
CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya

BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

Motivation
• The range of values of raw training data often varies widely

– Example: Has kids feature in {0,1}

– Value of car: $500-$100’sk

• In machine learning algorithms, the functions involved in the optimization
process are sensitive to normalization

– For example: Distance between two points by the Euclidean distance. If one of
the features has a broad range of values, the distance will be governed by this
particular feature.

– After, normalization, each feature contributes approximately proportionately
to the final distance.

• In general, Gradient descent converges much faster with feature scaling
than without it.

• Good practice for numerical stability for numerical calculations, and to
avoid ill-conditioning when solving systems of equations.

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Gradient_descent

Common normalizations

Two methods are usually used for rescaling or normalizing data:

• Scaling data all numeric variables to the range [0,1]. One possible formula is

given below:

• To have zero mean and unit variance:

• In the NN community this is call Whitening

http://3.bp.blogspot.com/_xqXlcaQiGRk/RpO4CR0oKqI/AAAAAAAAAA0/TnshqtR_ndw/s1600-h/fig1.png

Batch normalization:
Other benefits in practice

• BN reduces training times. (Because of less Covariate Shift, less
exploding/vanishing gradients.)

• BN reduces demand for regularization, e.g. dropout or L2 norm.

– Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. I.e. the network can no
longer just memorize values and their correct answers.)

• BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

• BN enables training with saturating nonlinearities in deep networks, e.g.
sigmoid. (Because the normalization prevents them from getting stuck in
saturating ranges, e.g. very high/low values for sigmoid.)

Batch normalization: Better accuracy , faster.

BN applied to MNIST (a), and activations of a randomly selected neuron
over time (b, c), where the middle line is the median activation, the top
line is the 15th percentile and the bottom line is the 85th percentile.

Why the naïve approach Does not work?

• Normalizes layer inputs to zero mean and unit variance. whitening.

• Naive method: Train on a batch. Update model parameters. Then
normalize. Doesn't work: Leads to exploding biases while distribution
parameters (mean, variance) don't change.

– If we do it this way gradient always ignores the effect that the
normalization for the next batch would have

– i.e. : “The issue with the above approach is that the gradient descent
optimization does not take into account the fact that the
normalization takes place”

Doing it the “correct way” is too expensive!

• A proper method has to include the current example batch
and somehow all previous batches (all examples) in the normalization
step.

• This leads to calculating in covariance matrix and its inverse square
root. That's expensive. The authors found a faster way!

The proposed
solution:

To add an extra
regularization

layer

A new layer is added so the gradient can “see”
the normalization and make adjustments if
needed.

Algorithm Summary:
Normalization via Mini-Batch Statistics

• Each feature (component) is normalized individually

• Normalization according to:
– componentNormalizedValue = (componentOldValue - E[component])

/ sqrt(Var(component))

• A new layer is added so the gradient can “see” the
normalization and made adjustments if needed.
– The new layer has the power to learn the identity function to de-

normalize the features if necessary!

– Full formula: newValue = gamma * componentNormalizedValue + beta
(gamma and beta learned per component)

• E and Var are estimated for each mini batch.

• BN is fully differentiable.

The Batch Transformation: formally from the paper.

The full algorithm as proposed in the paper

Alg 1 (previous slide)

Architecture modification

Note that BN(x) is different
during test…

Vs.

Populations stats vs. sample stats

• In algorithm 1, we are estimating
the true mean and variance over
the entire population for a given
batch.

• When doing inference you’re
minibatching your way through
the entire dataset, you’re
calculating statistics on a per
sample/batch basis. We want our
sample statistics to
be unbiased to population
statistics.

ACCELERATING BN NETWORKS
Batch normalization only not enough!

• Increase learning rate.

• Remove Dropout.

• Shuffle training examples more thoroughly

• Reduce the L2 weight regularization.

• Accelerate the learning rate decay.

• Reduce the photometric distortions.

15

References:

• Ioffe, Sergey, and Christian Szegedy. "Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift." In International

Conference on Machine Learning, pp. 448-456. 2015.

• http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

