
CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya



Much of ML is optimization
Linear Classification Maximum Likelihood

K-Means

argmax
✓

nX

i=1

log p✓(xi)

arg min
µ1,µ2,. . . ,µk

J(µ) =
kX

j=1

X

i2Cj

||xi � µj ||2

argmin
w

nX

i=1

||w||2 + C
nX

i=1

⇠i

s.t. 1� yix
T
i w  ⇠i

⇠i � 0

2



Stochastic optimization
• Goal of machine learning :

– Minimize expected loss

given samples

• This is Stochastic Optimization
– Assume loss function is convex

3



Batch (sub)gradient descent for ML
• Process all examples together in each step

• Entire training set examined at each step
• Very slow when n is very large

4



Stochastic (sub)gradient descent
• “Optimize” one example at a time
• Choose examples randomly (or reorder and 

choose in order)
– Learning representative of example distribution

5



Stochastic (sub)gradient descent

• Equivalent to online learning (the weight vector w 
changes with every example)

• Convergence guaranteed for convex functions (to local 
minimum)

6



SGD convergence
O

bj
ec

tiv
e 

fu
nc

tio
n 

va
lu

e

Iterations / updates



Stochastic gradient descent

• Given dataset 𝐷 = { 𝑥!, 𝑦! , … , 𝑥", 𝑦" }

• Loss function: 𝐿 𝜃, 𝐷 = !
#
∑$%!# 𝑙(𝜃; 𝑥$, 𝑦$)

• For linear models: 𝑙 𝜃; 𝑥$, 𝑦$ = 𝑙(𝑦$, 𝜃&𝜙 𝑥$ )
• Assumption 𝐷 is drawn IID from some distribution 
𝒫.

• Problem:
min
'
𝐿(𝜃, 𝐷)



Stochastic gradient descent
• Input: 𝐷
• Output: 𝜃̅

Algorithm:
• Initialize 𝜃(
• For 𝑡 = 1,… , 𝑇

𝜃)*! = 𝜃) − 𝜂)𝛻'𝑙(𝑦) , 𝜃&𝜙 𝑥) )

• 𝜃̅ = ∑!"#
$ ,!'!

∑!"#
$ ,!

.



SGD convergence

• Expected loss: 𝑠 𝜃 = 𝐸𝒫[𝑙(𝑦, 𝜃&𝜙 𝑥 ]
• Optimal Expected loss: 𝑠∗ = 𝑠 𝜃∗ = min

'
𝑠(𝜃)

• Convergence:

𝐸/' 𝑠 𝜃̅ − 𝑠∗ ≤
𝑅0 + 𝐿0∑)%!& 𝜂)0

2∑)%!& 𝜂)
• Where: 𝑅 = 𝜃( − 𝜃∗

• 𝐿 = max𝛻𝑙(𝑦, 𝜃&𝜙 𝑥 )



SGD convergence proof

• Define 𝑟% = 𝜃% − 𝜃∗ and 𝑔% = 𝛻'𝑙 𝑦%, 𝜃(𝜙 𝑥%
• 𝑟%)*+ = 𝑟%+ + 𝜂%+ 𝑔% + − 2𝜂% 𝜃% − 𝜃∗ (𝑔%
• Taking expectation w.r.t 𝒫, 𝜃̅ and using 𝑠∗ − 𝑠 𝜃% ≥

𝑔%((𝜃∗ − 𝜃%), we get:
𝐸,' 𝑟%)*+ − 𝑟%+ ≤ 𝜂%+𝐿+ + 2𝜂% 𝑠∗ − 𝐸,' 𝑠 𝜃%

• Taking sum over 𝑡 = 1,… , 𝑇 and using

𝐸,' 𝑟%)*+ − 𝑟-+ ≤ 𝐿+<
%.-

(/*

𝜂%+ + 2<
%.-

(/*

𝜂%(𝑠∗ − 𝐸,'[𝑠 𝜃% ])



SGD convergence proof

• Using convexity of 𝑠:

<
%.-

(/*

𝜂% 𝐸,' 𝑠 𝜃̅ ≤ 𝐸,'[<
%.-

(/*

𝜂%𝑠 𝜃% ]

• Substituting in the expression from previous slide:

𝐸,' 𝑟%)*+ − 𝑟-+ ≤ 𝐿+<
%.-

(/*

𝜂%+ + 2<
%.-

(/*

𝜂% 𝑠∗ − 𝐸,' 𝑠 𝜃̅

• Rearranging the terms proves the result.



The fluctuation : Batch vs SGD

・Batch gradient descent converges to  
the minimum of the basin the  
parameters are placed in and the  
fluctuation is small.

・SGD’s fluctuation is large but it  
enables to jump to new and  
potentially better local minima.

https://wikidocs.net/3413

However, this ultimately complicates  
convergence to the exact minimum,  
as SGD will keep overshooting



SGD - Issues

• Convergence very sensitive to learning rate 
(   )  (oscillations near solution due to probabilistic 
nature of sampling)
– Might need to decrease with time to ensure the 

algorithm converges eventually

• Basically – SGD good for machine learning 
with large data sets!

14



Mini-batch SGD

• Stochastic – 1 example per iteration
• Batch – All the examples!
• Mini-batch SGD: 

– Sample m examples at each step and perform SGD 
on them

• Allows for parallelization, but choice of m 
based on heuristics

15



Example: Text categorization

• Example by Leon Bottou:
– Reuters RCV1 document corpus

• Predict a category of a document
– One vs. the rest classification

– n = 781,000 training examples (documents)
– 23,000 test examples
– d = 50,000 features

• One feature per word
• Remove stop-words
• Remove low frequency words



Example: Text categorization

• Questions:
– (1) Is SGD successful at minimizing f(w,b)?
– (2) How quickly does SGD find the min of f(w,b)?
– (3) What is the error on a test set?

17

Training time         Value of f(w,b)        Test error 
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable



Optimization “Accuracy”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast



Practical Considerations

• Need to choose learning rate h and t0

• Leon suggests:
– Choose t0 so that the expected initial updates are 

comparable with the expected size of the weights
– Choose h:

• Select a small subsample
• Try various rates h (e.g., 10, 1, 0.1, 0.01, …)
• Pick the one that most reduces the cost
• Use h for next 100k iterations on the full dataset

𝑤!"# ← 𝑤! −
𝜂$

𝑡 + 𝑡$
𝑤! + 𝐶

𝜕𝐿(𝑥% , 𝑦%)
𝜕𝑤



Learning rate comparison



ACCELERATED GRADIENT DESCENT



Stochastic gradient descent

Idea: Perform a parameter update for each training 
example x(i) and label y(i)

Update: 𝜃 = 𝜃 - 𝜂 ∙ ∇𝜃 J (𝜃; x(i), y(i))

Performs redundant computations for large
datasets



Momentum gradient descent
• Idea: Overcome ravine oscillations by momentum
•

Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃 J(𝜃)

• 𝜃 = 𝜃 - vt

SGD

SGD with
momentum



Why Momentum ReallyWorks

The momentum term increases for dimensions whose  
gradients point in the same directions.

Demo : http://distill.pub/2017/momentum/

The momentum term reduces updates for  
dimensions whose gradients change directions.

http://distill.pub/2017/momentum/


Nesterov accelerated gradient

• However, a ball that rolls down a hill, blindly  
following the slope, is highly unsatisfactory.

• We would like to have a smarter ball that has a  
notion of where it is going so that it knows to slow  
down before the hill slopes up again.

• Nesterov accelerated gradient gives us a way of it.



Nesterov accelerated gradient

Approximation of the next position of  
the parameters(predict)



Nesterov accelerated gradient

Approximation of the next position of  
the parameters(predict)

Approximation of the next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

Blue line : predict

Red line : correction

Green line :accumulated gradient Approximationof the next position of  
the parameters(predict)

Approximation ofthe next position of  
the parameters’ gradient(correction)



Nesterov accelerated gradient

• This anticipatory update prevents us from going  
too fast and results in increased responsiveness.

• Now , we can adapt our updates to the slope of our  
error function and speed up SGD in turn.



What’s next…?

• We also want to adapt our updates to each  
individual parameter to perform larger or smaller  
updates depending on their importance.

• Adagrad
• Adadelta
• RMSprop
• Adam



Adagrad

• Adagrad adapts the learning rate to the parameters
• Performing larger updates for infrequent
• Performing smaller updates for frequent parameters.

• Ex.
• Training large-scale neural nets at Google that learned to

recognize cats in Youtube videos.



Different learning rate for every
parameter

• Previous methods :
• we used the same learning rate 𝜼 for all parameters𝜽

• Adagrad :
• It uses a different learning rate for every parameter 𝜃𝑖at  

every time step 𝑡



Adagrad

Adagrad

SGD

𝐺𝑡 =

ℝ𝑑×
𝑑 ⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize



Adagrad

Adagrad

SGD

𝐺𝑡 =

ℝ𝑑×
𝑑

⋯ ⋯

Adagrad modifies the general learning  
rate 𝜼 based on the past gradients  
that have been computed for 𝜽𝒊

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize



Adagrad

Adagrad

SGD

𝐺𝑡 is a diagonal matrix where eachdiagonal
element (𝑖,𝑖) is the sum of the squares of the  
gradients 𝜃𝑖up to time step 𝑡.

𝐺𝑡 =

ℝ𝑑×
𝑑 ⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize



Adagrad

Adagrad

SGD

𝜀 is a smoothing term that avoids division by  
zero (usually on the order of 1e − 8).

𝐺𝑡 =

ℝ𝑑×
𝑑 ⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectorize



Adagrad’sadvantages

• Advantages :
• It is well-suited for dealing with sparse data.
• It greatly improved the robustness of SGD.
• It eliminates the need to manually tune the learning rate.



Adagrad’sdisadvantage

• Disadvantage :
• Main weakness is its accumulation of the squared  

gradients in the denominator.



Adagrad’sdisadvantage

• The disadvantage causes the learning rate to shrink  
and become infinitesimally small. The algorithm  
can no longer acquire additional knowledge.

• The following algorithms aim to resolve this flaw.
• Adadelta
• RMSprop
• Adam



Adadelta : extension of Adagrad

• Adadelta is an extension of Adagrad.

• Adagrad :
• It accumulate all past squared gradients.

• Adadelta :
• It restricts the window of accumulated past gradients to  

some fixed size𝑤 .



Adadelta

• Instead of inefficiently storing, the sum of gradients  
is recursively defined as a decaying average of all  
past squared gradients.

• 𝐸[𝑔2]𝑡 ：The running average at time step 𝑡.
• 𝛾 : A fraction similarly to the Momentum term, around  

0.9



Adadelta

GDSAdagrad

Adadelta



Adadelta

GDSAdagrad

Replace the diagonal matrix 𝐺𝑡 with the decaying  
average over past squared gradients 𝐸[𝑔2]𝑡

Adadelta



Adadelta

SGDAdagrad

Adadelta Adadelta

Replace the diagonal matrix 𝐺𝑡 with the decaying  
average over past squared gradients 𝐸[𝑔2]𝑡



Update units should have the same  hypothetical
units

• The units in this update do not match and the  
update should have the same hypothetical units as  
the parameter.

• As well as in SGD, Momentum, or Adagrad

• To realize this, first defining another exponentially  
decaying average



Adadelta

AdadeltaAdadelta



Adadelta

AdadeltaAdadelta

We approximate RMS with the RMS of  
parameter updates until the previous time step.



Adadelta update rule

• Replacing the learning rate 𝜂 in the previous update  
rule with 𝑅𝑀𝑆[∆𝜃]𝑡−1 finally yields the Adadelta  
update rule:

• Note : we do not even need to set a default  
learning rate



RMSprop

RMSprop and Adadelta have both been developed  
independently around the same time to resolve
Adagrad’s radically diminishing learning rates.

RMSprop



RMSprop

RMSprop as well divides the learning rate by an  
exponentially decaying average of squared gradients.

RMSprop

Hinton suggests 𝛾 to be set to 0.9, while a good  
default value for the learning rate 𝜂 is 0.001.



Adam

• Adam’s feature :
• Storing an exponentially decaying average of past  

squared gradients 𝑣𝑡 like Adadelta and RMSprop
• Keeping an exponentially decaying average of past  

gradients 𝑚 𝑡 ,  similar tomomentum.

The first moment (the mean)

The second moment (the  
uncentered variance)



Adam

• As 𝑚 𝑡 and 𝑣𝑡 are initialized as vectors of 0’s, they  
are biased towards zero.

• Especially during the initial time steps
• Especially when the decay rates are small

• (i.e. β1 and β2 are close to 1).

• Counteracting these biases in Adam
Adam

Note : default values of 0.9 for 𝛽1,  
0.999 for 𝛽2, and 10−8 for𝜀



Visualization



Visualization



Enhancements comparison



Summary

• There are two main ideas at play:
– Momentum : Provide consistency in update 

directions by incorporating past update directions.
– Adaptive gradient : Scale the scale updates to 

individual variables using the second moment in 
that direction.

– This also relates to adaptively altering step length 
for each direction.



THEORETICAL GUARRANTEES



Gradient Descent Convergence



Gradient Descent Convergence





SGD Analysis



LINEAR RATE METHODS



Improving SGD

Slides taken from Jorge Nocedal



Stochastic Averaged Gradient

Slide taken from Mark Schmidt



SAG Convergence Rate



SAG Convergence Rate



SAG Convergence Rate

• Use SGD for well conditioned problems.
• Use Accelerated SGD for ill-conditioned 

problems where N is lower than 𝑂( 𝐶).
• Otherwise use SAG.



SAG Implementation



SAG Implementation





Stochastic Variance Reduced GD



BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html


Batch normalization:
Other benefits in practice

• BN reduces training times. (Because of less Covariate Shift, less 
exploding/vanishing gradients.)

• BN reduces demand for regularization, e.g. dropout or L2 norm. 

– Because the means and variances are calculated over batches and therefore 
every normalized value depends on the current batch. I.e. the network can no 
longer just memorize values and their correct answers.)

• BN allows higher learning rates. (Because of less danger of 
exploding/vanishing gradients.)

• BN enables training with saturating nonlinearities in deep networks, e.g. 
sigmoid. (Because the normalization prevents them from getting stuck in 
saturating ranges, e.g. very high/low values for sigmoid.)



Batch normalization:
Better accuracy , faster.

BN applied to MNIST (a), and activations of a 
randomly selected neuron over time (b, c), 
where the middle line is the median activation, 
the top line is the 15th percentile and the 
bottom line is the 85th percentile.



Why the naïve approach Does not 
work?

• Normalizes layer inputs to zero mean and unit variance. 
whitening.

• Naive method: Train on a batch. Update model 
parameters. Then normalize. Doesn't work: Leads to 
exploding biases while distribution parameters (mean, 
variance) don't change.

– If we do it this way gradient always ignores the effect 
that the normalization  for the next batch would have

– i.e. : “The issue with the above approach is that the 
gradient descent optimization does not take into 
account the fact that the normalization takes place”



Doing it the “correct way”
Is too expensive!

• A proper method has to include the current example batch 
and somehow all previous batches ( all examples) in the 
normalization step.

• This leads to calculating in covariance matrix and its inverse square 
root. That's expensive. The authors found a faster way!



The proposed solution: To add an 
extra  regularization layer

A new layer is added so the gradient can “see” 
the normalization and make adjustments if 
needed. 



Algorithm Summary:
Normalization via Mini-Batch Statistics

• Each feature (component) is normalized individually
• Normalization according to: 

– componentNormalizedValue = (componentOldValue -
E[component]) / sqrt(Var(component))

• A new layer is added so the gradient can “see” the 
normalization and made adjustments if needed. 
– The new layer has the power  to learn the identity function 

to de-normalize the features if necessary!
– Full formula: newValue = gamma * componentNormalizedValue + 

beta (gamma and beta learned per component)

• E and Var are estimated for each mini batch.
• BN is fully differentiable. 



The Batch Transformation: formally from the paper.



The full algorithm as proposed in the paper

Alg 1 (previous slide)

Architecture  modification

Note that BN(x) is different
during test…

Vs.



Populations stats vs. sample stats
• In algorithm 1, we are 

estimating the true 
mean and variance 
over the entire 
population for a given 
batch.

• When doing inference 
you’re minibatching
your way through the 
entire dataset, you’re 
calculating statistics on 
a per sample/batch 
basis. We want our 
sample statistics to 
be unbiased to 
population statistics.



ACCELERATING BN NETWORKS
Batch normalization only not enough!

• Increase learning rate.
• Remove Dropout.
• Shuffle training examples more thoroughly
• Reduce the L2 weight regularization.
• Accelerate the learning rate decay.
• Reduce the photometric distortions.



105

References:
• SGD proof by Yuri Nesterov.

• MMDS http://www.mmds.org/

• Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

• Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

