CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

- Data is seen as incoming sequence
- can be just element-ids, or ids +frequency updates
- Arrival only streams
- Arrival + departure
- Negative updates to frequencies possible
- Can represent fluctuating quantities, e.g. monitoring databases.

Frequency Estimation

- Given the input stream, answer queries about item frequencies at the end
- Useful in many practical applications e.g. finding most popular pages from website logs, detecting DoS attacks, database optimization

- Also used as subroutine in many problems
- Entropy estimation, TF-IDF, Language models etc

Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?

- No

Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?

- No

Q3. Sketch to estimate frequencies of "most frequent" elements approximately?

- YES!

Approximate Heavy Hitters

- Given an update stream of length m, find out all elements that occur "frequently"
- e.g. at least 1% of the time
- cannot be done in sublinear space, one pass
- Find out elements that occur at least ϕm times, and none that appears $<(\phi-\epsilon) m$ times
- Error ϵ
- Related question: estimate each frequency with error $\pm \epsilon m$

Majority Algorithm

- Whether any item in a stream has majority at a given time:
- Strict majority: >N/2
- Arrivals only model
- Start with a counter set to zero
- For each item
- if counter $=0$, pick new item and increment counter
- else if new item is same as item in hand, increment counter
- else decrement counter

Majority Algorithm

- Start with a counter set to zero
- For each item
- if counter $=0$, pick new item and increment counter
- else if new item is same as item in hand, increment counter
- else decrement counter
- If there is a majority item, it is in hand at the end
- Proof: Since majority occurs > N/2 times, not all occurrences can be cancelled out

Frequent count [Misra-Gries]

- Keep k counters and items in hand

Initialize:

- Set all counters to 0

Process (x)

- if x is same as any item in hand, increment its counter
- else if number of items $<k$, store x with counter $=1$
- else drop x and decrement all counters

Query (q)

- If q is in hand return its counter, else 0

Frequent count

- f_{x} be the true frequency of element x
- At the end, some set of elements is stored with counter values
- If query y in hand, $\widehat{f_{y}}=$ counter value, else $\widehat{f_{y}}=0$

Theoretical Bound

Claim: No element with frequency $>m / k$ is missed at the end

Intuition: Each decrement (including drop) is charged with k arrivals. Therefore, will have some copy of an item with frequency $>m / k$

Stronger Claim

Choose $k=\frac{1}{\epsilon}$. For every item x, with frequency f_{x} the algo can return an estimate $\widehat{f_{x}}$ such that

$$
f_{x}-\epsilon m \leq \widehat{f}_{x} \leq f_{x}
$$

Same intuition, whenever we drop a copy of item x, we also drop $k-1$ copies of other items

Summary

- Simple deterministic algorithm to estimate heavy hitters
- Works only in the arrival model
- Proposed in 1982, rediscovered multiple times with modifications
- Our next lecture will discuss other algorithms

Space saving

Space Saving Algorithm

- Keep k counters and items in hand

Initialize:

- Set all counters to 0

Process (x)

- if x is same as any item in hand, increment its counter
- else if number of items $<k$, store x with counter $=1$
- else replace item with smallest counter by x, increment counter
Query (q)
- If q is in hand return its counter, else 0

Analysis

- Claim 1: All items with true count $>\epsilon m$ are present in hand at the end
- Claim 2: For every element x , the estimate \hat{f}_{x} satisfies:

$$
f_{x} \leq \hat{f}_{x} \leq f_{x}+\epsilon m
$$

Analysis

Claim 1: All items with true count $>\epsilon m$ are present in hand at the end

- Smallest counter value, \min, is at most ϵm
- Counters sum to m, by induction
- $1 / \epsilon$ counters, so average is ϵm, hence smallest is less
- True count of an uncounted item is between 0 and \min
- Proof by induction, true initially, min increases monotonically
- Consider last time the item was dropped

Counter based vs "sketch" based

- Counter based methods
- Misra-Gries, Space-Saving,
- Work for arrival only streams
- In practice somewhat more efficient: space, and especially update time
- Sketch based methods
- "Sketch" is informally defined as a "compact" data structure that allows both inserts and deletes
- Use hash functions to compute a linear transform of the input
- Work naturally for arrivals + departure

Count-Min Sketch

Count-min sketch

- Model input stream as a vector over U
$-f_{x}$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow[1, d]$

Count Min Sketch

Initialize

- Choose $h_{1}, . ., h_{w}, A[w, d] \leftarrow 0$

Process $(x, c):$

- For each $i \in[w], A\left[i, h_{i}(x)\right]+=c$

Query (q) :

- Return $\min _{i} A\left[i, h_{i}(x)\right]$

Example

-०००००००००००

	h1	h2
O	2	1
O	1	2
-	1	3
O	3	2

Guarantees

Space $=O(w d)$
Update time $=O(w)$

Each item is mapped to one bucket per row

Guarantees

$d=\frac{2}{\epsilon} \quad \mathrm{w}=\log \left(\frac{1}{\delta}\right)$
$Y_{1} \ldots . Y_{w}$ be the w estimates, i.e. $Y_{i}=A\left[i, h_{i}(x)\right], \quad \widehat{f_{x}}=\underset{i}{\min } Y_{i}$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

$$
E\left[Y_{i}\right]=\sum_{y: h_{i}(y)=h_{i}(x)} f_{y}=f_{x}+\epsilon\left(m-f_{x}\right) / 2
$$

Guarantees

$$
\mathrm{d}=\frac{2}{\epsilon} \quad \mathrm{w}=\log \left(\frac{1}{\delta}\right)
$$

$Y_{1} \ldots . Y_{w}$ be the w estimates, i.e. $Y_{i}=A\left[i, h_{i}(x)\right], \quad \widehat{f}_{x}=\min _{i} Y_{i}$
Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

$$
E\left[Y_{i}\right]=\sum_{y: h_{i}(y)=h_{i}(x)} f_{y}=f_{x}+\epsilon\left(m-f_{x}\right) / 2
$$

Applying Markov's inequality,

$$
\operatorname{Pr}\left[Y_{i}-f_{x}>\epsilon m\right] \leq \frac{\epsilon\left(m-f_{x}\right)}{2 \epsilon m} \leq \frac{1}{2}
$$

Guarantee

- Since we are taking minimum of $\log \left(\frac{1}{\delta}\right)$ such random variables,

$$
\operatorname{Pr}\left[\widehat{f}_{x}>f_{x}+\epsilon m\right] \leq 2^{-\log \left(\frac{1}{\delta}\right)} \leq \delta
$$

- Hence, with probability $1-\delta$, for any query x

$$
f_{x} \leq \widehat{f_{x}} \leq f_{x}+\epsilon m
$$

Count-Sketch

Review: Frequency Estimation

- Given input stream, length m, want a sketch that can answer frequency queries at the end
- For give item x, return an estimate of the frequency
- Algorithms seen
- Deterministic counter based algorithms: Misra-Gries, SpaceSaving
- Count-Min sketch

Recall: Count-min sketch

- Model input stream as a vector over U
- f_{x} is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow[1, d]$

Count-sketch

- Model input stream as a vector over U
- f_{x} is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_{i}: U \rightarrow[1, d]$
- w sign hash function, each maps $\mathrm{g}_{\mathrm{i}}: U \rightarrow\{-1,+1\}$

Count Sketch

Initialize

- Choose $h_{1}, . ., h_{w}, A[w, d] \leftarrow 0$

Process $(x, c):$

- For each $i \in[w], A\left[i, h_{i}(x)\right]+=c \times g_{i}(x)$

Query (q) :

- Return median $\left\{g_{i}(x) A\left[i, h_{i}(x)\right]\right\}$

Example

-०००००००००००

	h1,g1	h2,g2
\mathbf{O}	$2,+$	$1,+$
\mathbf{O}	$1,-$	$2,+$
\mathbf{O}	$2,-$	$3,-$

Guarantees

Space $=O(w d)$
Update time $=O(w)$

Each item is mapped to one bucket per row

Guarantees

- $\mathrm{d}=\frac{3}{\epsilon^{2}} \quad \mathrm{w}=\log \left(\frac{1}{\delta}\right)$
$Y_{1} \ldots . Y_{w}$ be the w estimates,
i.e. $Y_{i}=g_{i}(x) A\left[i, h_{i}(x)\right], \quad \widehat{f_{x}}=\underset{i}{\operatorname{median}} Y_{i}$

$$
E\left[Y_{i}\right]=E\left[g_{i}(x) A\left[i, h_{i}(x)\right]\right]=E\left[g_{i}(x) \sum_{h_{i}(y)=h_{i}(x)} f_{y} g_{i}(y)\right]
$$

Guarantees

$$
E\left[Y_{i}\right]=E\left[g_{i}(x) A\left[i, h_{i}(x)\right]\right]=E\left[g_{i}(x) \sum_{h_{i}(y)=h_{i}(x)} f_{y} g_{i}(y)\right]
$$

Notice that for $x \neq y, E\left[g_{i}(x) g_{i}(y)\right]=0!$

$$
E\left[Y_{i}\right]=g_{i}(x)^{2} f_{x}=f_{x}
$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

Variance analysis

Using simple algebra, as well as independence of hash functions,

$$
\operatorname{var}\left(Y_{i}\right)=\frac{\left(\sum_{y} f_{y}^{2}-f_{x}^{2}\right)}{d} \leq \frac{|f|_{2}^{2}}{d} \quad|f|_{2}^{2}=\sum_{x} f_{x}^{2}
$$

Using Chebyshev's inequality

$$
\operatorname{Pr}\left[\left|Y_{i}-f_{x}\right|>\epsilon|f|_{2}\right] \leq \frac{1}{d \epsilon^{2}} \leq \frac{1}{3} \quad d=\frac{3}{\epsilon^{2}}
$$

Finally, use analysis of median-trick with $w=\log \left(\frac{1}{\delta}\right)$

Final Guarantees

- Using space $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right) \log (n)\right)$, for any query x, we get an estimate, with prob $1-\delta$

$$
f_{x}-\epsilon|f|_{2} \leq f_{x} \leq f_{x}+\epsilon|f|_{2}
$$

Comparisons

Algorithm	$\widehat{f_{x}}-f_{x}$	Space $\times \log (n)$	Error prob	Model
Misra-Gries	$\left[-\epsilon\|f\|_{1}, 0\right]$	$1 / \epsilon$	0	Insert Only
SpaceSaving	$\left[0, \epsilon\|f\|_{1}\right]$	$1 / \epsilon$	0	Insert Only
CountMin	$\left[0, \epsilon\|f\|_{1}\right]$	$\log \left(\frac{1}{\delta}\right) / \epsilon$	δ	Insert+Delete, strict turnstile
CountSketch	$\left[-\epsilon\|f\|_{2}, \epsilon\|f\|_{2}\right]$	$\log \left(\frac{1}{\delta}\right) / \epsilon^{2}$	δ	Insert+Delete

Summary

- CM and Count Sketch to answer point queries about frequencies
- two user-defined parameters, ϵ and δ
- Linear sketch, hence can be combined across distributed streams
- Count Sketch handle departures naturally
- Even if-ve frequencies are present
- For CM, need strict turnstile
- Extensions to handle range queries and others...
- Actual performance much better than theoretical bound

References:

- Count-sketch:
- Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
- Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
- Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
- Moment estimation:
- Mining massive Datasets by Leskovec, Rajaraman, Ullman

References:

- Primary references for this lecture
- Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
- Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
- Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

