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Frequent count



Streaming model revisited

• Data is seen as incoming sequence
– can be just element-ids, or ids +frequency updates

• Arrival only streams

• Arrival + departure
– Negative updates to frequencies possible
– Can represent fluctuating quantities, e.g. monitoring databases. 
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Frequency Estimation
• Given the input stream, answer queries about item 

frequencies at the end
– Useful in many practical applications e.g. finding most popular pages 

from website logs, detecting DoS attacks, database optimization

• Also used as subroutine in many problems
– Entropy estimation, TF-IDF, Language models etc
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Frequency estimation in one pass
Q1. Can we create a data structure, sketch, sublinear in the data size to 
answer all frequency queries exactly?

– No
Q2. Can we create a sketch to answer frequencies of the “most frequent” 
elements exactly? 

– No
Q3. Sketch to estimate frequencies of “most frequent” elements 
approximately?

– YES!
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Approximate Heavy Hitters

• Given an update stream of length 𝑚, find out all elements that occur 
“frequently”
– e.g. at least 1% of the time
– cannot be done in sublinear space, one pass

• Find out elements that occur at least 𝜙𝑚 times, and none that appears 
< (𝜙 − 𝜖)𝑚 times

– Error 𝜖
– Related question: estimate each frequency with error ±𝜖𝑚
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Majority Algorithm
• Whether any item in a stream has majority at a given time:

– Strict majority: >N/2

• Arrivals only model

• Start with a counter set to zero
• For each item

– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter
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Majority Algorithm

• Start with a counter set to zero

• For each item
– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter

• If there is a majority item, it is in hand at the end

• Proof: Since majority occurs > N/2 times, not all occurrences can be 
cancelled out
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Frequent count [Misra-Gries]

• Keep 𝑘 counters and items in hand

Initialize:
– Set all counters to 0

Process(𝑥)
– if 𝑥 is same as any item in hand, increment its counter
– else if number of items < 𝑘, store 𝑥 with counter = 1
– else drop 𝑥 and decrement all counters  

Query(𝑞)
– If 𝑞 is in hand return its counter, else 0
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Frequent count

• 𝑓. be the true frequency of element 𝑥

• At the end, some set of elements is stored with 
counter values

• If 𝑞𝑢𝑒𝑟𝑦 𝑦 in hand, (𝑓/ = counter value, else (𝑓/ = 0
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Theoretical Bound

Claim: No element with frequency > 𝑚/𝑘 is 
missed at the end

Intuition: Each decrement (including drop) is 
charged with 𝑘 arrivals. Therefore, will have 
some copy of an item with frequency > 𝑚/𝑘
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Stronger Claim

Choose 𝑘 = !
"
. For every item 𝑥, with frequency 

𝑓# the algo can return an estimate )𝑓# such that

Same intuition, whenever we drop a copy of 
item 𝑥, we also drop 𝑘 − 1 copies of other items 
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𝑓$ − 𝜖𝑚 ≤ &𝑓$ ≤ 𝑓$



Summary

• Simple deterministic algorithm to estimate heavy 
hitters
– Works only in the arrival model

• Proposed in 1982, rediscovered multiple times with 
modifications

• Our next lecture will discuss other algorithms 
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Space saving



Space Saving Algorithm
• Keep 𝑘 counters and items in hand

Initialize:
– Set all counters to 0

Process(𝑥)
– if 𝑥 is same as any item in hand, increment its counter
– else if number of items < 𝑘, store 𝑥 with counter = 1
– else replace item with smallest counter by 𝑥, increment 

counter
Query(𝑞)
– If 𝑞 is in hand return its counter, else 0
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Analysis
• Claim 1: All items with true count > 𝜖𝑚 are present in hand 

at the end

• Claim 2: For every element x, the estimate 1𝑓$ satisfies:
𝑓$ ≤ 1𝑓$ ≤ 𝑓$ + 𝜖𝑚
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Analysis
Claim 1: All items with true count > 𝜖𝑚 are present in hand at 
the end

• Smallest counter value, 𝑚𝑖𝑛, is at most 𝜖𝑚
– Counters sum to 𝑚, by induction
– 1/𝜖 counters, so average is 𝜖𝑚, hence smallest is less

• True count of an uncounted item is between 0 and 𝑚𝑖𝑛
– Proof by induction, true initially, 𝑚𝑖𝑛 increases 

monotonically
– Consider last time the item was dropped
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Counter based vs “sketch” based

• Counter based methods
– Misra-Gries, Space-Saving, ….
– Work for arrival only streams
– In practice somewhat more efficient: space, and especially update time

• Sketch based methods
– “Sketch” is informally defined as a “compact” data structure that allows both inserts 

and deletes
– Use hash functions to compute a linear transform of the input
– Work naturally for arrivals + departure
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Count-Min Sketch



Count-min sketch

• Model input stream as a vector over 𝑈
– 𝑓. is the entry for dimension 𝑥

• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, each maps 𝑈 → [1, 𝑑]
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Count Min Sketch
Initialize
– Choose ℎ1, . . , ℎ2,  𝐴 𝑤, 𝑑 ← 0

Process 𝑥, 𝑐 :
– For each 𝑖 ∈ 𝑤 , 𝐴 𝑖, ℎ3(𝑥) += 𝑐

Query 𝑞 :
– Return min

3
𝐴[𝑖, ℎ3(𝑥)]
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Example
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Guarantees

Space = 𝑂 𝑤𝑑
Update time = 𝑂(𝑤)

Each item is mapped to one bucket per row
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Guarantees

𝑑 = )
* w = log +

,

𝑌+… . 𝑌- be the 𝑤 estimates, i.e. 𝑌. = 𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = min 𝑌.
.

Each estimate &𝑓$ always satisfies &𝑓$ ≥ 𝑓$

𝐸 𝑌. = ∑/:1! / 21!($)𝑓/ = 𝑓$ + 𝜖 𝑚 − 𝑓$ /2
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Guarantees
d = )

* w = log +
,

𝑌+… . 𝑌- be the 𝑤 estimates, i.e. 𝑌. = 𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = min 𝑌.
.

Each estimate &𝑓$ always satisfies &𝑓$ ≥ 𝑓$
𝐸 𝑌! = 6

":$! " %$!(')

𝑓" = 𝑓' + 𝜖 𝑚 − 𝑓' /2

Applying Markov’s inequality,  
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Pr 𝑌! − 𝑓' > 𝜖𝑚 ≤
𝜖 𝑚 − 𝑓'
2𝜖𝑚

≤
1
2



Guarantee

• Since we are taking minimum of log )
*

such random variables,  

• Hence, with probability 1 − 𝛿, for any query 𝑥
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Pr B𝑓' > 𝑓' + 𝜖𝑚 ≤ 2+ ,-.
)
* ≤ 𝛿

𝑓' ≤ B𝑓' ≤ 𝑓' + 𝜖𝑚



Count-Sketch



Review: Frequency Estimation

• Given input stream, length 𝑚, want a sketch that can answer 
frequency queries at the end
– For give item 𝑥, return an estimate of the frequency

• Algorithms seen
– Deterministic counter based algorithms: Misra-Gries, SpaceSaving
– Count-Min sketch
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Recall: Count-min sketch

• Model input stream as a vector over 𝑈
– 𝑓$ is the entry for dimension 𝑥

• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, each maps 𝑈 → [1, 𝑑]
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Count-sketch
• Model input stream as a vector over 𝑈

– 𝑓' is the entry for dimension 𝑥
• Creates a small summary 𝑤×𝑑
• Use 𝑤 hash functions, ℎ!: 𝑈 → [1, 𝑑]
• 𝑤 sign hash function, each maps g/: 𝑈 → {−1,+1}
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Count Sketch

Initialize
– Choose ℎ1, . . , ℎ2,  𝐴 𝑤, 𝑑 ← 0

Process 𝑥, 𝑐 :
– For each 𝑖 ∈ 𝑤 , 𝐴 𝑖, ℎ3 (𝑥) += 𝑐×𝑔3(𝑥)

Query 𝑞 :
– Return median{𝑔3 𝑥 𝐴 𝑖, ℎ3 𝑥 }
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Example
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Guarantees

Space = 𝑂 𝑤𝑑
Update time = 𝑂(𝑤)

Each item is mapped to one bucket per row
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Guarantees

• d= 5
*" w = log +

,

𝑌+… . 𝑌- be the 𝑤 estimates,
i.e. 𝑌. = 𝑔.(𝑥)𝐴 𝑖, ℎ. 𝑥 , &𝑓$ = median 𝑌.

.

𝐸 𝑌. = 𝐸 𝑔. 𝑥 𝐴 𝑖, ℎ. 𝑥 = 𝐸 𝑔. 𝑥 M
1! / 21! $

𝑓/ 𝑔. 𝑦
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Guarantees

𝐸 𝑌. = 𝐸 𝑔. 𝑥 𝐴 𝑖, ℎ. 𝑥 = 𝐸 𝑔. 𝑥 M
1! / 21! $

𝑓/ 𝑔. 𝑦

Notice that for 𝑥 ≠ 𝑦 , 𝐸 𝑔. 𝑥 𝑔. 𝑦 = 0 !

𝐸 𝑌. = 𝑔. 𝑥 )𝑓$ = 𝑓$

We analyse the variance in order to bound the error 
For simplicity assume hash functions all independent
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Variance analysis

Using simple algebra, as well as independence of hash functions, 

𝑣𝑎𝑟 𝑌. =
∑/ 𝑓/) − 𝑓$)

𝑑
≤

𝑓 )
)

𝑑
Using Chebyshev’s inequality

Pr 𝑌. − 𝑓$ > 𝜖 𝑓 ) ≤
1
𝑑𝜖)

≤
1
3

Finally, use analysis of median-trick  with 𝑤 = log +
,
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Final Guarantees

• Using space 𝑂 1
P!
log 1

Q
log(𝑛) , for any query 

𝑥, we get an estimate, with prob 1 − 𝛿
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𝑓$ − 𝜖 𝑓 ) ≤ 𝑓$ ≤ 𝑓$ + 𝜖 𝑓 )



Comparisons
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Algorithm !𝒇𝒙 − 𝒇𝒙 Space ×𝒍𝒐𝒈(𝒏) Error prob Model

Misra-Gries [−𝜖 𝑓 ", 0] 1/𝜖 0 Insert Only

SpaceSaving [0, 𝜖 𝑓 "] 1/𝜖 0 Insert Only

CountMin [0, 𝜖 𝑓 "] log
1
𝛿 /𝜖 𝛿 Insert+Delete,

strict turnstile

CountSketch [−𝜖 𝑓 #, 𝜖 𝑓 #] log
1
𝛿 /𝜖# 𝛿 Insert+Delete



Summary

• CM and Count Sketch to answer point queries about frequencies
– two user-defined parameters, 𝜖 and 𝛿
– Linear sketch, hence can be combined across distributed streams

• Count Sketch handle departures naturally
– Even if –ve frequencies are present
– For CM, need strict turnstile

• Extensions to handle range queries and others…
• Actual performance much better than theoretical bound
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References:

• Count-sketch:
• Lecture slides by Graham Cormode

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
• Lecture notes by Amit Chakrabarti: 

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
• Sketch techniques for approximate query processing, Graham Cormode. 

http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

• Moment estimation:
• Mining massive Datasets by Leskovec, Rajaraman, Ullman

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
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