CS60021: Scalable Data Mining

Large Scale Machine Learning

Much of ML is optimization

Linear Classification Maximum Likelihood
n mn
argminz ||w]|? + C’Zé};
w
i=1 i=1 arg max Z log pg(x;)
s.t. 1 —yix] w < & =1

& >0

K-Means

H1,12,. -

k
arg min Z Z ||2s — /ij’|2
j=1lieC}

Stochastic optimization

* Goal of machine learning :
— Minimize expected loss

mhin L(h) = E [loss(h(zx),y)]

given samples (z;,y;) i =1,2...m

* This is Stochastic Optimization

— Assume loss function is convex

Batch (sub)gradient descent for ML

* Process all examples together in each step

n

wk D (k) - (l Z 8L(w,$i7yi)>

n 4 ow
=1

where L is the regularized loss function

* Entire training set examined at each step

* Very slow when nis very large

Stochastic (sub)gradient descent

 “Optimize” one example at a time

* Choose examples randomly (or reorder and
choose in order)
— Learning representative of example distribution

for 2 =1 to n:
8[/(’(1),33@,3/1)

wk D) o ®) ~

where L is the regularized loss function

Stochastic (sub)gradient descent

for 2 =1 to n:
8L<w7x27yz>

ow

where L is the regularized loss function

e Equivalent to online learning (the weight vector w
changes with every example)

* Convergence guaranteed for convex functions (to local
minimum)

SGD convergence

-4

-5 H 4
(]
=
©
> = 4
c
Q
3]

| -
c
>
[l
v o -
=)
(®)
Q
ey af]
@)

-10 1 1 1 1 1 1

0 500 1000 1500 2000 2500 3000 3500

Iterations / updates

Stochastic gradient descent

Given dataset D = {(x1,¥1), -+ (pp Yim) }
Loss function: L(6,D) = % ?':1 L(8; xi, Vi)
For linear models: 1(8; x;, y;) = 1(y;, 0T p(x;))

Assumption D is drawn IID from some distribution
P.

Problem:
m@in L(6,D)

Stochastic gradient descent

* Input: D)
 Qutput: 0

Algorithm:
e |nitialize Y
. Fort:1,...,T1 .
Ottt = 0t — . Vol(y., 8T P (x,))
~ ZZ:l T}tet
6 = :
Zz:=1 Nt

SGD convergence

Expected loss: s(8) = Eo[l(y, 87 ¢ (x)]
Optimal Expected loss: s* = s(8%) = m@in s(6)

Convergence:

Egls(0)] —s* <

Where: R = ||60° — 6*||
L =maxVI(y, 0T p(x))

SGD convergence proof

Definery = |0 — 8*|| and g, = Vgl(yt,HTgb(xt))
rée1 =18 +nEllgell® — 20 (6F — 69)7 g,

Taking expectation w.r.t P, 8 and using s* — s(6%) >
gl (6" — 0Y), we get:

Eglrée — ré] S nil? + 21 (s* — Eg[s(6D)])

Taking sumovert =1, ..., T and using

T-1 T-1
FglrZa — 131 <12) n+2) ne(s™ — Egls(0)])
t=0 t=0

SGD convergence proof

Using convexity of s:
& T—1 y T—1

(Z m) Egls(@)] < Egl) nes(89]
t=0

t=0

Substituting in the e¥p|iession frTon11 previous slide:

Eglré —16] < L7 Z g + 2 z ne(s™ — Egls(0)])
t=0 t=0

Rearranging the terms proves the result.

The fluctuation : Batch vs SGD

Stochastic Gradient
Descent (SGD) o.---"""
() ,«'

Gradient Descent

https://wikidocs.net/3413

Batch gradient descent converges to
the minimum of the basin the
parameters are placed in and the
fluctuation is small.

SGD’s fluctuation is large but it

enables to jump to new and
potentially better local minima.

However, this ultimately complicates
convergence to the exact minimum,
as SGD will keep overshooting

SGD - Issues

Convergence very sensitive to learning rate

("t) (oscillations near solution due to probabilistic
nature of sampling)

— Might need to decrease with time to ensure the
algorithm converges eventually

Basically — SGD good for machine learning
with large data sets!

14

Mini-batch SGD

Stochastic — 1 example per iteration
Batch — All the examples!
Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

Allows for parallelization, but choice of m
based on heuristics

15

Example: Text categorization

Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n =781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words

 Remove low frequency words

Example: Text categorization

Questions:

— (1) Is SGD successful at minimizing f(w,b)?
— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

17

Optimization “Accuracy”

Training time (secs)
_ SGD SVM
100 4
' SGD
50] . Conventional
P SVM
LibLinear

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)
Optimization quality: | f(w,b) — f (wort bort) |

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

Practical Considerations

* Need to choose learning rate n and t,

aL(x;, Vi
Mo (wt L (x; yl))
ow

Wit < We —

0

* Leon suggests:

— Choose t,so that the expected initial updates are
comparable with the expected size of the weights
— Choosen:
e Select a small subsample
* Try various rates n (e.g., 10, 1, 0.1, 0.01, ...)
* Pick the one that most reduces the cost
* Use n for next 100k iterations on the full dataset

Learning rate comparison

Comparing Model Accuracy

A ny;yjyimm, ",',.‘

0.65 W"

accuracy om validation set
o
(=2}
o

e —

e Constant Ir
v Time-based
e Step decay
050 | —— Exponential decay
0 20) 80 80 100

epochs

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

|dea: Perform a parameter update for each training
example x(i) and label y(i)

Update: &= 4-7- Vad (8 x(i), y(i))

Performs redundant computations for large
datasets

Momentum gradient descent

- ldea: Overcome ravine oscillations by momentum

SGD
Update:
- V= yver+ - Vod(6) @ :>>
-« = 6-Vvt

SGD with

momentum @ 9>

Why Momentum Really Works

The momentum term reduces updates for
dimensions whose gradients change directions.

£} Starting Point

Optimum

N ‘Solu.lon

The momentum term increases for dimensions whose

gradients point in the same directions.
Demo : http://distill.pub/2017/momentum/

http://distill.pub/2017/momentum/

Nesterov accelerated gradient

* However, a ball that rolls down a hill, blindly
following the slope, is highly unsatisfactory.

* We would like to have a smarter ball that has a
notion of where it is going so that it knows to slow
down before the hill slopes up again.

* Nesterov accelerated gradient gives us a way of it.

Nesterov accelerated gradient

v =Y U1 +NVeJ (0 — yvi_1)
0 =60 — (o

Approximation of the next position of
the parameters()

Nesterov accelerated gradient

Approximation of the next position of
the parameters’ gradient()

v = YUp—1 +NVeJ (0 — yvi_1)
0 =60 — (o

Approximation of the next position of
the parameters()

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pTEdiCt the parameters’ gradient(correction)
Red line : correction vt =Y V-1 +NVeJ (0 — Yvi—1)
0 =0 — UVt

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

* This anticipatory update prevents us from going
too fast and results in increased responsiveness.

* Now , we can adapt our updates to the slope of our
error function and speed up SGD in turn.

What’s next...”?

* We also want to adapt our updates to each
individual parameter to perform larger or smaller
updates depending on their importance.

e Adagrad
* Adadelta
* RMSprop
 Adam

Adagrad

* Adagrad adapts the learning rate to the parameters
* Performing larger updates for infrequent
* Performing smaller updates for frequent parameters.

* EX.

* Training large-scale neural nets at Google that learned to
recognize cats in Youtube videos.

Different learning rate for every
parameter

* Previous methods :
* we used the same learning rate np for all parameters 6

* Adagrad :

* |t uses a different learning rate for every parameter 6; at
every time step t

Adagrad

SGD

)

9t+1,z‘ =~ 9t,z‘ — 1" gt

A Y W)

gti = Vod(6;)

Vectorize
n

\/Gt—l—é

Ot41 =6, — © gt.

Adagrad

Rd X
d

Gt=

T wW)X

- @®-H,

Adagrad modifies the general learning

rate n based on the past gradients
that have been computed for 0;

SGD
9t+1,i =~ 9t,7: — 9t
Adagrad
Orv1: =0 g '
/Gt ii + €

gt.i

Vectorize

Or 41

gti = Vod(6;)

=0, — L © g¢.

\/Gt—|—6

Adagrad

SGD RS- @ - @)
Oi11:=0t:i — 1 G Gr =
\ "
G¢ is a diagonal matrix where eachdiagonal
element (i,i) is the sum of the squares of the
gradients 6;up to time step t.
Adagrad
Ui
Or+1,i = Ot Gti gti = VoJ(6;)
/Gl + €
Vectorize
Oit1 = 0: — 4 © g¢.

\/Gt—|—6

Adagrad

)

SGD REX "mum o o™

$
|

9t+1,i = 9t,z‘ — 1 gt

-0l

€ is a smoothing term that avoids division by
zero (usually on the order of 1e - 8).

Adagrad
Ui

/Gt ii HE |

gt,i G5 ="V (6:)

Vectorize

Orr1.0 =0,

n

\/Gt—|—6

Oit1 = 0: — © g¢.

Adagrad’s advantages

* Advantages :
* It is well-suited for dealing with sparse data.
* |t greatly improved the robustness of SGD.
* |t eliminates the need to manually tune the learning rate.

Adagrad’s disadvantage

* Disadvantage :

* Main weakness is its accumulation of the squared
gradients in the denominator.

Adagrad’s disadvantage

* The disadvantage causes the learning rate to shrink
and become infinitesimally small. The algorithm
can no longer acquire additional knowledge.

* The following algorithms aim to resolve this flaw.
* Adadelta
* RMSprop
 Adam

Adadelta : extension of Adagrad

* Adadelta is an extension of Adagrad.

* Adagrad :

* |t accumulate all past squared gradients.

 Adadelta :

* |t restricts the window of accumulated past gradients to
some fixed size w.

Adadelta

* Instead of inefficiently storing, the sum of gradients
is recursively defined as a decaying average of all
past squared gradients.

E[¢°]; = YE[9%)t—1 + (1 — 7)97

« E[g?]: :Therunning average at time step t.

* ¥ : Afraction similarly to the Momentum term, around
0.9

Adadelta

Al = —n- gt
0141 = 0, + DG,

Adagrad
A=———"— O g
vV Gt -+ €
Adadelta
A0 = — L gt

VE[g%: + €

Adadelta

Adagrad SGD
U AbOy = —n - gy
Aet _ — ® gt L - Gt
VG +e 0,1 = 0; + NG,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta

n
AO; = —
T VE e

Adadelta

Adagrad SGD
Ui AO; = —n - g
Aet _ — ® gt L - Gt
VG t+e 0,1 = 0; + NG,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta Adadelta

U U
Al = — Af, = —
T /EER e ‘= TRMS[g),”"

Update units should have the same hypothetical
units

* The units in this update do not match and the
update should have the same hypothetical units as
the parameter.

* As well as in SGD, Momentum, or Adagrad

* Torealize this, first defining another exponentially
decaying average

E[A6%), = YE[A6Y,_1 + (1 — 7)A6?

Adadelta
< E[¢®]: = vE[g%]s—1 + (1 — 7)g?
E[A0?); = yE[AO?];—1 + (1 —7) A6}

RMS[AG], = \/E[AG?], + €

Adadelta Adadelta

1 U
Afy = — Af, = —
T VE e ‘= " RMS[g),”

Adadelta

< Elg°l; =vE[g*]s—1 + (1 —7)g7
E[A6?), = vE[A§%,_; + (1 —) A6
We approximate RMS with the RMS of
parameter updates until the previous time step.

RMS[A8], = \/E[AO?], + €

Adadelta Adadelta

1 U
Aby = — Af;, = —
VB e ‘= " RMS[g),”

Adadelta update rule

* Replacing the learning rate n in the previous update
rule with RMS[AB];—1 finally yields the Adadelta
update rule:

_RMS[AG)
RMS|g],
Orr1 =0, + A,

Agt —

* Note :

RMSprop

RMSprop and Adadelta have both been developed
independently around the same time to resolve
Adagrad’s radically diminishing learning rates.

RMSprop

E[g°]; = 0.9E[g?];—1 + 0.1¢7
U
VE[g?]+ €

011 =0y — gt

RMSprop

RMSprop as well divides the learning rate by an
exponentially decaying average of squared gradients.

RMSprop
E[g°]; = 0.9E[g?];—1 + 0.1¢7
n
v, =0, —

Hinton suggests y to be set to 0.9, while a good
default value for the learning rate n is 0.001.

Adam

e Adam’s feature :

e Storing an exponentially decaying average of past
squared gradients v¢ like Adadelta and RMSprop

* Keeping an exponentially decaying average of past
gradients m¢, similar tomomentum.

my = Bimi—1+ (1 — B1)g: The first moment (the mean)

The second moment (the

vy = PBavs—_1 + (1 — B2) g7 _
uncentered variance)

Adam

* As m; and v are initialized as vectors of O’s, they
are biased towards zero.
* Especially during the initial time steps
* Especially when the decay rates are small
* (i.e. 1 and B2 areclose to 1).

* Counteracting these biases in Adam

Adam
S
BTy g n A
1—pi Orr1 =0, — — my
T VUt T €
t —
1— ﬂé Note : default values of 0.9 for (4,
0.999 for 55, and 10-8for e

Visualization

Visualization

— SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0

Enhancements comparison

- Comparing Model Accuracy

/v}

"\0\ L/ XA
e "’\gpra /

0.70 -

0.65 -

0.60

accuracy om validation set

PRSI
PSR

— Constant Ir

e Time-based

- Step decay

- Exponential decay
- Adagrad

- Adadelta

e RMSprop

e Adam

epochs

80

100

Summary

* There are two main ideas at play:

— Momentum : Provide consistency in update
directions by incorporating past update directions.

— Adaptive gradient : Scale the scale updates to
individual variables using the second moment in
that direction.

— This also relates to adaptively altering step length
for each direction.

THEORETICAL GUARRANTEES

Gradient Descent Convergence

Assumption (L/c)

The objective function F : R* — R is
> c-strongly conver (= unique minimizer) and

> L-smooth (i.e., VF is Lipschitz continuous with constant L).

Gradient Descent Convergence

_E F(wg)

F(wg) + VF(we) T (w — wg) + L Lllw — w13

F(wy) + VF(w) T (w — wg) + 2ellw — wy 13

(Choosing a = 1/L to minimize upper bound yields\ /
(F(wrt1) — Fx) < (F(wi) — Fy) — 57 [[VF(w)]|3
while lower bound yields
sIVF(wi)|1 > e(F(wg) — F),
which together imply that

€4
oy

(F(wg41) — Fx) < (1 = £)(F(wg) — F).

Convergence Rate and Computational Complexity

Overall Complexity (€) = Convergence Rate™ () * Complexity of each iteration

Strongly Convex + Smooth Convex + Smooth
Convergence Rate Complexity of = Overall Complexity Convergence = Complexity of v Overall Complexity

each iteration Rate each iteration

O o) 0 ofenfl) o) o)

56D 1 o) d 1 0od d
R AR IR

SGD Analysis

THEOREM 14.8 Let B,p > 0. Let f be a convez function and let w* € argming o p f(W).

Assume that SGD 1s run for T iterations with n = ?2 . Assume also that for
I AT

all t, ||vy|| < p with probability 1. Then,

< Bp
E - —_,
f(w)] ﬁ
Therefore, for any € > 0, to achieve E[f(W)] —) < e, it suffices to run the
SGD algorithm for a number of iterations that satzsﬁes
2 2
T>— 2.

€2

LINEAR RATE METHODS

Improving SGD

stochastic batch
gradient gradient
s eeT e = ey > />
noise reduction 5
stochastic batch
Newton Newton

Slides taken from Jorge Nocedal

Stochastic Averaged Gradient

e Can we have a rate of O(p’) with only 1 gradient evaluation per iteration?
e YES! The stochastic average gradient (SAG) algorithm:

e Randomly select i; from {1,2,..., N} and compute f;, (z").
ot &
t+1 _ t O t
& s = N E_l Y;

o Memory: y! = Vfi(x') from the last + where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).

[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’'t change.

o Assumption becomes accurate as ||z!*t! — zt|| — 0.

Slide taken from Mark Schmidt

SAG Convergence Rate

If each f! is L—continuous and f is strongly-convex,
with oy = 1/16L SAG has

E[f () — f(z")] < (1 - {mLL SLN}) ,

where
41, o2

C =[fa") = f@)]+ 2" = 2"I° + 17

Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1\V 1
1] — — < ——= 1 = 0.8825.
(8N> —exp(8)

o For ill-conditioned problems, almost same as deterministic method (but N times
faster).

SAG Convergence Rate

@ Assume that N = 700000, L = 0.25, u = 1/N:

2
o Gradient method has rate <§—;5) = (0.99998.

o Accelerated gradient method has rate (1 — f) = 0.99761.
e SAG (N iterations) has rate (1 — min { 57, sy })Z = 0.88250

o fastest possible first-order method: (%) = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
e Deterministic gradient bound (for typical L, p, and N).

e Number of f; evalliations to reach e:
e Stochastic: O((1/€)).
° Zraili::t: O(O]\(f%(lo/g()l)/e))
o Accelerated: O(N\/%log(l/e)).
o SAG: O(max{N, /%} log(1/¢)).

SAG Convergence Rate

* Use SGD for well conditioned problemes.

e Use Accelerated SGD for ill-conditioned
problems where N is lower than 0(+/C).

e Otherwise use SAG.

SAG Implementation

@ Basic SAG algorithm:
o while(1)
e Sample i from {1,2,...,N}.
o Compute f/(z).
o d=d—y;+ fi(x).
o y; = fi(x).
* r =21 — &d.
@ Practical variants of the basic algorithm allow:
e Regularization.

e Sparse gradients.
e Automatic step-size selection.

@ Common to use adaptive step-size procedure to estimate L.
e Termination criterion.
o Can use |[z'"!" — 2'||/a = Ld = ||V f(z")| to decide when to stop.

Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].

SAG Implementation

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

@ Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
e Performance is intermediate between |AG and SAG.

@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVfi(z) = Vi)l < Lillz —yll.

improves rate to depend on L ean instead of Lax.
(with bigger step size)
o Adaptively estimate L; as you go. (see paper/code).
e Slowly learns to ignore well-classified examples.

SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum

1 1]0— T 1 T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Adaptive non-uniform sampling helps a lot.

Stochastic Variance Reduced GD

SVRG algorithm:
@ Start with x

@ fors=0,1,2...
R % Z,\:l fi(zs)
o 20 =,

¢ Tort= 1,2 cosltid
e Randomly pick i; € {1,2,..., N}
o r!=g"1— a(fi, (zf 1) — fi, (zs) + ds).

® £, =z’ forrandom t € {1,2,...,m}.

Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and z;.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination,
handles sparsity/regularization, non-uniform sampling, mini-batches).

BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638 cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

Batch normalization:
Other benefits in practice

BN reduces training times. (Because of less Covariate Shift, less
exploding/vanishing gradients.)

BN reduces demand for regularization, e.g. dropout or L2 norm.

— Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. l.e. the network can no
longer just memorize values and their correct answers.)

BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

BN enables training with saturating nonlinearities in deep networks, e.g.
sigmoid. (Because the normalization prevents them from getting stuck in
saturating ranges, e.g. very high/low values for sigmoid.)

Batch normalization:
Better accuracy , faster.

S i 2 2| s
0.9 "
0.8 ! [= = - WithoutBN 0 0
With BN M
0t 10K 20K 30K 40K 50K'2 -2
(a) (b) Without BN (c) With BN

BN applied to MNIST (a), and activations of a
randomly selected neuron over time (b, c),
where the middle line is the median activation,
the top line is the 15th percentile and the
bottom line is the 85th percentile.

Why the naive approach Does not
work?

* Normalizes layer inputs to zero mean and unit variance.
whitening.

* Naive method: Train on a batch. Update model
parameters. Then normalize. Doesn't work: Leads to
exploding biases while distribution parameters (mean,
variance) don't change.

— If we do it this way gradient always ignores the effect
that the normalization for the next batch would have

— i.e.: “The issue with the above approach is that the
gradient descent optimization does not take into
account the fact that the normalization takes place”

Doing it the “correct way”

|s too expensive!

e A proper method has to include the current example batch
and somehow all previous batches (all examples) in the

normalization step.

e This leads to calculating in covariance matrix and its inverse square
root. That's expensive. The authors found a faster way!

The issue with the above approach is that the gradient de-
scent optimization does not take into account the fact that
the normalization takes place. To address this issue, we
would like to ensure that, for any parameter values, the net-
work always produces activations with the desired distri-
bution. Doing so would allow the gradient of the loss with
respect to the model parameters to account for the normal-
ization, and for its dependence on the model parameters &.
Let again x be a layer input, treated as a vector, and A" be
the set of these inputs over the training data set. The nor-
malization can then be written as a transformation

% = Norm(x, &)

which depends not only on the given training example x
but on all examples X" — each of which depends on &
if x is generated by another layer. For backpropagation,
we would need to compute the Jacobians BNomm(x, X)

ax
MNomix.A). jgnoring the latter term would lead to the ex-

and

plosi":;n described above. Within this framework, whiten-
ing the layer mputs is expensive, as it requires computing
the covariance matrix Cov[x] = E, -y [xx"] — E[x|E[x]”
and its inverse square root, to produce the whitened acti-
vations Cov[x]~"/?(x — E[x]), as well as the derivatives of
these transforms for backpropagation. This motivates us to
seek an alternative that performs input normalization in a
way that is differentiable and does not require the analysis
of the entire training set after every parameter update.

The proposed solution: To add an

*.

. L
!, a pair of parameters

we i-ntl'qa:!uce,?nl' each activation z'*),
eX ra re g t 51, 4] which scale and shift the normalized value:

y

NN without BN

Output
W,
Hidden
Layer
Wy
Input

(k) — f.-]T.[.f.'j- 1 I-..;p[.l'\']

Input

NN without BN

A new layer is added so the gradient can “see”
the normalization and make adjustments if

needed.

Algorithm Summary:
Normalization via Mini-Batch Statistics

* Each feature (component) is normalized individually
 Normalization according to:

— componentNormalizedValue = (componentOldValue -
E[component]) / sqrt(Var(component))
* Anew layeris added so the gradient can “see” the
normalization and made adjustments if needed.

— The new layer has the power to learn the identity function
to de-normalize the features if necessary!

— Full formula: newValue = gamma * componentNormalizedValue +
beta (gamma and beta learned per component)

* E and Var are estimated for each mini batch.
BN is fully differentiable.

The Batch Transformation: formally from the paper.

Input: Values of 2 over a mini-batch: B = {x1._ . };
Parameters to be learned: v, 3
Output: {y; = BN, g(z:)}

I »
B — — Z i // mini-batch mean
s i
1 ™m
OB o Z(iﬁz — ps)’ // mini-batch variance
2=
. g .
Ti — —) // normalize

\/U%Jr(—:

Yi < vx; + S = BN, g(z;) // scale and shift

Input: Network N with trainable parameters ©;

subset of activations {z*/ } [
Output: Batch-normalized network for inference, Nit
: Ny + N // Training BN network
:fork=1...Kdo

| 3% I

w

R

0

10:

11:

12:

Add transformation y'*!
Nix (Alg. 1)
Modify each layer in Ny with input z'*) to take

1:&-:'3:&:(3(“) to

: end for

: Train Ny, to optimize the parameters

eu (™, k}K |

: Nl « Ngy // Inference BN network with frozen

// parameters

cfork=1...Kdo

// For clarity, z = z'%) v = &) up = p{Bk), ele.
Process multiple training mini-batches B, each of
size m, and average over them:
E[z] + Eg|us]
Var(z] « -Z=Eg[o]

m—1

In Nii%, replace the transform y = BN, s(z) with

o ~ 2 % ~Elx
e Var[z] +e 2T (3 ;;Var[.r]+e.)

end for

Algorithm 2: Training a Batch-Normalized Network

The full algorithm as proposed in the paper

Alg 1 (previous slide)

Note that BN(x) is differe
during test...

1
of EZ{E'E — pB)?

i=1

Vs.

Var[z] + m—”erg[crE,-]

Populations stats vs. sample stats

* Inalgorithm 1, we are >
estimating the true
mean and variance
over the entire
population for a given
batch.

* When doing inference

you’re minibatching

your Way through the Populatoitzrslflatistics Sample/iitecrh;tatistics
entire dataset, you're |

calculating statistics on el PR = o

a per sample/batch

baSIS. We W.a n-t Our \éa:'iancte FE %Zé["'r _ /1}2 og = ﬁz,[-"i T _;)'.’
sample statistics to i

be unbiased to
population statistics.

ACCELERATING BN NETWORKS
Batch normalization only not enough!

* Increase learning rate.

* Remove Dropout.

e Shuffle training examples more thoroughly
 Reduce the L2 weight regularization.

* Accelerate the learning rate decay.

* Reduce the photometric distortions.

References:

e SGD proof by Yuri Nesterov.

e MMDS http://www.mmds.org/

* Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

* Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

105

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

