
CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya

Much of ML is optimization

Linear Classification Maximum Likelihood

K-Means

2

Stochastic optimization

• Goal of machine learning :
– Minimize expected loss

given samples

• This is Stochastic Optimization
– Assume loss function is convex

3

Batch (sub)gradient descent for ML

• Process all examples together in each step

• Entire training set examined at each step

• Very slow when n is very large

4

Stochastic (sub)gradient descent

• “Optimize” one example at a time

• Choose examples randomly (or reorder and
choose in order)
– Learning representative of example distribution

5

Stochastic (sub)gradient descent

• Equivalent to online learning (the weight vector w
changes with every example)

• Convergence guaranteed for convex functions (to local
minimum)

6

SGD convergence

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Iterations / updates

Stochastic gradient descent

• Given dataset 𝐷 = { 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 }

• Loss function: 𝐿 𝜃, 𝐷 =
1

𝑁
σ𝑖=1
𝑁 𝑙(𝜃; 𝑥𝑖 , 𝑦𝑖)

• For linear models: 𝑙 𝜃; 𝑥𝑖 , 𝑦𝑖 = 𝑙(𝑦𝑖 , 𝜃
𝑇𝜙 𝑥𝑖)

• Assumption 𝐷 is drawn IID from some distribution
𝒫.

• Problem:
min
𝜃

𝐿(𝜃, 𝐷)

Stochastic gradient descent

• Input: 𝐷
• Output: ҧ𝜃

Algorithm:
• Initialize 𝜃0

• For 𝑡 = 1,… , 𝑇
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝛻𝜃𝑙(𝑦𝑡 , 𝜃

𝑇𝜙 𝑥𝑡)

• ҧ𝜃 =
σ𝑡=1
𝑇 𝜂𝑡𝜃

𝑡

σ𝑡=1
𝑇 𝜂𝑡

.

SGD convergence

• Expected loss: 𝑠 𝜃 = 𝐸𝒫[𝑙(𝑦, 𝜃
𝑇𝜙 𝑥]

• Optimal Expected loss: 𝑠∗ = 𝑠 𝜃∗ = min
𝜃

𝑠(𝜃)

• Convergence:

𝐸ഥ𝜃 𝑠 ҧ𝜃 − 𝑠∗ ≤
𝑅2 + 𝐿2σ𝑡=1

𝑇 𝜂𝑡
2

2σ𝑡=1
𝑇 𝜂𝑡

• Where: 𝑅 = 𝜃0 − 𝜃∗

• 𝐿 = max𝛻𝑙(𝑦, 𝜃𝑇𝜙 𝑥)

SGD convergence proof

• Define 𝑟𝑡 = 𝜃𝑡 − 𝜃∗ and 𝑔𝑡 = 𝛻𝜃𝑙 𝑦𝑡 , 𝜃
𝑇𝜙 𝑥𝑡

• 𝑟𝑡+1
2 = 𝑟𝑡

2 + 𝜂𝑡
2 𝑔𝑡

2 − 2𝜂𝑡 𝜃
𝑡 − 𝜃∗ 𝑇𝑔𝑡

• Taking expectation w.r.t 𝒫, ҧ𝜃 and using 𝑠∗ − 𝑠 𝜃𝑡 ≥
𝑔𝑡
𝑇(𝜃∗ − 𝜃𝑡), we get:

𝐸ഥ𝜃 𝑟𝑡+1
2 − 𝑟𝑡

2 ≤ 𝜂𝑡
2𝐿2 + 2𝜂𝑡 𝑠

∗ − 𝐸ഥ𝜃 𝑠 𝜃𝑡

• Taking sum over 𝑡 = 1,… , 𝑇 and using

𝐸ഥ𝜃 𝑟𝑡+1
2 − 𝑟0

2 ≤ 𝐿2 ෍

𝑡=0

𝑇−1

𝜂𝑡
2 + 2෍

𝑡=0

𝑇−1

𝜂𝑡(𝑠
∗ − 𝐸ഥ𝜃[𝑠 𝜃𝑡])

SGD convergence proof

• Using convexity of 𝑠:

෍

𝑡=0

𝑇−1

𝜂𝑡 𝐸ഥ𝜃 𝑠 ҧ𝜃 ≤ 𝐸ഥ𝜃[෍

𝑡=0

𝑇−1

𝜂𝑡𝑠 𝜃𝑡]

• Substituting in the expression from previous slide:

𝐸ഥ𝜃 𝑟𝑡+1
2 − 𝑟0

2 ≤ 𝐿2 ෍

𝑡=0

𝑇−1

𝜂𝑡
2 + 2෍

𝑡=0

𝑇−1

𝜂𝑡 𝑠
∗ − 𝐸ഥ𝜃 𝑠 ҧ𝜃

• Rearranging the terms proves the result.

SGD - Issues

• Convergence very sensitive to learning rate
() (oscillations near solution due to probabilistic
nature of sampling)

– Might need to decrease with time to ensure the
algorithm converges eventually

• Basically – SGD good for machine learning
with large data sets!

13

Mini-batch SGD

• Stochastic – 1 example per iteration

• Batch – All the examples!

• Mini-batch SGD:
– Sample m examples at each step and perform SGD

on them

• Allows for parallelization, but choice of m
based on heuristics

14

Example: Text categorization

• Example by Leon Bottou:
– Reuters RCV1 document corpus

• Predict a category of a document
– One vs. the rest classification

– n = 781,000 training examples (documents)

– 23,000 test examples

– d = 50,000 features
• One feature per word

• Remove stop-words

• Remove low frequency words

Example: Text categorization

• Questions:
– (1) Is SGD successful at minimizing f(w,b)?

– (2) How quickly does SGD find the min of f(w,b)?

– (3) What is the error on a test set?

16

Training time Value of f(w,b) Test error

Standard SVM

“Fast SVM”

SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)

(2) SGD-SVM is super fast

(3) SGD-SVM test set error is comparable

Optimization “Accuracy”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional

SVM

SGD SVM

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

SGD vs. Batch Conjugate Gradient
• SGD on full dataset vs. Conjugate Gradient on a

sample of n training examples

Bottom line: Doing a simple (but fast) SGD update many times is better than

doing a complicated (but slow) CG update a few times

Theory says: Gradient descent

converges in linear time 𝒌. Conjugate

gradient converges in 𝒌.
𝒌… condition number

Practical Considerations

• Need to choose learning rate  and t0

• Leon suggests:
– Choose t0 so that the expected initial updates are

comparable with the expected size of the weights
– Choose :

• Select a small subsample
• Try various rates  (e.g., 10, 1, 0.1, 0.01, …)
• Pick the one that most reduces the cost
• Use  for next 100k iterations on the full dataset

𝑤𝑡+1 ← 𝑤𝑡 −
𝜂0

𝑡 + 𝑡0
𝑤𝑡 + 𝐶

𝜕𝐿(𝑥𝑖 , 𝑦𝑖)

𝜕𝑤

Learning rate comparison

Practical Considerations

• Sparse Linear SVM:

– Feature vector xi is sparse (contains many zeros)

• Do not do: xi = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,…]

• But represent xi as a sparse vector xi=[(4,1), (9,5), …]

– Can we do the SGD update more efficiently?

– Approximated in 2 steps:

cheap: xi is sparse and so few
coordinates j of w will be updated

expensive: w is not sparse, all
coordinates need to be updated

𝑤 ← 𝑤 − 𝜂 𝑤 + 𝐶
𝜕𝐿(𝑥𝑖 , 𝑦𝑖)

𝜕𝑤

w

yxL
Cww ii




−

),(


)1(− ww

Practical Considerations

 Solution 1: 𝒘 = 𝒔 ⋅ 𝒗
– Represent vector w as the

product of scalar s and vector v
– Then the update procedure is:

• (1) 𝒗 = 𝒗 − 𝜼𝑪
𝝏𝑳 𝒙𝒊,𝒚𝒊

𝝏𝒘
• (2) 𝒔 = 𝒔(𝟏 − 𝜼)

• Solution 2:
– Perform only step (1) for each training example
– Perform step (2) with lower frequency

and higher 

w

yxL
Cww ii




−

),(


)1(− ww

Two step update procedure:

(1)

(2)

Practical Considerations

• Stopping criteria:
How many iterations of SGD?
– Early stopping with cross validation

• Create a validation set
• Monitor cost function on the validation set
• Stop when loss stops decreasing

– Early stopping
• Extract two disjoint subsamples A and B of training data
• Train on A, stop by validating on B
• Number of epochs is an estimate of k
• Train for k epochs on the full dataset

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

• Idea: Perform a parameter update for each

training example x(i) and label y(i)

• Update: 𝜃 = 𝜃 - 𝜂 ∙ ∇𝜃 J (𝜃; x(i), y(i))

• Performs redundant computations for large datasets

Momentum gradient descent
• Idea: Overcome ravine oscillations by momentum
•

Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃 J(𝜃)

• 𝜃 = 𝜃 - vt

SGD

SGD with
momentum

Nesterov accelerated gradient
• Ideas:

1. Big jump in the direction of the previous accumulated gradient &

measure the gradient

2. Then make a correction.

• Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃J(𝜃-𝛾 vt-1)

• 𝜃 = 𝜃 - vt

AdaGrad

•

Adapts the learning rate to the parameters

Smaller updates (i.e. low learning rates) for parameters
associated with frequently occurring features

larger updates (i.e. high learning rates) for parameters
associated with infrequent features

•

Update:

RMSprop

• Idea: Use the second moment of gradient vector to

estimate the magnitude of update in a given direction.

• Update:

• E[g2]t = 0.9 E[g2]t-1 + 0.1 g t2

• 𝛥𝜃t = - 𝜂 / √(E[g2]t + ϵ) ⊙ gt

ADAM (Adaptive moment)

• Idea: In addition to storing an exponentially decaying average of

past squared gradients like RMSprop, Adam also keeps an

exponentially decaying average of past gradients.

• Updates:

• mt = β1mt−1 + (1−β1) gt

• vt = β2vt−1 + (1−β2) gt
2

• mt̂ = mt / (1 − β1
t)

• v̂t = vt / (1 − β2
t)

• θt+1 = θt − (η / (v̂t + ϵ)) mt̂

Visualization

Visualization

Enhancements comparison

Summary

• There are two main ideas at play:

– Momentum : Provide consistency in update
directions by incorporating past update directions.

– Adaptive gradient : Scale the scale updates to
individual variables using the second moment in
that direction.

– This also relates to adaptively altering step length
for each direction.

35

References:

• SGD proof by Yuri Nesterov.

• MMDS http://www.mmds.org/

• Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

• Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

