CS60021: Scalable Data Mining

Similarity Search and Hashing



LEARNING TO HASH



Locality Sensitive Hashing

K projections L tables Given input data, radius r, approx factor c and

Hash |m\\ m:tf’cf;es confident §
t[):Lle:ieTs disfavnce Output: if there is any point at distance < r then w.p.
1 — & return one at distance < cr

Results

Algo: Choose (k, L).
do L times

iid hash functions : {hj; .... hy}

Create hash table H; by putting each x in bucket
H;(x) = (hiz (), .. hy (x))

Store non-empty buckets in normal hash table
Picture courtesy Slaney et al.



Issues

Parameters k, L need to be tuned for each domain

Random directions are meant to create a random partitioning of the
dataset

While useful to guard against “worst case datasets”, we do not exploit the
dataset structure



Hashing as binary codes

* Assume points are in Euclidean space

* How can we get binary vectors so that Hamming
distance approximates Euclidean distance



Properties of a binary code

* Should be easily computable
* Should preserve distances approximately

 Should have small number of bits

— the bits should be independent and unbiased



Optimization

* W;; = similarity between i and j

2
— Say W;; = exp(— =] )

S

* y; = codeword for point i

2 NP
Vi —y]-‘ also equals Hamming(i, j)




Learning codes

Average hamming distance = Zij Wij‘yl' —Yj

yi € {—1,+1}"
Each bit should be unbiased: ».;y; =0

Bits should be uncorrelated Y ; y;y; =1

‘2



Casting as optimization problem

[Waiss et al.]
* Can we solve : minimize );; Wij‘yl' — lez
* subjectto

—y; € {—1,+1}F

- 2iyi=0

- Yy =1



Hardness

* Unfortunately, no!, even for single bit
* Graph partitioning problem: For graph G partition
V(G) into two sets A and B such that |[A| = |B| and

minimize Z Wi;
i€EA,jEB



Spectral Relaxation

Y = nXk code matrix

* Diagonal D, Dy; = 2, W;;
* minimize );; Wij|yl- — yj|2 =trace(Y!(D — W)Y)
—Yt.1=0

— Yty =1

— Drop the constraint that Y arein {—1, +1}



Spectral codes

* The above problem is solved by Y = smallest —k

eigenvectorsof D — W
— After dropping the one with value O

* To get codes,

— We could threshold eigenvectors, but then hard to extend it for query



Eigenvectors

* Assume that the data is coming from some
distribution in R¢

— But estimating this distribution is hard also

— We could try to interpolate the eigenvectors to query points, under
above assumptions, but is computationally expensive (Nystrom
extension)



Eigenvectors

* Assume that the data is coming from some
distribution in R¢

— But estimating this distribution is hard also

— We could try to interpolate the eigenvectors to query points, under above
assumptions, but is computationally expensive (Nystrom extension)

* Assume data distribution is product of uniform

distributions
— Use PCA to find the axes



Eigenfunctions

Take limit of eigenvectors as n = o, and consider the “normalized”
similarity matrix (Laplacian)

Analytical form of Eigenfunctions exists for certain distributions (uniform,
Gaussian)

For uniform
T kT
®L(x) = sin(— ik
W(@) = sin(S+7—a)
62 kr |2
)\k — 1—€_Tm

Constant time calculation for any new point
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[Image from Waiss et al]



Algorithm

Input: Data {x;}, target dimensionality k
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Algorithm

Createtop k PCAof D — W

Gives us top k axes
Find the [a;, b;] for each axes
and create ¢ (x) ... ¢ (x) for each direction
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Algorithm

Createtop k PCAof D — W

Gives us top k axes
Find the [a;, b;] for each axes

and create ¢ (x) ... $; (%)
and A;q ... A;, for each direction

Total dk eigenvalues—> sort and take the top k
eigenvalues and corresponding functions
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Threshold chosen
Eigenfunctions

Empirical observation:

bit codes

seem robust to the
uniform assumption

Algorithm

by



Results

 Shown to have better properties than naive LSH on
large datasets
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[Image from Waiss et al]
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Conclusion

Large literature on learning the hash codes rather than use random
projection
— Wang, Jingdong, Ting Zhang, Nicu Sebe, and Heng Tao Shen. "A survey
on learning to hash." IEEE TPAMI (2017): 769-790.

— Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Product
qguantization for nearest neighbor search." IEEE TPAMI (2010): 117-128.



Conclusion

GloVe1.2M, 128 bits encoding

ImageNet, 64 bits encoding

Recall

Recall

10K
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Conclusion

Large literature on learning the hash codes rather than use random
projection

— Wang, Jingdong, Ting Zhang, Nicu Sebe, and Heng Tao Shen. "A survey
on learning to hash." IEEE TPAMI (2017): 769-790.

— Jegou, Herve, Matthijs Douze, and Cordelia Schmid. "Product
quantization for nearest neighbor search." IEEE TPAMI (2010): 117-128.

Unfortunately, theoretical guarantees are not available for such data-
dependent version

— time to calculate projections might also be higher.
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