and expert annotation for the EmoRaGa clip-set (section
5.1). We also validate the quality of self-reported emotions
through the typicality of a clip toward the estimated dom-
inant emotion (section 5.2), as well as by measuring the
inter-listener agreement through Cronbach’s alpha (section
5.3). The EWIV representation is also used to detect clips
with ambiguous perceived emotions (section 5.4). The above
exercises validate the quality of self-reported emotion data
on a wide range of clip-sets, as well as establish the utility
of EWIV representation for analyzing this data.

Next, we explore the applicability of EWIV represen-
tation estimated from self-reported emotion data towards
two MER applications in section 6, emotion classification
(section 6.1), and temporal emotion variation detection
(section 6.2). For emotion classification, we consider the
tasks of dominant and secondary emotion classification,
both in the multi-class as well as multi-label settings. We
find that standard LSTM-based classification models [21],
[22] achieve high cross-validation accuracy for all tasks.
For the temporal emotion variation detection task, we use
a segment-wise EWIV representation to identify the high-
probability clip segments for perceived dominant emotions.
Section 6.2 shows a high overlap coefficient between the
expert annotated segments and the segments estimated
from EWIV.

While the above applications demonstrate the effective-
ness of EWIV representations, we are also interested in
evaluating the representativeness of EWIV with respect to
other representations, specifically, the dimensional Circum-
plex representation [9]. In section 7, we use goodness-of-fit
measures for statistical models as our metric for represen-

tativeness. Another problem is that most datasets available
in the literature annotate music clips with single represen-
tations only, and emotion annotations using parallel rep-
resentations are unavailable. The representation of choice
varies across different studies. Hence, we use a conversion
formula between EWIV and the Circumplex arousal-valence
representation (section 7.1). While this conversion can incur
some loss, we observe (section 7.2) that the reduced EWIV
- a variant of EWIV - is consistently the best quality rep-
resentation for perceived emotions, among four competing
representations, for both converted and original data.

2 BACKGROUND

2.1 Emotion Representation Models in MIR

Two emotion representation models are widely used in
MIR: categorical and dimensional. The categorical paradigm
labels music-evoked emotions into a number of discrete
classes [10], [8], [23], [24]. The dimensional approach [10],
[23], [25] identifies emotions from coordinates of dimensions
like valence, arousal and dominance, e.g., Russell’s Circumplex
model of affect [9] uses arousal and valence. Though both
are used extensively in different MER tasks [10], [26], their
drawbacks are also much researched [27], [28], [12], [11].
While most studies use a single model, some prefer both
models simultaneously or combinations of measures from
both models [1], [16], [17], [6], [29]. The motivation is either
task-specific or to overcome the disadvantages of any single
approach. Eerola et al. [13] was one of the early works to
advocate this.

Some studies include the concept of intensity annota-
tions along with the categorical approach of emotion rep-
resentation. Eerola et al. [14] compared the intensity-based
discrete emotion model with the dimensional model in their
seminal work. Shepstone et al. [2] used it for computing
individual valence-arousal focus. Most often, a song-level
(static) single-intensity rating for each emotion word is used.
Thus, an interesting research question that might remain
unanswered is: Is the information content of discrete emotion
categories with dynamic time-continuous intensity ratings higher
than other representations? In the present work, a deeper
study of the categorical emotions with dynamic intensity
score representation is attempted in a systematic manner.

2.1.1 Model Quality Estimation

The selection of appropriate emotion representation models
should be based on established statistical criteria since it
affects the performance of all downstream tasks in the
MER pipeline, like emotion prediction and explanation. The
Akaike information criterion (AIC) [30] is a popular measure
of the suitability of a statistical model towards a given input
data, which measures the loss of information when gen-
erating the data from the statistical model. It incorporates
the goodness of fit by using log-likelihood and a measure of
model complexity given by the number of parameters of the
model. It ultimately provides an indication of out-of-sample
prediction accuracy. Given a collection of candidate models
for the data, AIC estimates the quality of each model relative
to each of the other models. Let M be a statistical model for
some data D, and kM be the number of estimated parameters



3

in M . Let L̂M be the maximum likelihood function for M .
Then the AIC value of M is calculated as:

AICM = 2kM − 2 ln(L̂M ) (1)

Given a set of candidate models M1, ...,Mn for data D, the
preferred model is the one with the minimum AIC value.

2.2 Perceived-Emotion Tasks in MIR
2.2.1 Music-Perceived Emotion Datasets
One of the most common applications of emotion repre-
sentations in MIR is the creation of music datasets anno-
tated with perceived emotions. Eerola et al. [14] collected
perceived-emotion data in both discrete and dimensional
representations for a set of 110 excerpts, and compared
the two representations. Schubert et al. [20] used six music
extracts from film music, each targeting one of six discrete
emotions: Excited, Happy, Calm, Sad, Scared, and Angry.
After analyzing the collected discrete emotion data, they
observed the presence of a second competing emotion (apart
from the target) in most of their excerpts and explained it
as near miss, concluding that some emotions might be con-
fused. Soleymani et al. [15] proposed the benchmark 1000
songs for emotional analysis of music dataset annotated with
static and time-continuous (dynamic) arousal-valence values.
Other popular datasets include the AMG1608 dataset [31],
the Greek music dataset [32] and the IADS dataset [33].
To the best of our knowledge, no such dataset exists with
Hindustani classical music (HCM) excerpts and perceived
emotion annotations.

2.2.2 Music Emotion Classification
Music emotion classification is a very popular MIR task,
which requires excerpt sets annotated with quality emo-
tion opinion data. Traditionally researchers have used ap-
proaches like k-nearest neighbor classification, support vec-
tor machines (SVM) [34], [2], [35], or random forest clas-
sifiers to classify discrete emotions [36]. Recently, Han et
al. [37] used both CNNs and RNNs to create cross-modal
emotion embedding framework called EmoBed to leverage
the knowledge from other auxiliary modalities to improve
the performance of an emotion recognition system. CNNs
are used for audio tagging, music classification, speech
emotion classification and sound event detection [38], [39].
Xie et al. [40] used attention-based LSTM-RNNs for speech
emotion classification, achieving an accuracy of almost 90%
in some cases. In most cases, one emotion class represents
the entire excerpt under consideration, also termed static
emotion classification. Music emotion variation detection
(MEVD) focuses on the dynamic process of music emotion,
and studies emotion variation over each predefined time
segment of an excerpt [10], [41]. Most of the present litera-
ture on MEVD is based on the dimensional arousal-valence
emotion annotations [26].

2.3 HCM in MIR
Hindustani classical music is one of the two main branches
of traditional classical music in India. It is primarily based
on the raga framework [42]. Each raga is characterized by a
set of notes, the ascending-descending melodic progression

and a specific set of melodic phrases termed raga motifs [43]
. Other primary aspects of HCM include the tala (rhythmic
cycle) and the laya (tempo). From the MIR perspective,
significant work has been done in the areas of melodic motif
based raga identification [43], [44], analysis of melodic [45]
and rhythmic components [46], and related corpus creation
[47], [48], [49] in HCM. To the best of our knowledge, no
systematic study or dataset exists on the perceived emotions
in HCM. Non-availability of excerpt scores, the high cost
of manual annotations of emotion and related metadata by
both general listeners and experts, and inherent dissimilari-
ties between form-fluid HCM and structured Western music
(more popular in the MER field) might be possible reasons.

In this paper we attempt to bridge this gap by a) intro-
ducing an HCM dataset specifically targeted to solve MER
tasks, b) a systematic and statistical study of the Emotion-
Word Intensity-Value (EWIV) emotion representation, based
on HCM concepts, c) exploring possible solutions to some
popular MIR tasks using this dataset and emotion represen-
tation.

3 EMOTION-WORD AND INTENSITY-VALUE REP-
RESENTATION

Emotion-words are terms that help us understand, describe
and label our emotion-opinions. The intensity refers to the
extent to which an emotion is perceived by a listener un-
ambiguously, while listening to a piece of music. Hence the
name Emotion-Word and Intensity-Value (EWIV) is coined.

3.1 Overview of EWIV Representation

Two components are required to interpret perceived emo-
tions using EWIV: 1) the emotion words, and 2) the corre-
sponding intensities. Throughout the duration of a music
excerpt, a listener is expected to continuously report per-
ceived emotion-intensity opinions. Statistical analysis of the
reported opinions leads to an appropriate emotion repre-
sentation of the excerpts. In the present study, the choice of
emotion-words used in EWIV is inspired by the concept of
the Rāsā theory [19], a major part of Indian aesthetics [18],
[50], which describes the nine primary aesthetic flavours
and/or the emotions evoked by any art-form (Nāvā Rāsā).
Seven emotion-words are taken from the above list: Fear
(F), Anger (A), Sadness (S), Calmness (C), Wonder (W),
Romance (R) and Happiness (H). These seven are chosen
as they were found to be most frequently perceived by
HCM listeners in our studies. Excitement (E) is included
as a descriptor of energy. In order to make the EWIV
robust, two more opinion options are included: Don’t Know
(DK) - ambiguity in emotion perception, and Other Emotions
(OE) - the incompleteness of the set of emotion-words. To
represent intensity, we use the range of [0, 5]. Any emotion
not perceived by a listener has zero intensity value by
default, at any given time during the music excerpt. The
maximum intensity that can be perceived and reported is
5. EWIV representation does not normalize the intensities
across emotion-words. This is because it is possible for a
listener (λ) to not express any opinion at a given time, at
which point all intensities will be zero. The third inherent
component of the EWIV representation is the timestamp (t)
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of any expressed emotion opinion (ε,I). Formally, the tuple
(t, ε, I) is defined as an instantaneous report of perceived-
emotion opinion. If E is the set of chosen emotion-words,
then E = {DK,OE,F,A, S,C,W,R,H,E} and |E| = 10.
Hence, we interpret each instantaneous report as an |E|-
dimensional intensity vector. From a collection of such in-
tensity vectors, the EWIV probability vector (pEWIV ) can
be derived, which is the final EWIV representation of per-
ceived music-emotion. The probability vector indicates the
probabilities of perceiving the associated emotions during
an excerpt. This forms the basis of the EWIV representation
for perceived music emotion.

3.2 Emotion Estimation
In this section, we discuss the procedure to derive the EWIV
probability vector (pEWIV ) from the captured instantaneous
reports (t, ε, I) of opinion. The following three granularities
of music-perceived emotions are considered:
a) Per listener-Per excerpt: Quantifies an individual lis-
tener’s (λ) perceived-emotion opinion over a music excerpt
(c). The intensity vector is represented by EWIV λ,c.
b) Per excerpt: Estimates the perceived-emotion over an
entire excerpt (c) from a set of listener’s (Λ) opinions, with
normalization across emotions. The intensity and probability
vectors are denoted as EWIV c and pEWIV c respectively.
It measures static emotion in each excerpt. Both Per listener-
Per excerpt and Per excerpt measures are non-temporal.
c) Per segment-Per excerpt: The span of a music excerpt
(c) can be divided into predefined temporal segments (s).
Perceived emotion is estimated for each segment using the
same procedure as the Per excerpt measure, utilizing the
timestamp (t) information. The probability vector for each
segment is denoted as pEWIV c,s. It measures dynamic
emotion in each excerpt.
Let the number of instantaneous reports be N c,λ over the
span of an excerpt (c) for a particular listener (λ). Each
report (t, ε, I) can mathematically be interpreted as an
|E|-dimensional instantaneous intensity vector (IIV c,λ(n),
n ∈ {1, . . . , N c,λ}) at time (t), such that all intensities
have zero values, except the εth intensity, which has value
I . The cumulative intensity vector (CIV c,λ) is calculated
from all the IIV c,λs so that each element (CIV c,λ

ε ) is the
summation of all intensities of the associated emotion (ε),
independent of the other emotions (eq. 2). Each intensity in
the per listener-per excerpt (EWIV c,λ) measure is estimated
by normalizing CIV c,λ with respect to N c,λ (eq. 3). Each
intensity in the per excerpt (EWIV c) measure is estimated
by aggregating over the set of listeners Λ (eq. 4).

CIV c,λ
ε =

Nc,λ∑
n=1

IIV c,λ
ε (n) (2)

EWIV c,λ
ε =

CIV c,λ
ε

N c,λ
(3)

EWIV c
ε =

∑
λ∈Λ

EWIV c,λ
ε (4)

Finally, each probability in the probability vector (pEWIV c)
is calculated (eq. 5).

pEWIV c
ε =

EWIV c
ε∑

ε∈E EWIV c
ε

× 100% (5)

The dominant emotion (Domε) of a music excerpt c is de-
fined as the emotion with the highest probability value in
pEWIV c. The concepts of secondary (Secε) and tertiary
(Terε) emotions are similarly defined. It is postulated that
the dominant emotion will always be perceived from ex-
cerpt c under changing physical, mental, and contextual
conditions. For illustration, we provide a demonstration of
computation of pEWIV c in Appendix D. The same pro-
cedure as above is followed to estimate the per-segment per-
excerpt measure (pEWIV c,s), with the additional temporal
constraint.

4 DATA COLLECTION USING EWIV
To test the effectiveness of EWIV representation, we col-
lect emotion-opinion data over excerpts of two preexisting
datasets and a novel HCM excerpt set. The details of the
survey procedure are discussed in this section.

4.1 Stimuli
4.1.1 Excerpts from Preexisting Datasets
Schubert 6: The six excerpt excerpt-set used by Schubert et
al. [20] (section 2.2.1). The original discrete emotion anno-
tations are considered ground truth in the current study.
Soleymani 5: We select five excerpts from the 1000 songs for
emotional analysis of music dataset [15] (section 2.2.1). The
static arousal-valence annotations are mapped to emotion
words [9] and are considered ground truth. We named both
these excerpt sets for ease of discussion. For further details
of all datasets, please refer to Appendix A.

4.1.2 EmoRaga: An HCM Excerpt-set for MER
The general guidelines for the design of research corpora
for computational music studies [49], [47] are followed to
introduce the EmoRaga excerpt-set for perceived emotion
analysis of HCM. For the present study, the excerpt-set
comprises 48 HCM audio excerpts, its associated editorial
metadata, scores, contextual information on music concepts,
and perceived-emotion opinion data. The excerpts and all
associated data are identified and substantiated by our
HCM experts panel, which consists of five university faculty
members and students, who are trained HCM practitioners
and musicologists, with over ten years of training under re-
puted gurus. An overview of this dataset is reported in table
1. To ensure uniformity among the excerpts, the following
criteria are maintained: a) The excerpts are of duration of
30-60 seconds, depending on the natural musical phrasing,
b) All excerpts are stereo recordings sampled at 44.1 kHz. c)
To avoid possible instrument-based bias, only Sitar (HCM
instrument) excerpts are used. To avoid possible pitch and
other voice-related bias, non-lyrical vocal excerpts of only
one accomplished HCM vocalist are used. The excerpts are
either sourced from commercially available music releases
or are generated by our HCM experts panel. The excerpts
belong to 23 different ragas [51], [52], four prominent talas,
and slow and fast layas. The editorial metadata associated
with each excerpt consists of the source of the excerpt, the
artists, the musical instruments, and the duration. We used
the standardized notation for HCM [53], [54] to annotate
each excerpt with relevant scores manually. The contextual
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TABLE 1: EmoRaga Dataset Content Summary

Music Genre HCM
# Excerpts 48
# Listener 500
Emotion Representation EWIV
Emotion words {F,A, S,C,W,R,H,E}
Ambiguity Indicators OE, DK
Intensity scale 0-5
Excerpt duration 30-60sec
Excerpt selection Manual
Self report Perceived emotions
Method of self-report Dynamic
Annotated by Experts, General
Emotion Motifs Annotated
Other metadata Raga, Tala, Laya,

Vocal/Instrumental,
Supporting instru-
ments, Pitch

information on music concepts includes the raga, tala, laya,
pitch and emotion motif s.
Emotion Motifs in HCM: Inspired by the concept of raga
motifs [43] used for raga identification, we define an emotion
motif in HCM as any key musical phrase or feature that
provides strong cues to listeners to perceive particular mu-
sical emotions. These emotion motifs include, but may not be
limited to: a) Presence of major or minor notes, b) Faster or
slower tempo, c) Raga related significant multi-note struc-
tures or phrases called mukhyangs/pakads [55]/raga motif s
[43], in exact or broken forms, d) Presence of raga-dependent
Vadi and Samvadi notes [56], e) Particular rhythmic cycle
(tala), f) Presence of particular instruments. In the present
work, these emotion motif s and their timestamps of occur-
rence in each excerpt are annotated by the HCM expert
panel manually. Discovery of emotion motifs should pave the
way for efficient and explainable MIR.

4.2 Listener-Participants

A total of five hundred general participants took part in the
music perceived-emotion annotation surveys. The majority
of these participants are students belonging to different
courses of the university. Some faculty, staff, and their family
members also volunteered for the surveys. The listeners do
not have formal HCM training or significant prior exposure.
69.95% of the participants identified as male (µage=20.21,
σage=4.89, rangeage=[18,56]). 30.05% identified as female
(µage=22.64, σage=6.99, rangeage=[18,59]). All participants
are Indian nationals. Participants were informed of the
nature and objective of the study prior to the surveys.
Participation was voluntary and participants provided on-
line consent before accessing the online survey. Response
anonymity and pure academic use of collected data were
guaranteed.

4.3 Survey Procedure

The interface [21], [57] presented in Figure 1 of Appendix
A is used to collect opinion responses (t, ε,I) from listeners.
Surveys started with an instruction page containing a short

description of how to use the interface to report continuous-
time perceived emotions during a music excerpt. It also
explains the meaning of perceived emotion versus felt emo-
tion and asked the participants to report ”emotions that
you perceive or recognize from the music while listening to
it and not that which you yourself feel”. Each participant
was directed to listen to the music and simultaneously
respond with the perceived emotion and intensity in the
wheel as desired, and as many times as they felt necessary.
Through the interface-page each excerpt was presented to
the listeners for annotation in isolation, with a time gap
of 60 seconds between excerpts. Each round of the survey
spanned 20-25 minutes and 10 excerpts were presented to a
listener during each round.

5 ANALYSIS OF SURVEY DATA

In this section, we present the results of various analyses
performed using the EWIV emotion data captured in the
previous section. The results are used to study the validity
and utility of EWIV representation.

5.1 EWIV Estimations from Collected Data

The instantaneous reports are collected from the surveys and
two types of probability vectors are estimated for each excerpt:
the per-excerpt probability vector and the per segment - per
excerpt probability vectors (section 3.2). The static dataset
consists of one probability vector, one dominant emotion,
and one secondary emotion per excerpt. Table 2 presents
the per-excerpt results for the two existing excerpt-sets, Schu-
bert 6 and Soleymani 5, along with the results for the first
5 excerpts of EmoRaga excerpt-set. The rest is presented
in Appendix A. The excerpt numbers from the original
datasets are retained in the first column (#). Columns Ex-
cerpt Emotion and #Self Reps report the perceived-emotion
ground-truth and the number of instantaneous reports for
each excerpt. The near miss for each excerpt in Schubert 6 are
reported in the last column. The EWIV per-excerpt probability
vectors are reported in columns OE%. . . E%. The dominant,
secondary and tertiary emotions are highlighted in blue and
shades of gray respectively. The per-excerpt EWIV vectors
for each excerpt are compared with the individual ground
truths (Except Emotion). For all excerpts in the three datasets
(table 2) the dominant emotions in the EWIV probability vec-
tors (highlighted in blue) match the ground truth in column
Excerpt Emotion. For each excerpt in Schubert 6 dataset, the
secondary emotions match the near miss [20]. Columns α
and τ present Cronbach’s alpha and typicality measures
respectively, derived from analysis of the per-excerpt data,
discussed in sections 5.2 to 5.4.

To estimate the per segment-per excerpt emotion probabil-
ity vectors, uniform, non-overlapping, consecutive segments
of 1 second duration are considered. Segments with no
emotion-word annotations are excluded from the present
study. The dynamic dataset thus created, consists of 1700
segments of music, each associated with a probability vector,
one dominant and one secondary perceived-emotion label.
This dataset is used for various MER tasks described in
section 6.
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TABLE 2: EWIV survey results over two pre-exiting excerpt-sets - Schubert 6 [20] and Soleymani 5 [15], and the EmoRaga
excerpt-set introduced in section 4.1.2. # = Original study’s excerpt number, Excerpt Emotion = Ground Truth. Near Miss =
Near miss emotion reported in Schubert et al [20]. #Self Reps = No. of self-reports in EWIV surveys. {OE%...E%} = EWIV
probability vector, where OE=Other Emotions, DK=Dont Know, F=Fear, A=Anger, S=Sadness, C=Calmness, W=Wonder,
R=Romance, H=Happiness, E=Excitement. The dominant, secondary and tertiary emotions are highlighted in blue, gray, and
light gray respectively. α = Cronbach’s Alpha, τ = Typicality.

# Excerpt Near #Self OE% DK% F% A% S% C% W% R% H% E% α τEmotion Miss Reps
Schubert 6 [20]

1 Exc Hap 402 0.00 0.10 20.92 11.60 6.46 9.01 0.00 0.00 23.03 28.90 0.77 0.72
2 Hap Calm 401 0.00 0.18 5.33 6.21 10.49 25.03 0.00 5.62 29.69 17.45 0.79 0.75
3 Calm Hap 296 0.03 0.37 3.57 3.04 8.54 39.94 11.79 10.63 19.53 2.56 0.85 0.95
4 Sad Calm 446 1.08 3.00 3.39 3.08 29.88 25.52 18.53 12.36 3.16 0.00 0.78 0.79
5 Fear Ang/Exc 294 0.00 0.40 30.74 24.63 9.59 0.00 0.00 0.00 10.29 24.35 0.81 0.80
6 Angry Exc/Fear 279 0.13 0.37 24.37 31.39 6.37 3.38 0.00 0.00 6.54 27.45 0.83 0.81

Soleymani 5 [15]
128 Sad - 148 2.63 4.09 10.80 1.66 43.35 9.99 6.95 9.47 5.16 5.90 0.93 1.12
178 Sad - 201 3.17 3.15 3.84 1.56 27.41 21.54 4.89 22.87 7.90 3.67 0.74 0.77
171 Calm - 162 0.67 2.43 2.23 0.55 14.40 36.93 6.29 20.00 11.17 5.33 0.82 0.83
191 Hap - 274 1.54 4.00 1.11 5.04 2.44 6.02 15.98 8.78 28.35 26.74 0.79 0.78
294 Hap - 342 1.08 2.53 0.29 1.66 0.56 1.27 7.03 9.38 42.97 33.23 0.92 1.06

EmoRaga (section 4.1.2)
1 Hap - 220 1.58 3.34 0.54 1.09 0.26 14.33 3.42 6.72 42.11 26.57 0.96 1.22
2 Hap - 431 0.29 0.21 0.98 1.65 1.13 6.79 8.56 4.17 41.55 34.63 0.98 1.27
3 Sad - 243 2.26 1.91 3.94 0.98 54.03 20.03 5.37 4.42 4.12 2.89 0.98 1.59
4 Sad - 366 1.30 0.94 7.59 3.85 56.98 17.61 4.06 2.03 2.26 3.33 0.99 1.70
5 Calm - 396 2.09 1.18 0.77 1.82 11.78 34.93 5.89 15.57 16.87 9.08 0.93 0.79

5.2 EWIV and Typicality

The typicality (τ ) of an excerpt to a particular emotion [14] is
described as the property by which that emotion is more
easily perceived in that excerpt than other emotions. It
is estimated as τ = E − SE − NE [14], where, E and
SE are the mean and standard deviation of the dominant
emotion ratings, and NE is the mean of non-dominant
emotion ratings of an excerpt. The typicality values of each
excerpt of Schubert 6, Soleymani 5 and the first 5 excerpts of
EmoRaga excerpt-set to their individual Excerpt Emotion are
reported in column (τ ), table 2. It is observed that typicality
is well reflected in the probability values of the dominant
emotions, captured by EWIV. The higher the probability
of the dominant emotion, the higher is the typicality of the
excerpt for that emotion.

5.3 Listener Consensus in EWIV

Cronbach’s alpha (α) [14] is used to measure the agreement
between the participants about their perceived-emotion
opinions for each excerpt. This provides an estimate of the
internal consistency and reliability of the reported opinions.
The results are reported in table 2, column (α). It is observed
that most excerpts have a high α value, demonstrating high
quality of reported emotion opinions. Further, it is noted
that for highly typical excerpts of any dominant emotion, the
α is also high (0.9 ≤ α). This is intuitive since a greater
number of participants agreeing to a particular emotion
in an excerpt lends it to be typical of that emotion. But,
low typicality does not necessarily mean low consensus.
For eg, in the EmoRaga excerpt-set (Appendix A) excerpt#8
(α=0.84, τ=0.78) and excerpt#12 (α=0.83, τ = 0.42) have same
dominant emotion, Calmness. While they both have high
consensus (α), excerpt#12 has much lower typicality. This
might be explained from the respective probability vectors.
Excerpt#8 has a markedly dominant emotion (Calmness)

denoted by a high probability. The probabilities of all the
other emotions, including the secondary emotion, are notably
less. Whereas, in excerpt#12, the probabilities of a number of
emotions (Sadness, Happiness, Excitement) are competing
with the dominant emotion. In this case, the participants
highly concede that the excerpt is atypical of any one
emotion.

5.4 Identifying Ambiguity in Music Excerpts

Two types of ambiguity are identified in the excerpts using
α and τ values. Type 1: High α, Low τ : e.g. excerpt# 11, 12,
13 of EmoRaga (Appendix A) The following are observed
from the probability vectors: a) The dominant emotion might
be ambiguous, due to the presence of at least one other
highly perceivable emotion. b) Probabilities of the ambi-
guity indicators OE and DK are low (≤ 5). The ambiguity
arises from more than one highly perceivable emotion by
most listeners. Type 2: Low α, Low τ : e.g. excerpt# 7, 9, 10
of EmoRaga (Appendix A). In this case, it is observed that
a) Probabilities for perceiving multiple emotions are equally
low. b) Probabilities for OE and DK are high (≥ 5). The
ambiguity arises as no emotion is perceived well by a large
number of participants. Since emotion perception in music is
subjective, identifying ambiguity might help to understand
generic emotion perception in music better.

6 APPLICATIONS

6.1 Dynamic Emotion Classification

In this section, the dynamic EmoRaga dataset (section 5.1) is
used for two emotion classification tasks. First, in the multi-
class classification task of dominant or secondary emotions,
the aim is to classify each music segment into one of the 8
emotion classes {F, A, S, C, W, R, H, E} (3.1). The second
one is joint dominant and secondary emotion labeling - a
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Fig. 1: Test accuracies across K=10 fold Cross Validation for
dominant and secondary emotion classification using multi-
class and multi-label approaches. The mean accuracies are
represented as the colored lines. For multi-class dominant
emotion prediction, the mean = 0.68, sd = 0.09. For multi-
label dominant, the mean = 0.76, sd = 0.06. For multi-class
secondary, mean = 0.67, sd = 0.07. For multi-label secondary,
mean = 0.74, sd = 0.07.

multi-label classification problem. Here the focus is to find the
two top-most probable perceived emotions (dominant and
secondary) of every segment and predict their probabilities
of perception.

6.1.1 Experimental Setup
The dynamic dataset derived from the per segment-per excerpt
probability vectors 5.1 is used for this task. The spectral
features of the segments are extracted using the Librosa
[58] tool. They denote the distributions of energy over
a set of frequencies and have provided reasonably good
emotion estimates previously [59]. These features consist
of Chroma(24), CENs (12) MFCC (20), RMS (1), Mel-scaled
spectrogram (128), spectral centroid (1), spectral bandwidth
(1), spectral flatness (1), spectral roll-off (1) and zero crossing
rate (1). So, the feature set size for each segment is 190.
All excerpts are re-sampled to 22050 Hz before feature
extraction. The standard scalar normalization is used for
preprocessing the data before MIR tasks.

The LSTM-RNN [60] is used for the classification tasks.
Both single layer and double layer LSTM models with varied
layer sizes are explored and the best suitable architecture is
finalized. The classification task results are obtained using
the best model architecture. K-fold cross-validation is used,
with K=10. For the multi-class classification tasks, softmax
cross entropy with logits function is used to calculate the loss.
For the multi-label classification task, binary cross-entropy
loss function is used. Adam optimizer is employed for all the
tasks, with a maximum of 50 epochs. All hyper-parameters
not explicitly mentioned here are left to their default values
as in Tensorflow v2.7.0. The accuracy metric is used for
presenting the results.

6.1.2 Experiment 1: Multi-Class Classification
In the single-layer LSTM model, the hidden layer size is var-
ied from 10 to 256 units. For the double-layer LSTM model,

the hidden layer sizes are varied as (20,10), (40,20), (64,20),
(128,64), (256,64), and (256,128) units. In all the models,
the LSTM layers are followed by one dense layer with Relu
activation and a final dense layer of size 8 for the 8 possible
classes (emotion words). The corresponding accuracies are
compared and the best model is chosen for the multi-class
emotion classification task - the single-layer LSTM model
with a hidden layer size of 64 units. The test accuracies
for multi-class classification of segments into dominant and
secondary emotion classes across K(=10) folds are presented
in figure 1.

Results: The following are observed from this experi-
ment: a) The mean test accuracies for the dominant and
secondary emotion classifiers are calculated to be 0.68 and
0.67 respectively. b) EWIV representation can be used to
classify segments into dominant or secondary emotions with
good test accuracies. c) The best classification performance
reported in this section is comparable to emotion classi-
fication results reported in literature [40] with a similar
experimental setup. d) The single and double-layer models’
performances are comparable.

6.1.3 Experiment 2: Multi-Label Classification
The hidden layer sizes of single and double-layer LSTM
models are varied and the best model is identified. The
model consists of single layer LSTM (size=128 units), fol-
lowed by a dense layer (size=20 units) with Relu activation
and a final dense layer (size = 8 units) with hard sigmoid
activation. For multi-label classification, joint and individual
accuracies of dominant and secondary emotions are calcu-
lated first on the raw outputs of the model. It might be noted
that the target labels for this task can be considered as multi-
hot encoded. Since the model outputs a probability value
in the range (0,1) for each of the 8 classes, the threshold to
consider the presence of an emotion is assumed to be 0.5.
All predicted values ≥ 0.5 in the output are converted to 1
and all others are replaced with 0s. With these adjusted (cor-
rected) predictions, both the joint and individual accuracies
are re-calculated, which represent the actual accuracies pro-
duced using the model. Results: a) The mean test accuracy
across the K folds for the joint prediction of dominant and
secondary emotions is 0.50. b) The individual accuracies are
calculated to be 0.76 and 0.74 respectively. The individual
test accuracies for multi-label classification of segments into
dominant and secondary emotion classes jointly are plotted
in figure 1. It is observed that the mean accuracies of the
adjusted (corrected) multi-label dominant and secondary
emotion classification surpass the multi-class classification
accuracies for both dominant and secondary emotions. For
detailed results, please refer to Appendix B.

6.1.4 Illustrative Example
The best multi-label classifier model identified in the pre-
vious section is used to predict variations in dominant
and secondary emotion perception in individual EmoRaga
excerpts (MEVD). A random excerpt (Excerpt 1) is selected
from the test clip-set of 4 clips - 2 happy and 2 sad for
this purpose. The ground truths of dominant and secondary
emotion probabilities provided by the per segment-per excerpt
vectors are then compared with the predicted probabilities.
Figure 2(a) plots the ground truth variations of the dominant
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(a) Excerpt 1 - Manual TEP (b) Predicted TEP vs Manual TEP

Fig. 2: Temporal Emotion Patterns (TEP): Variations of
dominant and secondary emotions over excerpt#1 in EmoR-
aga dataset. Figure(a) shows the ground truth: variations
in manual perceived-emotion annotations recorded during
the survey. Figure(b) depicts the variations in predicted
emotions (dotted graph) in comparison with ground truth
(unbroken graph). The top and bottom sub-figures are for
dominant and secondary emotions respectively.

(Happiness) and secondary (Excitement) perceived-emotions
in each segment of excerpt #1 of the EmoRaga dataset. It is
observed that excerpt #1 is rated as dominantly happy in the
first and last few seconds, although perception probability
is generally high (≃ 40%). Secondary perceptions(≤ 50%)
of excitement are reported throughout the excerpt. In figure
2(b), each sub-graph represents a comparison of the ground-
truth perceived-emotion probabilities of dominant and sec-
ondary emotions provided by the EmoRaga data and the ones
predicted by the multi-label classifier described in section
6.1.3. It is observed that the dominant emotion prediction
fares slightly better than the secondary emotion prediction.

6.2 Detecting Temporal Emotion Patterns and Motifs

The collected per segment-per excerpt data of the domi-
nant emotions (Domε) indicate the presence of some seg-
ments where the perception probability is significantly high
(≥30%). The dynamic emotion predictions also indicate seg-
ments with a high predicted probability of the dominant emo-
tions (Domε). These high-perception segments are identified
and compared with those that are annotated by experts as
containing emotion motif s (section 4.1) - the ground truth.
The Szymkiewicz–Simpson coefficient or Overlap Coeffi-
cient (OVL) is used for this comparison, which is given
by |A∩B|

min(|A|,|B|) , where A and B are two finite sets. This is
reported in table 3 for the first 4 excerpts of the EmoRaga
dataset, which consist of the test set. It is observed that
the overlap coefficients are high (≥0.50) in most cases, both
between ground truth and EWIV collected data and ground
truth and model prediction data. This indicates a possible
association between these expert-annotated emotion-motifs
and emotions perceived by listeners. Automatic recognition
of such high-perception segments might assist in emotion
motif detection in HCM excerpts, and help build explainable
music emotion recognition models.

7 COMPARISON OF EWIV WITH CIRCUMPLEX

In this section, we aim to estimate the quality of emotion
representations as statistical models, over a given set of

perceived-emotion opinion data. We perform an informa-
tion content-based comparison of the EWIV and the dimen-
sional Circumplex [9] models over their representativeness of
music perceived-emotions collected in relevant datasets. We
use the Akaike information criterion (AIC) [30], which is a
statistical measure of the suitability of a statistical model
towards a given input data. AIC metric provides a tradeoff
between 2 components: goodness of fit measured using log-
likelihood of a dataset, and a measure of model complexity
given by the number of parameters of the model. Due to this
tradeoff, AIC provides a metric of out-of-sample prediction
accuracy, or generalization ability of the statistical model to
unseen data. We consider both EWIV and the Circumplex
representations as probabilistic models for fitting the per-
ceived emotions of the self-reported data points, and use the
Akaike Information Criterion (AIC) [30] for the information
content-based comparison.

To apply AIC for goodness-of-fit comparisons successfully,
the primary requirement is the availability of perceived-
emotion data using both formats, over a common set of
excerpts, and listener participants. Such datasets are rare
in existing literature, with the exception of the seminal
work by Eerola et al [14], which studies both discrete and
dimensional emotion representations over the same dataset.
Moreover, collection of consistent self-reported emotions
in two different representation format can cause cognitive
overload on the subjects, and affect the reported emotions.
To circumvent these problems and to ensure the broader
applicability of this comparison in datasets where data
of only one format is available, we propose to convert
the available data from the existing format to the absent
format. The conversion scheme could possibly be noisy,
leading to some information loss. Hence we perform both-
way conversion and compare the information content of the
resulting datasets. In this section, first, we discuss the con-
version procedures (section 7.1), and next (section 7.2), we
consider different model estimations with respective AIC
calculations and finally report the empirical results of the
representativeness of four competing emotion representations
over excerpts of three datasets.

7.1 Conversion of Representations
7.1.1 EWIV to Circumplex
In the Circumplex 2-D plane [9], each emotion term is
associated with an angular value, indicating its location (
[9], section Polar coordinates for the 28 words). To convert
EWIV format data to Circumplex format, we use these:
Fear/Scared (100◦), Angry (92◦), Sad (207.5◦), Calm (316.2◦),
Happy (7.8◦), and Excited (48.6◦). We assume that a listener
responds N c times during an excerpt c using the EWIV
representation, and each time the instantaneous report tuple
(t, ε, I) is recorded (section 3.1). Considering the angular
value associated with emotion ε to be θε [9], the correspond-
ing valence vε and arousal aε values can be determined
as: vε = Iε cos θε and aε = Iε sin θε. The static per excerpt
estimate of perceived-emotion for excerpt c in arousal-
valence terms (V c

avg, A
c
avg) can be calculated over all such

instantaneous reports as:

V c
avg =

∑
ε∈E vε

N c
and Ac

avg =

∑
ε∈E aε

N c
(6)
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TABLE 3: Overlap coefficients (OVL) between a) set of segments with emotion motif marked by experts (GT) and set of
segments with a high perceived probability of dominant emotions in audience response (AR) and b) GT and set of segments
with a high predicted probability of dominant emotions in model prediction (MP), for the first 4 excerpts of the EmoRaga
dataset.

#
Segments with Expert Segments with High Segments with High OVL OVL
Annotated Emotion Motifs: Probability of Domε: Probability of Domε: between between
Ground Truth (GT) Audience Response (AR) Model Prediction (MP) GT & AR GT & MP

1 2-6,8-10,12,13,18-22 2,4,6-8,10-13,15,18-20,22,24,25 2,4-6,8,10,11,14,17,18,19,21,23,24 0.73 0.64
2 1-4,7-10,14-18,21-27,31-35 1-6,8-11,16,19,24,25,28,29,30,31 1-3,5-8,11-13,25,30,31,34 0.61 0.57
3 1-5,11-18,32-40 2-14,18,21,23,25,26,39-41,43,46,47 2-7,11,12,18,19,25,26,40-43,48 0.64 0.59
4 2-4,6-11,14-17,20,33,37-40,44-47 1-4,6-19,21-26,28-30,33-37,39-43 2-7,10-13,15-19,22,27,33,35,38,44,46 0.71 0.60

7.1.2 Circumplex to EWIV
To convert arousal-valence data to EWIV format, we define
a region associated with each emotion ε in the 2-D plane.
Each region is limited by a minimum (θmin

ε ) and a maximum
(θmax

ε ) angular value from the x-axis. Let θε, θε−1 and θε+1

be the angular values associated with emotion ε, and the
emotions preceding and succeeding ε in the 2-D Circumplex
plane [9]. Then, θmin

ε and θmax
ε are defined as: θmin

ε = θε −
(θε−θε−1)

2 and θmax
ε = θε +

(θε+1−θε)
2 . The region of emotion

ε is thus demarcated by [θmin
ε , θmax

ε ], and can be further
be sub-divided into 5 equal sub-regions, which we map to
the five intensities of the present EWIV. This procedure is
further detailed in Appendix E. Given an arousal-valence
response (ak, vk), the angular coordinate of this point on the
2-D plane is given by θk = tan−1(ak

vk
). If θmin

ε < θk ≤ θmax
ε ,

then θk is said to be associated with emotion ε. The intensity
is also derived from θk, based on the sub-region it is in. It
might be noted, the radial coordinate of the point (ak, vk) is
not used since it is expected to be unit norm.

7.2 Comparison of EWIV and Circumplex Model
We describe the estimation of model parameters and cal-
culation of AIC values for the different representations in
section 7.2.1. Next, in section 7.2.2, we analyze and report
the empirical results on three datasets.

7.2.1 Model estimation and AIC calculation
For the EWIV representation, we assume that self-reported
emotion values for an emotion word ε and an excerpt c
follows a normal distribution, with mean µε,c and standard
deviation σε,c. Hence, each self report of emotion denoted
by EWIV c,λ

ε (n), where λ = listener, n = response index,
(section 3.2), can be considered a random sample from the
following distribution:

EWIV c,λ
ε ∼ N (µε,c, σε,c) (7)

Considering the 8 emotion words of EWIV (section 3.1), we
have 8 parameters for the mean (µEWIV = [µF , µA, µS ,
µC , µW , µR, µH , µE ]), and 8 for the variance (σEWIV =
[σF , σA, σS , σC , σW , σR, σH , σE ]). Hence, there are k=16
parameters to be estimated. Given a dataset Dε,c =
{EWIV c,λ

ε (n)| ∀λ, n} of all self reports corresponding
to emotion ε and excerpt c, the parameters µε,c, σε,c are
estimated using standard Gaussian maximum likelihood
estimation formulae: µε,c = 1

|Dε,c|
∑

λ,n EWIV c,λ
ε (n) and

σ2
ε,c = 1

|Dε,c|
∑

λ,n(EWIV c,λ
ε (n) − µε,c)

2. The total log-
likelihood for the model M is estimated as:

ln(L̂c(M)) =
∑
ε

ln(L(Dε,c|µε,c, σε,c)) (8)

We also consider a reduced EWIV model (EWIVR), which
consists of only the dominant (Domε), secondary (Secε)
and tertiary (Terε) perceived-emotions for each excerpt
(section 3.2). In this case, the estimated parameters (k=6) are
µEWIVR

=[µdom, µsec, µter], and σEWIVR
=[σdom, σsec, σter].

The log-likelihoods are estimated using equation 8. For the
Circumplex model [9], the self-reported tuple (A, V ) is mod-
eled using a Normal distribution NAV (µAV , σAV ), where,
µAV =[µA, µV ], and σAV =[σA, σV ]. The (k=4) parameters
(µAV , σAV ) and the corresponding log-likelihood (L̂AV )
are estimated in the same way as the previous models. A
hypothetical integrated model (EWIV+AV) is also constructed
for comparison, where music-perceived emotion is repre-
sented using both EWIV and AV formats. The number of
parameters estimated is the sum of the parameters of the
two parent models (k=20). Finally, using equation 1 we
calculate the AIC values for each model, on each excerpt,
which are represented by AICEWIV , AICEWIVR

, AICAV

and AICEWIV+AV respectively.

7.2.2 Results: Comparison of AIC across models
In this section, we compare the calculated AIC values to
identify the representation model that fits best, for three
different datasets.
a) Eerola’s Dataset [14] (section 2.2.1): We would like to sin-
cerely thank the authors for allowing us to use their data for
our experiments. This dataset contains perceived-emotion
opinion data in both discrete and dimensional formats. First,
the conversion procedures (section 7.1) are used to obtain
the converted discrete and dimensional datasets. Next, AIC
values are calculated for each excerpt over the original,
converted, and integrated data format (section 7.2.1). The
results for the first five excerpts of Eerola’s Dataset [14] are
presented in table 4 (the rest in Appendix C). The columns
Excerpt# and Emotion Category Level contain the excerpt
numbers and emotion category levels from the original
dataset. The columns Original Data, Converted Data, and Inte-
grated Data present the AIC values calculated using different
representation models over original, converted, and orig-
inal integrated emotion data. The subheadings AICEWIV ,
AICEWIVR

, AICAV and AICEWIV+AV represent AIC values
for various representation models, and are numbered (1)-
(6). Observation 1: Among all the models, AICEWIVR

(2) is
consistently the least and AICEWIV+AV (6) is consistently
the highest. This indicates that model EWIVR fits the emo-
tion data the best. Though the model (EWIV+AV) has the
highest number of parameters, the relative quality of this
model is poor, indicating that increasing the number of
model parameters does not necessarily make the model a



10

TABLE 4: AIC results for the first 5 excerpts from Eerola’s Dataset [14]. The terms AICEWIV , AICEWIVR
and AICAV

represent AIC values for EWIV, Reduced EWIV, and AV models respectively. Columns (1)-(3) represent AICs calculated
over emotion data from the original dataset. Columns (4)-(5) give the AICs calculated over converted emotion data. Column
(6) presents the AIC of an integrated model, constructed using emotion data from the original dataset. The best model for
each excerpt is highlighted in blue, and the second-best in gray.

Excerpt# Emotion Category Original Data Converted Data Integrated Data
Level AICEWIV (1) AICEWIVR

(2) AICAV (3) AICEWIV (4) AICAV (5) AICEWIV +AV (6)
1 Anger High 466.93 444.44 469.69 613.62 570.89 1116.87
2 Anger High 389.67 388.94 393.99 631.80 536.12 1041.98
3 Anger High 487.46 458.84 486.89 759.68 596.32 1129.84
4 Anger High 463.40 406.24 463.46 727.81 554.93 1264.48
5 Anger High 520.89 494.76 528.40 980.60 578.77 1230.19

TABLE 5: AIC results for the Soleymani 5 [15] excerpts. The terms AICEWIV , AICEWIVR
and AICAV represent AIC values

for EWIV, Reduced EWIV, and AV models respectively. Column (1) gives the AIC calculated over emotion data from the
original dataset. Columns (2)-(3) give the AIC calculated over emotion data collected for these excerpts in the EWIV format.
Columns (4)-(5) give the AIC calculated over converted emotion data. Column (6) presents the AIC of an integrated model,
constructed using emotion data from the original and collected dataset. The best model for each excerpt is highlighted in
blue, and the second-best in gray.

Excerpt# Emotion Category Original Data Collected Data Converted Data Integrated Data
Dominant Secondary AICAV (1) AICEWIV (2) AICEWIVR

(3) AICEWIV (4) AICAV (5) AICEWIV +AV (6)
128 Sadness Fear 206.97 210.31 115.83 217.79 213.01 508.96
178 Sadness Romance 245.15 273.94 170.26 312.73 276.33 510.37
171 Calmness Romance 237.12 238.28 178.78 297.10 289.10 481.41
191 Happiness Excitement 201.98 196.57 132.90 254.52 247.74 411.53
294 Happiness Excitement 237.29 231.67 157.41 307.12 301.77 492.27

TABLE 6: AIC results for the first 5 EmoRaga dataset. The terms AICEWIV , AICEWIVR
and AICAV represent AIC values for

EWIV, Reduced EWIV, and AV models respectively. Column (1)-(2) gives the AIC calculated over emotion data collected
for these excerpts in the EWIV format. Column (3) give the AIC calculated over emotion data converted from EWIV to AV
representation. The best model for each excerpt is highlighted in blue, and the second-best in gray. Columns Aavg , Vavg ,
and Θ represent the average arousal, valence, and calculated angle of the converted AV representation.

Excerpt# Emotion Category Collected Data Converted Data
Dominant Secondary AICEWIV (1) AICEWIVR

(2) Aavg Vavg Θ AICAV (3)
1 Happiness Excitement 540.33 186.12 0.41 1.99 78.26 592.91
2 Happiness Excitement 712.63 200.44 0.73 1.75 67.30 724.69
3 Sadness Calmness 719.46 192.92 -0.92 0.91 224.40 688.13
4 Sadness Calmness 712.63 203.81 -0.71 -1.04 235.82 742.6
5 Calmness Happiness 723.54 160.13 -0.48 0.74 302.92 773.06

better fit for data. This result holds true for 98% of the
excerpts in this dataset. Only in 2 cases EWIV (column (1))
is found to perform better (Appendix C). Observation 2: For
most excerpts (almost 60%), AICEWIV (1) < AICAV (3),
indicating that EWIV representation model is a better fit.
For the rest of the excerpts, the dimensional Arousal-Valence
representation model performs better. In some cases, the
difference in AIC values of the two competing models is
≤ 2 (e.g. excerpt# 3,4), indicating that both models perform
similarly. Observation 3: The AIC values calculated over
converted data (columns 4-5), are higher than those calcu-
lated over the original emotion data, indicating some loss in
information due to the conversion.
b) Soleymani 5 Dataset (section 4.1): The original dataset
provides data in the arousal-valence format, and EWIV data
was collected for the purpose of this study (table 2). A
similar procedure was followed for Eerola’s Dataset. Data
format conversions (section 7.1) were performed and AIC
values were calculated (section 7.2.1) for each excerpt over
the original, collected, converted, and integrated data The
results are presented in table 5. Observation 1: Among all the
models, AICEWIVR

(3) is consistently the least (best fit) and

AICEWIV+AV (6) is consistently the highest. Observation 2:
The second best model varies across excerpts, for some it is
EWIV (column AICEWIV (2)), and for others, it is AV (col-
umn AICAV (1)). Observation 3: AIC values calculated over
converted data are higher than those calculated over the
original emotion data, indicating some loss in information
due to the conversion.
c) EmoRaga Dataset (section 4.1.2): The dataset provides
EWIV format data, which was converted to dimensional
format (section 7.1.1), and AIC values were calculated (sec-
tion 7.2.1) for each excerpt over the collected and con-
verted datasets. The results for the first five excerpts are
presented in table 6 (rest in Appendix C). Observation 1: The
best model is consistently observed to be EWIVR (column
AICEWIVR

(2)). Observation 2: The second best model varies
across excerpts, for some (almost 60%) it is EWIV (column
AICEWIV (1)), and for others, it is AV (column AICAV (3)).

8 DISCUSSION AND CONCLUSION

In summary, we introduce a dynamic intensity rating-based
categorical emotion representation adapted for perceived-
emotion studies in HCM, called the Emotion-Descriptor
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Intensity-Value (EWIV) representation. We discuss the
choice of emotion-words and establish a mathematical pro-
cedure to estimate music-perceived emotion as a probability
vector using EWIV. We present the EmoRaga dataset, dedi-
cated to perceived-emotion studies in HCM, and introduce
the term emotion motifs in HCM to indicate any musical
features that can possibly cue the perception of certain
emotions in HCM. Using EWIV-based self-report survey
results on benchmark and EmoRaga datasets, we validate
the application of EWIV representation and study typicality,
consensus, and ambiguity in emotion opinion data. In order
to understand the extent of EWIV’s applicability in MER,
we perform classification, emotion variation detection, and
contextual influence measurements and obtain satisfactory
results. Finally, we evaluate the quality of EWIV and
other emotion representation models using the statistical
goodness-of-fit measure of AIC.

Our future research will focus on (1) Extending the
EmoRaga dataset to include more HCM excerpts, encom-
passing different prevalent Raga, Tala, Laya combinations
while balancing the number of excerpts with respect to
different dominant emotions; and (2) Building deep learning
based emotion classification methods with more data and
sophisticated set of features to improve the classification
accuracy; (3) Exploring ambiguity in perceived emotion in
music, and the factors contributing to it, and (4) Testing
EWIV’s applicability in other music styles.
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