
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

LEARNING TO HASH

Locality Sensitive Hashing

Given input data, radius r, approx factor c and
confident 𝛿
Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟
Algo: Choose 𝑘, 𝐿 .
do L times

iid hash functions ∶ h!"… . h!#
Create hash table 𝐻$ by putting each 𝑥 in bucket

𝐻$ 𝑥 = ℎ$" 𝑥 , …ℎ$% 𝑥
Store non-empty buckets in normal hash table

3

Picture courtesy Slaney et al.

Issues
• Parameters k, L need to be tuned for each domain

• Random directions are meant to create a random partitioning of the
dataset

• While useful to guard against “worst case datasets”, we do not exploit the
dataset structure

4

Hashing as binary codes

• Assume points are in Euclidean space

• How can we get binary vectors so that Hamming
distance approximates Euclidean distance

5

Properties of a binary code

• Should be easily computable

• Should preserve distances approximately

• Should have small number of bits
– the bits should be independent and unbiased

6

Optimization

• 𝑊!" =	similarity	between	𝑖 and	𝑗

– Say	𝑊<= = exp − >! ?>"
#

@

• 𝑦! = codeword for point 𝑖

• 𝑦! − 𝑦"
#

also equals Hamming 𝑖, 𝑗

7

Learning codes

• Average hamming distance = ∑!"𝑊!" 𝑦! − 𝑦"
#

• 𝑦! ∈ −1,+1 $

• Each bit should be unbiased: ∑! 𝑦! = 0

• Bits should be uncorrelated ∑! 𝑦!𝑦!% = 𝐼

8

Casting as optimization problem

• Can we solve : minimize ∑!"𝑊!" 𝑦! − 𝑦"
#

• subject to
– 𝑦< ∈ −1,+1 A

– ∑< 𝑦< = 0
– ∑< 𝑦<𝑦<B = 𝐼

9

[Waiss et al.]

Hardness

• Unfortunately, no!, even for single bit

• Graph partitioning problem: For graph G partition
V(G) into two sets 𝐴 and 𝐵 such that |𝐴| = |𝐵| and

10

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 +
!∈#,%∈&

𝑊!%

Spectral Relaxation

• 𝑌 = 𝑛×𝑘 code matrix
• Diagonal 𝐷, 𝐷<< = ∑=𝑊<=

• minimize ∑<=𝑊<= 𝑦< − 𝑦=
C

= 𝑡𝑟𝑎𝑐𝑒 𝑌B 𝐷 −𝑊 𝑌
– 𝑌' ⋅ 1 = 0
– 𝑌' 𝑌 = 𝐼
– Drop the constraint that 𝑌 are in {−1,+1}

11

Spectral codes

• The above problem is solved by 𝑌 = smallest – k
eigenvectors of 𝐷 −𝑊
– After dropping the one with value 0

• To get codes,
– We could threshold eigenvectors, but then hard to extend it for query

12

Eigenvectors

• Assume that the data is coming from some
distribution in 𝑅!
– But estimating this distribution is hard also
– We could try to interpolate the eigenvectors to query points, under

above assumptions, but is computationally expensive (Nystrom
extension)

13

Eigenvectors

• Assume that the data is coming from some
distribution in 𝑅!
– But estimating this distribution is hard also
– We could try to interpolate the eigenvectors to query points, under above

assumptions, but is computationally expensive (Nystrom extension)

• Assume data distribution is product of uniform
distributions
– Use PCA to find the axes

14

Eigenfunctions
• Take limit of eigenvectors as 𝑛 → ∞, and consider the “normalized”

similarity matrix (Laplacian)
• Analytical form of Eigenfunctions exists for certain distributions (uniform,

Gaussian)
• For uniform

• Constant time calculation for any new point
15

[Image from Waiss et al]

Algorithm
Input: Data 𝑥! , target dimensionality 𝑘

16

Algorithm
Create top 𝑘 PCA of 𝐷 −𝑊

Gives us top 𝑘 axes
Find the 𝑎!, 𝑏! for each axes
and create 𝜙(𝑥 …𝜙)(𝑥) for each direction

17

Algorithm

Create top 𝑘 PCA of 𝐷 −𝑊

Gives us top 𝑘 axes
Find the 𝑎!, 𝑏! for each axes
and create 𝜙!(𝑥 …𝜙!)(𝑥)
and 𝜆!(…𝜆!) for each direction

Total 𝑑𝑘 eigenvaluesà sort and take the top k
eigenvalues and corresponding functions

18

Algorithm
Threshold chosen
Eigenfunctions

Empirical observation:
bit codes
seem robust to the
uniform assumption

19

Results

• Shown to have better properties than naïve LSH on
large datasets

20

[Image from Waiss et al]

Conclusion
• Large literature on learning the hash codes rather than use random

projection
– Wang, Jingdong, Ting Zhang, Nicu Sebe, and Heng Tao Shen. "A survey

on learning to hash." IEEE TPAMI (2017): 769-790.
– Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Product

quantization for nearest neighbor search." IEEE TPAMI (2010): 117-128.

21

Conclusion

22

Conclusion
• Large literature on learning the hash codes rather than use random

projection
– Wang, Jingdong, Ting Zhang, Nicu Sebe, and Heng Tao Shen. "A survey

on learning to hash." IEEE TPAMI (2017): 769-790.
– Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Product

quantization for nearest neighbor search." IEEE TPAMI (2010): 117-128.

• Unfortunately, theoretical guarantees are not available for such data-
dependent version
– time to calculate projections might also be higher.

23

24

References:

• Primary references for this lecture
• Spectral Hashing, Yair Weiss, Antonio Torralba and Rob Fergus. [NIPS], 2008

