
CS60021: Scalable Data Mining 
Practice Questions: Large Scale Optimization 

 
 
State whether following statements are true or false with max 2-sentences of explanations: 
 

a. Even non-differentiable convex loss functions can be minimized using SGD. 
b. Mini-batches in SGD are expected to not only reduce the number of epochs till 

convergence, but also fluctuations in loss function values after each update. 
c. SGD is best suited for large scale optimization (large number of examples) where 

very high accuracy is needed. 
d. Dual decomposition converges and results in the same algorithm as ADMM if the 

loss function is strongly convex. 
e. Adagrad is a variation of Nesterov’s acceleration with direction specific 

normalization. 
f. For minimization of convex and smooth loss functions, the best convergence rate 

achieved is 1/√𝑇, where T is the number of iterations. 
g. Dual ascent may not converge for all convex optimization problems. 
h. Given an empirical loss minimization problem with N datapoints, and M 

minibatches, SAG algorithm requires O(N) memory for the updates. 
i. SGD with Nesterov momentum achieves linear convergence rates. 
j. ADAM optimizer combines adaptive gradients with Nesterov momentum updates. 
k. RMSprop updates preserve sparsity of gradients, but momentum updates may not. 
l. Distributed SGD is slow for practical problems due to communication and 

synchronization bottleneck. 
 

 
 
 

Q1. What is a decomposable loss function ? Write 𝐿(𝑥) as a decomposable loss. Write 
the stochastic gradient descent algorithm for this loss function. Show the final 
output. What should be step-size rule. 

Q2. For the above SGD show that the final estimate of 𝑥 converges to 𝑥∗ in 
expectation. 

Q3. Write the gradient for least squares loss function. Run 10 updates of SGD for the 
following dataset, and report the final training mean square error: 
(𝑥", 𝑥#, 𝑦): (0,0,0), (0,1,0.6), (1,1,1), (1,0,0.6), (1,1,1.2) 

Q4. Given a loss function 𝐿(𝑥) = 𝑙"(𝑥) + 𝑙#(𝑥) + 𝑙$(𝑥), derive the ADMM updates 
for relevant variables. State the conditions under which the ADMM is guaranteed 
to converge. Write the expressions for primal and dual residuals. 

Q5. Consider the situation where 𝑛 noisy sensors trying to determine each others’ 
temperature 𝑡", … , 𝑡% by minimizing discrepancy 𝐷 = ∑ 𝑑&%

&'" , with 𝑑& =
9𝑇& −∑ 𝑠&(𝑡(%

('" 9#, where 𝑠&( is some nearness measure between sensors 𝑖 and 𝑗, 
and are known to both (𝑖, 𝑗), but not other sensors. Devise an ADMM based 
algorithm that computes the optimal temperatures 𝑡&∗ given the temperature 
readings 𝑇& (fixed) at each sensor. 



Q6. Describe the stochastic gradient descent algorithm for optimizing an additive loss 
function. Formally show that: 
For a convex loss function, the expected loss of weighted average of parameter 
iterates (weighted by the step length) generated by SGD, converges to the 
minimum loss. 

Q7. Write the updates for RMSprop algorithm. Show 4 updates of RMSprop for the 
least square regression problem 𝑦 = 𝑤"𝑥" +𝑤#𝑥#, trained on the following 
dataset: (𝑥", 𝑥#, 𝑦) = { (1,1,5) (-1,1,2) (1,-1,2) }. Use step length 𝜂) =

"
)
 , starting 

point as (0,0), and batch size as 1.  
 

Q8. Derive the ADMM formulation for optimizing from first principles: 
min
*!,*"

(𝑥" − 5)# + (𝑥# + 2)# 

𝑠𝑢𝑏. 𝑡𝑜: 𝑥" = 𝑥# 
such that updates to 𝑥" and 𝑥# happen in parallel. Clearly state the dual and 
consensus variables. Write expressions for primal and dual residuals. 
 

Q9. Consider the following optimization problem: 
min
*,,

(1 − 𝑥)# + 100(𝑦 − 𝑥)# 

Derive updates for the above problem using (i) SGD (ii) SGD with Nesterov 
momentum. 
 

Q10. For the updates derived above, show 5 epochs of updates starting with the 
point (5,5) and learning rate 0.1. Assume weightage of momentum term as 0.2. 
 

Q11. Derive an 𝑂( "
√.
) bound on expected sub optimality 𝐸[𝑓(𝑤.)] − 𝑓(𝑤∗) after T 

updates of form 𝑤)/" = 𝑤) − 𝜂𝑣), where 𝑣) = ∇𝑓(𝑤)). You can assume that 
|𝑤| < 𝐵 and |𝑣)| < 𝜌. 
 

Q12. Derive the fully distributed ADMM updates for optimizing: 
min
*!,*"

(𝑥" − 𝑎")# + (𝑥# − 𝑎#)# 

𝑠𝑢𝑏. 𝑡𝑜: 𝑥" = 𝑥# 
such that updates to 𝑥" and 𝑥# happen in parallel on computers 𝐶" and 𝐶#, without 
any central computer. 
 

Q13. Derive the dual decomposition update for the above problem. Will it converge 
? 
 

Q14.  
 


