
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Data Streams
• In many data mining situations, we do not know the entire data

set in advance

• Stream Management is important when the input rate is controlled
externally:
– Google Trends
– Twitter or Facebook status updates

• We can think of the data as infinite and
non-stationary (the distribution changes
over time)

2

The Stream Model

• Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
– We call elements of the stream tuples

• The system cannot store the entire stream
accessibly

• Q: How do you make critical calculations about
the stream using a limited amount of
(secondary) memory?

General Stream Processing Model

Processor

Limited
Working
Storage

. . . 1, 5, 2, 7, 0, 9, 3

. . . a, r, v, t, y, h, b

. . . 0, 0, 1, 0, 1, 1, 0
time

Streams Entering.
Each is stream is

composed of
elements/tuples

Ad-Hoc
Queries

Output

Archival
Storage

Standing
Queries

Reservoir Sampling

Maintaining a fixed-size sample

• Problem: Fixed-size sample
• Suppose we need to maintain a random

sample S of size exactly s tuples
– E.g., main memory size constraint

• Why? Don’t know length of stream in advance
• Suppose at time n we have seen n items

– Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

• Algorithm (a.k.a. Reservoir Sampling)
– Store all the first s elements of the stream to S
– Suppose we have seen n-1 elements, and now

the nth element arrives (n > s)
• With probability s/n, keep the nth element, else discard it
• If we picked the nth element, then it replaces one of the

s elements in the sample S, picked uniformly at random

• Claim: This algorithm maintains a sample S
with the desired property:
– After n elements, the sample contains each element seen

so far with probability s/n

Solution: Fixed Size Sample

Proof: By Induction

• We prove this by induction:
– Assume that after n elements, the sample contains each

element seen so far with probability s/n
– We need to show that after seeing element n+1 the

sample maintains the property
• Sample contains each element seen so far with probability s/(n+1)

• Base case:
– After we see n=s elements the sample S has the desired

property
• Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the
sample not picked

Bloom Filters

Querying Set Membership

12

ISBN present in collection?

IP seen by switch?

10.0.21.102

Exact Solutions

13

• Universe 𝑈, but need to store a set of 𝑛 items, 𝑛 ≪
|𝑈|.

• Hash table of size 𝑚:
– Space 𝑂(𝑚 + 𝑛 log 𝑈)
– Query time 𝑂(!

"
)

Exact Solutions

14

• Universe 𝑈, but need to store a set of 𝑛 items, 𝑛 ≪
|𝑈|.

• Hash table of size 𝑚:
– Space 𝑂(𝑚 + 𝑛 log 𝑈)
– Query time 𝑂(!

"
)

• Bit array of size |𝑈|
– Space |𝑈|.
– Query time 𝑂(1).

Querying, Monte Carlo style

15

Bloom filter

16

[Bloom, 1970]

Bloom filter

17

Operations

18

Bloom Filter

19

Bloom Filter

20

Designing Bloom Filter

21

Effect of number of hash functions

22

False positive analysis

23

False positive analysis

24

False positive analysis

25

• Probability of a bit being zero:

𝑃 𝐵! = 0 = 1 −
1
𝑚

"#

≈ 𝑒$
"#
%

• The expected number of zero bits is given by:
𝑚𝑒$"#/%.

• 𝑃 𝑙𝑜𝑜𝑘𝑢𝑝 𝐵, 𝑥 = 𝑃𝑅𝐸𝑆𝐸𝑁𝑇 = 1 − 𝑒$
!"
#

"

• We can choose 𝑘 to minimize this probability.

Choosing number of hash
functions

26

Bloom filter design

27

Applications

• Widespread applications whenever small false positives are
tolerable

• Used by browsers
– to decide whether an URL is potentially malicious: a BF is used in browser, and

positives are actually checked with the server.

• Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF
to avoid disk lookups for non-existent rows/columns

• Bitcoin for wallet synchronization….

28

Handling deletions

29

[Fan et al 00]

CUCKOO FILTERS

Slides taken from

Basic Idea: Store Fingerprints in Hash Table

31

• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

Basic Idea: Store Fingerprints in Hash Table

32

• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x):
– add Fingerprint(x) to hash table

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)

Basic Idea: Store Fingerprints in Hash Table

33

• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x):
– add Fingerprint(x) to hash table

• Lookup(x):
– search Fingerprint(x) in hashtable

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)

Lookup(x) = found

Basic Idea: Store Fingerprints in Hash Table

34

• Fingerprint(x): A hash value of x
– Lower false positive rate ε, longer fingerprint

• Insert(x):
– add Fingerprint(x) to hash table

• Lookup(x):
– search Fingerprint(x) in hashtable

• Delete(x):
– remove Fingerprint(x) from hashtable

FP(a)

0:
1:
2:
3:

FP(c)

FP(b)
5:
6:
7:

4:

FP(x)

Delete(x)

How to Construct Hashtable?

35

• Perfect hashing: maps all items with no collisions

FP(e)
FP(c)
FP(d)

FP(b)

FP(f)
FP(a)

{a, b, c, d, e, f}
f(x)

(Minimal) Perfect Hashing:
No Collision but Update is Expensive

• Perfect hashing: maps all items with no collisions

• Changing set must recalculate f è
high cost/bad performance of update

36

{a, b, c, d, e, f}
f(x)

(Minimum) Perfect Hashing:
No Collision but Update is Expensive

{a, b, c, d, e, g}
f(x) = ?

FP(e)
FP(c)
FP(d)

FP(b)

FP(f)
FP(a)

Convention Hash Table: High Space Cost

• Chaining :

• Pointers è
low space utilization

• Linear Probing

• Making lookups O(1) requires large
% table empty è
low space utilization

• Compare multiple fingerprints
sequentially è
more false positives

37

bkt1
bkt2
bkt3 FP(a)

bkt0

FP(c)
FP(d)

FP(a)
Lookup(x)

Lookup(x)

FP(c)

FP(f)

39

Standard Cuckoo Requires Storing Each
Item

b

0:
1:
2:
3:

c

a
5:
6:
7:

4:
Insert(x)

h1(x)

h2(x)

40

Standard Cuckoo Requires Storing Each
Item

b

0:
1:
2:
3:

c

x
5:
6:
7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4h2(x)

Standard Cuckoo Requires Storing Each
Item

b

0:
1:
2:
3:

a

x
5:
6:
7:

4:
Insert(x)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)

Standard Cuckoo Requires Storing Each
Item

c
b

0:
1:
2:
3:

a

x
5:
6:
7:

4:
Insert(x)

Insert complete
(or fail if MaxSteps reached)

Rehash a: alternate(a) = 4
Kick a to bucket 4

Rehash c: alternate(c) = 1
Kick c to bucket 1

h2(x)

Challenge: How to Perform Cuckoo?
• Cuckoo hashing requires rehashing and displacing existing

items

With only fingerprint,
how to calculate item’s alternate bucket?

FP(b)

0:
1:
2:
3:

FP(c)

FP(a)
5:
6:
7:

4:
Kick FP(a) to which bucket?

Kick FP(c) to which bucket?

Partial-Key Cuckoo
• Standard Cuckoo Hashing: two independent

hash functions for two buckets

• Partial-key Cuckoo Hashing: use one bucket
and fingerprint to derive the other [Fan2013]

To displace existing fingerprint:

44

bucket1 = hash(x)

bucket2 = bucket1 hash(FP(x))

bucket1 = hash1(x)

bucket2 = hash2(x)

alternate(x) = current(x) hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache
with Dumber Caching and Smarter Hashing

Partial Key Cuckoo Hashing
• Perform cuckoo hashing on fingerprints

45

FP(b)

0:
1:
2:
3:

FP(c)

FP(a)
5:
6:
7:

4:
Kick FP(a) to “6 hash(FP(a))”

Kick FP(c) to “4 hash(FP(c))”

Can we still achieve high space utilization
with partial-key cuckoo hashing?

Cuckoo Filter Insertion

Cuckoo Filter Lookup

Cuckoo Filter Deletion

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

α
: l

oa
d

fa
ct

or

f: fingerprint size in bits

Fingerprints Must Be “Long” for Space Efficiency

• Fingerprint must be Ω(logn/b) bits in theory
– n: hash table size, b: bucket size

When fingerprint > 5 bits,
high table space utilization

Ta
bl

e
Sp

ac
e

U
til

iz
at

io
n

Table size: n=128 million entries

Semi-Sorting: Further Save 1 bit/item
• Based on observation:

– A monotonic sequence of integers is easier to compress[Bonomi2006]

• Semi-Sorting:
– Sort fingerprints sorted in each bucket
– Compress sorted fingerprints

+ For 4-way bucket, save one bit per item
-- Slower lookup / insert

50

21 97 88 04
fingerprints
in a bucket

04 21 88 97
Sort

fingerprints
Easier to compress

[Bonomi2006] Beyond Bloom filters: From approximate membership checks to ap-
proximate state machines.

 0

 5

 10

 15

 20

 25

0.001% 0.01% 0.1% 1% 10%

Space Efficiency

51

ε: target false positive rate

bi
ts

 p
er

 it
em

 to
 a

ch
ie

ve
 ε

Lower bound

More Space

More False Positive

 0

 5

 10

 15

 20

 25

0.001% 0.01% 0.1% 1% 10%

Space Efficiency

52

ε: target false positive rate

bi
ts

 p
er

 it
em

 to
 a

ch
ie

ve
 ε

Bloom filter

Lower bound

More Space

More False Positive

 0

 5

 10

 15

 20

 25

0.001% 0.01% 0.1% 1% 10%

Space Efficiency

53

ε: target false positive rate

bi
ts

 p
er

 it
em

 to
 a

ch
ie

ve
 ε Cuckoo filter

Bloom filter

Lower bound

More Space

More False Positive

Space Efficiency

54

ε: target false positive rate

bi
ts

 p
er

 it
em

 to
 a

ch
ie

ve
 ε

Cuckoo filter +
semisorting

more compact
than Bloom filter
at 3%

Cuckoo filter

Bloom filter

Lower bound

More Space

More False Positive
 0

 5

 10

 15

 20

 25

0.001% 0.01% 0.1% 1% 10%

Lookup Performance (MOPS)

Cuckoo filter is among the fastest regardless workloads.

11.93

6.28

7.96
9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +
semisort

blocked
Bloom

(no deletion)

Bloom
(no deletion)

d-left counting
Bloom

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

in
se

rt
 t

p
u

t
(M

O
P

S
)

α: table occupancy

Insert Performance (MOPS)

56

Cuckoo filter has decreasing insert rate, but overall
is only slower than blocked Bloom filter.

Cuckoo

Blocked Bloom

d-left Bloom

Cuckoo +
semisorting

Standard Bloom

57

References:
• Mining massive Datasets by Leskovec, Rajaraman, Ullman, Chapter 4.

• Primary reference for this lecture
• Survey on Bloom Filter, Broder and Mitzenmacher 2005,

https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf

• Others
• Randomized Algorithms by Mitzenmacher and Upfal.

https://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf

