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Motivation
• The range of values of raw training data often varies widely

– Example: Has kids feature in {0,1}

– Value of car: $500-$100’sk

• In machine learning algorithms, the functions involved in the optimization 
process are sensitive to normalization

– For example: Distance between two points by the Euclidean distance. If one of 
the features has a broad range of values, the distance will be governed by this 
particular feature. 

– After, normalization, each feature contributes approximately proportionately 
to the final distance.

• In general, Gradient descent converges much faster with feature scaling 
than without it.

• Good practice for numerical stability for numerical calculations, and to 
avoid ill-conditioning when solving systems of equations.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Gradient_descent


Common normalizations

Two methods are usually used for rescaling or normalizing data:

• Scaling data all numeric variables to the range [0,1]. One possible formula is 

given below:

• To have zero mean and unit variance:

• In the NN community this is call Whitening

http://3.bp.blogspot.com/_xqXlcaQiGRk/RpO4CR0oKqI/AAAAAAAAAA0/TnshqtR_ndw/s1600-h/fig1.png


Batch normalization:
Other benefits in practice

• BN reduces training times. (Because of less Covariate Shift, less 
exploding/vanishing gradients.)

• BN reduces demand for regularization, e.g. dropout or L2 norm. 

– Because the means and variances are calculated over batches and therefore 
every normalized value depends on the current batch. I.e. the network can no 
longer just memorize values and their correct answers.)

• BN allows higher learning rates. (Because of less danger of 
exploding/vanishing gradients.)

• BN enables training with saturating nonlinearities in deep networks, e.g. 
sigmoid. (Because the normalization prevents them from getting stuck in 
saturating ranges, e.g. very high/low values for sigmoid.)



Batch normalization: Better accuracy , faster.

BN applied to MNIST (a), and activations of a randomly selected neuron 
over time (b, c), where the middle line is the median activation, the top 
line is the 15th percentile and the bottom line is the 85th percentile.



Why the naïve approach Does not work?

• Normalizes layer inputs to zero mean and unit variance. whitening.

• Naive method: Train on a batch. Update model parameters. Then 
normalize. Doesn't work: Leads to exploding biases while distribution 
parameters (mean, variance) don't change.

– If we do it this way gradient always ignores the effect that the 
normalization  for the next batch would have

– i.e. : “The issue with the above approach is that the gradient descent 
optimization does not take into account the fact that the 
normalization takes place”



Doing it the “correct way” is too expensive!

• A proper method has to include the current example batch 
and somehow all previous batches ( all examples) in the normalization 
step.

• This leads to calculating in covariance matrix and its inverse square 
root. That's expensive. The authors found a faster way!



The proposed 
solution: 

To add an extra  
regularization 

layer

A new layer is added so the gradient can “see” 
the normalization and make adjustments if 
needed. 



Algorithm Summary:
Normalization via Mini-Batch Statistics

• Each feature (component) is normalized individually

• Normalization according to: 
– componentNormalizedValue = (componentOldValue - E[component]) 

/ sqrt(Var(component))

• A new layer is added so the gradient can “see” the 
normalization and made adjustments if needed. 
– The new layer has the power  to learn the identity function to de-

normalize the features if necessary!

– Full formula: newValue = gamma * componentNormalizedValue + beta 
(gamma and beta learned per component)

• E and Var are estimated for each mini batch.

• BN is fully differentiable. 



The Batch Transformation: formally from the paper.



The full algorithm as proposed in the paper

Alg 1 (previous slide)

Architecture  modification

Note that BN(x) is different
during test…

Vs.



Populations stats vs. sample stats

• In algorithm 1, we are estimating 
the true mean and variance over 
the entire population for a given 
batch.

• When doing inference you’re 
minibatching your way through 
the entire dataset, you’re 
calculating statistics on a per 
sample/batch basis. We want our 
sample statistics to 
be unbiased to population 
statistics.



ACCELERATING BN NETWORKS
Batch normalization only not enough!

• Increase learning rate.

• Remove Dropout.

• Shuffle training examples more thoroughly

• Reduce the L2 weight regularization.

• Accelerate the learning rate decay.

• Reduce the photometric distortions.



15

References:

• Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep 

Network Training by Reducing Internal Covariate Shift." In International 

Conference on Machine Learning, pp. 448-456. 2015.

• http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

