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Data Streams
• In many data mining situations, we do not know the entire data 

set in advance

• Stream Management is important when the input rate is controlled 
externally:
– Google Trends
– Twitter or Facebook status updates

• We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)
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The Stream Model

• Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
– We call elements of the stream tuples

• The system cannot store the entire stream 
accessibly

• Q: How do you make critical calculations about 
the stream using a limited amount of 
(secondary) memory?



General Stream Processing Model
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Reservoir Sampling



Maintaining a fixed-size sample

• Problem: Fixed-size sample
• Suppose we need to maintain a random

sample S of size exactly s tuples
– E.g., main memory size constraint

• Why? Don’t know length of stream in advance
• Suppose at time n we have seen n items

– Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



• Algorithm (a.k.a. Reservoir Sampling)
– Store all the first s elements of the stream to S
– Suppose we have seen n-1 elements, and now 

the nth element arrives (n > s)
• With probability s/n, keep the nth element, else discard it
• If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

• Claim: This algorithm maintains a sample S
with the desired property:
– After n elements, the sample contains each element seen 

so far with probability s/n

Solution: Fixed Size Sample



Proof: By Induction

• We prove this by induction:
– Assume that after n elements, the sample contains each 

element seen so far with probability s/n
– We need to show that after seeing element n+1 the 

sample maintains the property
• Sample contains each element seen so far with probability s/(n+1)

• Base case:
– After we see n=s elements the sample S has the desired 

property
• Each out of n=s elements is in the sample with probability s/s = 1



Proof: By Induction
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Bloom Filters



Querying Set Membership
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ISBN present in collection?

IP seen by switch?

10.0.21.102



Exact Solutions
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• Universe 𝑈, but need to store a set of 𝑛 items, 𝑛 ≪
|𝑈|.

• Hash table of size 𝑚:
– Space 𝑂(𝑚 + 𝑛 log 𝑈 )
– Query time 𝑂(!

"
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Exact Solutions
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• Universe 𝑈, but need to store a set of 𝑛 items, 𝑛 ≪
|𝑈|.

• Hash table of size 𝑚:
– Space 𝑂(𝑚 + 𝑛 log 𝑈 )
– Query time 𝑂(!

"
)

• Bit array of size |𝑈|
– Space |𝑈|.
– Query time 𝑂(1).



Querying, Monte Carlo style
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Bloom filter
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[Bloom, 1970]



Bloom filter

17



Operations
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Bloom Filter

19



Bloom Filter
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Designing Bloom Filter
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Effect of number of hash functions
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False positive analysis
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False positive analysis
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False positive analysis
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• Probability of a bit being zero:

𝑃 𝐵! = 0 = 1 −
1
𝑚

"#

≈ 𝑒$
"#
%

• The expected number of zero bits is given by: 
𝑚𝑒$"#/%.

• 𝑃 𝑙𝑜𝑜𝑘𝑢𝑝 𝐵, 𝑥 = 𝑃𝑅𝐸𝑆𝐸𝑁𝑇 = 1 − 𝑒$
!"
#

"

• We can choose 𝑘 to minimize this probability.



Choosing number of hash 
functions
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Bloom filter design
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Applications

• Widespread applications whenever small false positives are 
tolerable

• Used by browsers
– to decide whether an URL is potentially malicious: a BF is used in browser, and 

positives are actually checked with the server. 

• Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF 
to avoid disk lookups for non-existent rows/columns

• Bitcoin for wallet synchronization….
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Handling deletions
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[Fan et al 00]



CUCKOO FILTERS 

Slides taken from 



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x): 
– add Fingerprint(x) to hash table

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x): 
– add Fingerprint(x) to hash table

• Lookup(x): 
– search Fingerprint(x) in hashtable

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)

Lookup(x) = found



Basic Idea: Store Fingerprints in Hash Table
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• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x): 
– add Fingerprint(x) to hash table

• Lookup(x): 
– search Fingerprint(x) in hashtable

• Delete(x): 
– remove Fingerprint(x) from hashtable

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)

Delete(x)

How to Construct Hashtable?
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• Perfect hashing: maps all items with no collisions

FP(e)
FP(c)
FP(d)

FP(b)

FP(f)
FP(a)

{a, b, c, d, e, f}
f(x)

(Minimal) Perfect Hashing: 
No Collision but Update is Expensive



• Perfect hashing: maps all items with no collisions

• Changing set must recalculate f è
high cost/bad performance of update
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{a, b, c, d, e, f}
f(x)

(Minimum) Perfect Hashing: 
No Collision but Update is Expensive

{a, b, c, d, e, g}
f(x) = ?

FP(e)
FP(c)
FP(d)

FP(b)

FP(f)
FP(a)



Convention Hash Table: High Space Cost

• Chaining :

• Pointers è
low space utilization

• Linear Probing

• Making lookups O(1) requires large 
% table empty è
low space utilization

• Compare multiple fingerprints 
sequentially è
more false positives
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bkt1
bkt2
bkt3 FP(a)

bkt0

FP(c)
FP(d)

FP(a)
Lookup(x)

Lookup(x)

FP(c)

FP(f)
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Standard Cuckoo Requires Storing Each 
Item 

b

0:
1:
2:
3:

c

a
5:
6:
7:

4:
Insert(x)

h1(x)

h2(x)
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Standard Cuckoo Requires Storing Each 
Item 

b

0:
1:
2:
3:

c

x
5:
6:
7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4h2(x)



Standard Cuckoo Requires Storing Each 
Item 

b

0:
1:
2:
3:

a

x
5:
6:
7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)



Standard Cuckoo Requires Storing Each 
Item 

c
b

0:
1:
2:
3:

a

x
5:
6:
7:

4:
Insert(x)

Insert complete
(or fail if MaxSteps reached)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)



Challenge: How to Perform Cuckoo?
• Cuckoo hashing requires rehashing and displacing existing 

items

With only fingerprint, 
how to calculate item’s alternate bucket?

FP(b)

0:
1:
2:
3:

FP(c)

FP(a)
5:
6:
7:

4:
Kick FP(a) to which bucket?

Kick FP(c) to which bucket?



Partial-Key Cuckoo
• Standard Cuckoo Hashing: two independent 

hash functions for two buckets

• Partial-key Cuckoo Hashing: use one bucket 
and fingerprint to derive the other [Fan2013]

To displace existing fingerprint:
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bucket1 = hash(x) 

bucket2 = bucket1     hash(FP(x))

bucket1 = hash1(x) 

bucket2 = hash2(x)

alternate(x) = current(x)   hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache
with Dumber Caching and Smarter Hashing



Partial Key Cuckoo Hashing
• Perform cuckoo hashing on fingerprints
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FP(b)

0:
1:
2:
3:

FP(c)

FP(a)
5:
6:
7:

4:
Kick FP(a) to “6      hash(FP(a))”

Kick FP(c) to “4      hash(FP(c))”

Can we still achieve high space utilization 
with partial-key cuckoo hashing?



Cuckoo Filter Insertion



Cuckoo Filter Lookup



Cuckoo Filter Deletion
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• Fingerprint must be Ω(logn/b) bits in theory
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Semi-Sorting: Further Save 1 bit/item
• Based on observation:

– A monotonic sequence of integers is easier to compress[Bonomi2006]

• Semi-Sorting:
– Sort fingerprints sorted in each bucket
– Compress sorted fingerprints

+ For 4-way bucket, save one bit per item 
-- Slower lookup / insert
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21 97 88 04
fingerprints
in a bucket 

04 21 88 97
Sort 

fingerprints
Easier to compress

[Bonomi2006] Beyond Bloom filters: From approximate membership checks to ap-
proximate state machines.
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ε: target false positive rate
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ε: target false positive rate
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ε: target false positive rate
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Space Efficiency 
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ε: target false positive rate
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Lookup Performance (MOPS) 

Cuckoo filter is among the fastest regardless workloads.
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Insert Performance (MOPS)
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Cuckoo filter has decreasing insert rate, but overall 
is only slower than blocked Bloom filter.

Cuckoo

Blocked Bloom

d-left Bloom

Cuckoo +
semisorting

Standard Bloom
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