
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

• Data is seen as incoming sequence
– can be just element-ids, or ids +frequency updates

• Arrival only streams

• Arrival + departure
– Negative updates to frequencies possible
– Can represent fluctuating quantities, e.g. monitoring databases.

3

Frequency Estimation
• Given the input stream, answer queries about item

frequencies at the end
– Useful in many practical applications e.g. finding most popular pages

from website logs, detecting DoS attacks, database optimization

• Also used as subroutine in many problems
– Entropy estimation, TF-IDF, Language models etc

4

Frequency estimation in one pass
Q1. Can we create a data structure, sketch, sublinear in the data size to
answer all frequency queries exactly?

– No
Q2. Can we create a sketch to answer frequencies of the “most frequent”
elements exactly?

– No
Q3. Sketch to estimate frequencies of “most frequent” elements
approximately?

– YES!

5

Approximate Heavy Hitters

• Given an update stream of length 𝑚, find out all elements that occur
“frequently”
– e.g. at least 1% of the time
– cannot be done in sublinear space, one pass

• Find out elements that occur at least 𝜙𝑚 times, and none that appears
< (𝜙 − 𝜖)𝑚 times

– Error 𝜖
– Related question: estimate each frequency with error ±𝜖𝑚

6

Majority Algorithm
• Whether any item in a stream has majority at a given time:

– Strict majority: >N/2

• Arrivals only model

• Start with a counter set to zero
• For each item

– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter

7

Majority Algorithm

• Start with a counter set to zero

• For each item
– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter

• If there is a majority item, it is in hand at the end

• Proof: Since majority occurs > N/2 times, not all occurrences can be
cancelled out

8

Frequent count [Misra-Gries]

• Keep 𝑘 counters and items in hand

Initialize:
– Set all counters to 0

Process(𝑥)
– if 𝑥 is same as any item in hand, increment its counter
– else if number of items < 𝑘, store 𝑥 with counter = 1
– else drop 𝑥 and decrement all counters

Query(𝑞)
– If 𝑞 is in hand return its counter, else 0

9

Frequent count

• 𝑓. be the true frequency of element 𝑥

• At the end, some set of elements is stored with
counter values

• If 𝑞𝑢𝑒𝑟𝑦 𝑦 in hand, (𝑓/ = counter value, else (𝑓/ = 0

10

Theoretical Bound

Claim: No element with frequency > 𝑚/𝑘 is
missed at the end

Intuition: Each decrement (including drop) is
charged with 𝑘 arrivals. Therefore, will have
some copy of an item with frequency > 𝑚/𝑘

11

Stronger Claim

Choose 𝑘 = !
"
. For every item 𝑥, with frequency

𝑓# the algo can return an estimate)𝑓# such that

Same intuition, whenever we drop a copy of
item 𝑥, we also drop 𝑘 − 1 copies of other items

12

𝑓$ − 𝜖𝑚 ≤ &𝑓$ ≤ 𝑓$

Summary

• Simple deterministic algorithm to estimate heavy
hitters
– Works only in the arrival model

• Proposed in 1982, rediscovered multiple times with
modifications

• Our next lecture will discuss other algorithms

13

Space saving

Space Saving Algorithm
• Keep 𝑘 counters and items in hand

Initialize:
– Set all counters to 0

Process(𝑥)
– if 𝑥 is same as any item in hand, increment its counter
– else if number of items < 𝑘, store 𝑥 with counter = 1
– else replace item with smallest counter by 𝑥, increment

counter
Query(𝑞)
– If 𝑞 is in hand return its counter, else 0

15

Analysis
• Claim 1: All items with true count > 𝜖𝑚 are present in hand

at the end

• Claim 2: For every element x, the estimate 1𝑓$ satisfies:
𝑓$ ≤ 1𝑓$ ≤ 𝑓$ + 𝜖𝑚

16

Analysis
Claim 1: All items with true count > 𝜖𝑚 are present in hand at
the end

• Smallest counter value, 𝑚𝑖𝑛, is at most 𝜖𝑚
– Counters sum to 𝑚, by induction
– 1/𝜖 counters, so average is 𝜖𝑚, hence smallest is less

• True count of an uncounted item is between 0 and 𝑚𝑖𝑛
– Proof by induction, true initially, 𝑚𝑖𝑛 increases

monotonically
– Consider last time the item was dropped

17

Counter based vs “sketch” based

• Counter based methods
– Misra-Gries, Space-Saving, ….
– Work for arrival only streams
– In practice somewhat more efficient: space, and especially update time

• Sketch based methods
– “Sketch” is informally defined as a “compact” data structure that allows both inserts

and deletes
– Use hash functions to compute a linear transform of the input
– Work naturally for arrivals + departure

18

Count-Min Sketch

Count-min sketch

• Model input stream as a vector over 𝑈
– 𝑓. is the entry for dimension 𝑥

• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, each maps 𝑈 → [1, 𝑑]

20

w

d

Count Min Sketch
Initialize
– Choose ℎ1, . . , ℎ2, 𝐴 𝑤, 𝑑 ← 0

Process 𝑥, 𝑐 :
– For each 𝑖 ∈ 𝑤 , 𝐴 𝑖, ℎ3(𝑥) += 𝑐

Query 𝑞 :
– Return min

3
𝐴[𝑖, ℎ3(𝑥)]

21

22

Example

22

h1 h2

2 1

1 2

1 3

3 2

h1

h2

Guarantees

Space = 𝑂 𝑤𝑑
Update time = 𝑂(𝑤)

Each item is mapped to one bucket per row

23

𝑥, +𝑐

Guarantees

𝑑 =)
* w = log +

,

𝑌+… . 𝑌- be the 𝑤 estimates, i.e. 𝑌. = 𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = min 𝑌.
.

Each estimate &𝑓$ always satisfies &𝑓$ ≥ 𝑓$

𝐸 𝑌. = ∑/:1! / 21!($)𝑓/ = 𝑓$ + 𝜖 𝑚 − 𝑓$ /2

24

Guarantees
d =)

* w = log +
,

𝑌+… . 𝑌- be the 𝑤 estimates, i.e. 𝑌. = 𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = min 𝑌.
.

Each estimate &𝑓$ always satisfies &𝑓$ ≥ 𝑓$
𝐸 𝑌! = 6

":$! " %$!(')

𝑓" = 𝑓' + 𝜖 𝑚 − 𝑓' /2

Applying Markov’s inequality,

25

Pr 𝑌! − 𝑓' > 𝜖𝑚 ≤
𝜖 𝑚 − 𝑓'
2𝜖𝑚

≤
1
2

Guarantee

• Since we are taking minimum of log)
*

such random variables,

• Hence, with probability 1 − 𝛿, for any query 𝑥

26

Pr B𝑓' > 𝑓' + 𝜖𝑚 ≤ 2+ ,-.
)
* ≤ 𝛿

𝑓' ≤ B𝑓' ≤ 𝑓' + 𝜖𝑚

Count-Sketch

Review: Frequency Estimation

• Given input stream, length 𝑚, want a sketch that can answer
frequency queries at the end
– For give item 𝑥, return an estimate of the frequency

• Algorithms seen
– Deterministic counter based algorithms: Misra-Gries, SpaceSaving
– Count-Min sketch

28

Recall: Count-min sketch

• Model input stream as a vector over 𝑈
– 𝑓$ is the entry for dimension 𝑥

• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, each maps 𝑈 → [1, 𝑑]

29

Count-sketch
• Model input stream as a vector over 𝑈

– 𝑓' is the entry for dimension 𝑥
• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, ℎ!: 𝑈 → [1, 𝑑]
• 𝑤 sign hash function, each maps g/: 𝑈 → {−1,+1}

30

Count Sketch

Initialize
– Choose ℎ1, . . , ℎ2, 𝐴 𝑤, 𝑑 ← 0

Process 𝑥, 𝑐 :
– For each 𝑖 ∈ 𝑤 , 𝐴 𝑖, ℎ3 (𝑥) += 𝑐×𝑔3(𝑥)

Query 𝑞 :
– Return median{𝑔3 𝑥 𝐴 𝑖, ℎ3 𝑥 }

31

32

Example

32

h1,g1 h2,g2

2,+ 1,+

3,- 2,+

1,+ 3,-

2,- 3,+

h1

h2

Guarantees

Space = 𝑂 𝑤𝑑
Update time = 𝑂(𝑤)

Each item is mapped to one bucket per row

33

𝑥, +𝑐

Guarantees

• d= 5
*" w = log +

,

𝑌+… . 𝑌- be the 𝑤 estimates,
i.e. 𝑌. = 𝑔.(𝑥)𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = median 𝑌.

.

𝐸 𝑌. = 𝐸 𝑔. 𝑥 𝐴 𝑖, ℎ. 𝑥 = 𝐸 𝑔. 𝑥 M
1! / 21! $

𝑓/ 𝑔. 𝑦

34

Guarantees

𝐸 𝑌. = 𝐸 𝑔. 𝑥 𝐴 𝑖, ℎ. 𝑥 = 𝐸 𝑔. 𝑥 M
1! / 21! $

𝑓/ 𝑔. 𝑦

Notice that for 𝑥 ≠ 𝑦 , 𝐸 𝑔. 𝑥 𝑔. 𝑦 = 0 !

𝐸 𝑌. = 𝑔. 𝑥)𝑓$ = 𝑓$

We analyse the variance in order to bound the error
For simplicity assume hash functions all independent

35

Variance analysis

Using simple algebra, as well as independence of hash functions,

𝑣𝑎𝑟 𝑌. =
∑/ 𝑓/) − 𝑓$)

𝑑
≤

𝑓)
)

𝑑
Using Chebyshev’s inequality

Pr 𝑌. − 𝑓$ > 𝜖 𝑓) ≤
1
𝑑𝜖)

≤
1
3

Finally, use analysis of median-trick with 𝑤 = log +
,

36

𝑑 =
3
𝜖0

𝑓 !
! =8

"

𝑓"!

Final Guarantees

• Using space 𝑂 1
P!
log 1

Q
log(𝑛) , for any query

𝑥, we get an estimate, with prob 1 − 𝛿

37

𝑓$ − 𝜖 𝑓) ≤ 𝑓$ ≤ 𝑓$ + 𝜖 𝑓)

Comparisons

38

Algorithm !𝒇𝒙 − 𝒇𝒙 Space ×𝒍𝒐𝒈(𝒏) Error prob Model

Misra-Gries [−𝜖 𝑓 ", 0] 1/𝜖 0 Insert Only

SpaceSaving [0, 𝜖 𝑓 "] 1/𝜖 0 Insert Only

CountMin [0, 𝜖 𝑓 "] log
1
𝛿 /𝜖 𝛿 Insert+Delete,

strict turnstile

CountSketch [−𝜖 𝑓 #, 𝜖 𝑓 #] log
1
𝛿 /𝜖# 𝛿 Insert+Delete

Summary

• CM and Count Sketch to answer point queries about frequencies
– two user-defined parameters, 𝜖 and 𝛿
– Linear sketch, hence can be combined across distributed streams

• Count Sketch handle departures naturally
– Even if –ve frequencies are present
– For CM, need strict turnstile

• Extensions to handle range queries and others…
• Actual performance much better than theoretical bound

39

51

References:

• Count-sketch:
• Lecture slides by Graham Cormode

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
• Lecture notes by Amit Chakrabarti:

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
• Sketch techniques for approximate query processing, Graham Cormode.

http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

• Moment estimation:
• Mining massive Datasets by Leskovec, Rajaraman, Ullman

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

67

References:

• Primary references for this lecture
• Lecture slides by Graham Cormode

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
• Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-

streams-lecnotes.pdf
• Sketch techniques for approximate query processing, Graham Cormode.

http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

