CS60021: Scalable Data Mining

Large Scale Machine Learning

Much of ML is optimization

Linear Classification Maximum Likelihood
n n
argminz [|w]|? + C’Zfi
w
i=1 i=1 arg meax Z log Do (QZZ)
st 1 — gzl w <& i=1

& >0

K-Means

H1,42,. -

k
arg min ZZ i — pj [
j=14i€C;

Stochastic optimization

* Goal of machine learning :
— Minimize expected loss

mhin L(h) = E [loss(h(z),y)]

given samples (z;,y;) i =1,2..m

* This is Stochastic Optimization

— Assume loss function is convex

Batch (sub)gradient descent for ML

* Process all examples together in each step

wk+D oy ® _ (l Z 8L(w,xi,yi))

n 4 ow
=1

where L is the regularized loss function

* Entire training set examined at each step
* Veryslow when nis very large

Stochastic (sub)gradient descent

 “Optimize” one example at a time

 Choose examples randomly (or reorder and
choose in order)

— Learning representative of example distribution

for 2 =1 to n:
8L(wa$iayi)
—
ow

wEFD (k)

where L is the regularized loss function

Stochastic (sub)gradient descent

for 2 = 1 to n:
8L w, r;,Y;
k)_m (Yi)
ow

w1)
where L is the regularized loss function

* Equivalent to online learning (the weight vector w
changes with every example)

* Convergence guaranteed for convex functions (to local
minimum)

SGD convergence

-4
g .
v
>
©
> L }
c
9
+—
o 7 .
-
>
g
e -
=
O
Q
c=—
0 = 1
@
-10 1 1 1 1 1 1
] a00 1000 1500 2000 2500 3000 3500

lterations / updates

Stochastic gradient descent

e Given dataset D = {(xl,yl), e) (Xm, ym)}
e Loss function: L(6,D) =% Iivzll(Q;Xi,yi)

* For linear models: 1(6; x;, y;) = L(y;, 8T d(x;))

 Assumption D is drawn |ID from some distribution
P.

* Problem:
mein L(6,D)

Stochastic gradient descent
 Input: D

e Qutput: 0

Algorithm:
* Initialize 8°
. Fort=1,...,T1 .
Ot =0 —nVel(ye, 0" p(xp))
~ ZZ=1 77t9t
6 = .
Z’{:l Nt

SGD convergence

 Expected loss: s(8) = Ex[l(y, 08T p(x)]
Optimal Expected loss: s* = s(8%) = m@in s(6)

Convergence:
R? + L7 Z=1 ng

2 Z’II,::]_ Nt

Eal[s(@)] — s* <

Where: R = [|6° — 0*||
L = maxVI(y, 8" ¢p(x))

SGD convergence proof

Define r; = |16t — 0*|| and g; = Vol(y:, 6T p(x:))
iy =18 + nEllgell* — 2n.(6° — 6)7 g

Taking expectation w.r.t P, 8 and using s* — s(8%) >
gl (6* —06Y), we get:

Eé[rt2+1 —1f] S nEL% + 2n(s* — Eé[s(et)])

Taking sumovert = 1,...,T and using

T-1 T-1
FgltZn 181 <17) n2 +2) ne(s" — Egls(69)])
t=0 t=0

SGD convergence proof

e Using convexity of s:
T-1

Z N |Egls(0)] < Z N:s(6°)]

t=0

e Substituting in the expressmn from previous slide:

T—1
Eglré, — 5] < L? Z ng + 2 Z ne(s* — Egls(6)])
t=0 t=0

e Rearranging the terms proves the result.

SGD - Issues

* Convergence very sensitive to learning rate

(") (oscillations near solution due to probabilistic
nature of sampling)

— Might need to decrease with time to ensure the
algorithm converges eventually

e Basically — SGD good for machine learning
with large data sets!

13

Mini-batch SGD

* Stochastic— 1 example per iteration
* Batch — All the examples!
* Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

* Allows for parallelization, but choice of m
based on heuristics

14

Example: Text categorization

 Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n=781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words
* Remove low frequency words

Example: Text categorization

* Questions:
— (1) Is SGD successful at minimizing f(w,b)?
— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

16

Optimization “Accuracy”

100

Training time (secs)

SGD SVM

SGD

., Conventional
— SVM

LibLinear

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)
Optimization quality: | f(w,b) — f (w°rt,bort) |

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

SGD vs. Baich Conjugate Gradient

* SGD on full dataset vs. Conjugate Gradient on a

sample of n training examples Theory says: Gradient descent
- converges in linear time k. Conjugate

Average Test Loss gradient converges/in Vk.
04 - k... condition number

1 1 1
n=10000 | n=100000 | n=781265
h=30000 | n=300000

035 |

03 + stochastic

0.25 ¢

02+

0.15 ¢

01 : : : :
0.001 0.01 0.1 1 10 100 1000

Time (seconds)
Bottom line: Doing a simple (but fast) SGD update many times is better than

doing a complicated (but slow) CG update a few times

Practical Considerations

* Need to choose learning rate n and t,

No OL(xi,¥;)
Werr © We = Wet C—o

* Leon suggests:

— Choose t,so that the expected initial updates are
comparable with the expected size of the weights
— Choose n:
* Select a small subsample
* Tryvarious rates n (e.g., 10, 1, 0.1, 0.01, ...)
* Pick the one that most reduces the cost
* Use n for next 100k iterations on the full dataset

accuracy om validation set

Learning rate comparison

Comparing Model Accuracy

(NATTA
\ \ N /’
0.70 4 \ 5 /,4 y L, ~ \J
Wy i Vv “‘/
0.65 4
/
|
|
0.60 4 ’l
|
|
055 4
wwwe Constant Ir
-~ Time-based
wv Step decay
050 | ~—— Exponential decay
20) 60 100

epochs

Practical Considerations

e Sparse Linear SVM:

— Feature vector x; is sparse (contains many zeros)

« Do notdo: x;=1[0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,...]

* But represent x;as a sparse vector X;=[(4,1), (9,5), ...]
— Can we do the SGD update more efficiently?

5L(’¢i»)’i)>

— C
W« w n<w+ Ew

— Approximated in 2 steps:
W<« w—7C M cheap: x; is sparse and so few

coordinates j of w will be updated

W« W(1-7) expensive: w is not sparse, all
coordinates need to be updated

Practical Considerations

= Solutionl:w=s-7v

— Represent vector w as the Two step update procedure:
product of scalar s and vectc?r v (W W-1C oL(X., Y1)
— Then the update procedure is: ow
dL(x;y;) (2) W< w(l-7)
* (1)v = v — nCT

*(2)s=s(1—-mn)
e Solution 2:
— Perform only step (1) for each training example

— Perform step (2) with lower frequency
and higher n

Practical Considerations

* Stopping criteria:
How many iterations of SGD?

— Early stopping with cross validation
* Create a validation set
* Monitor cost function on the validation set
» Stop when loss stops decreasing
— Early stopping
* Extract two disjoint subsamples A and B of training data
* Trainon A, stop by validating on B
* Number of epochs is an estimate of k
* Train for k epochs on the full dataset

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

- ldea: Perform a parameter update for each
training example x(i) and label y(i)

* Update: = &-7- Vod (€; x(i), y(i))

- Performs redundant computations for large datasets

Momentum gradient descent

- ldea: Overcome ravine oscillations by momentum
SGD

| Update: @ 5
« Vi= Vit 77 VeJd(6)
- = 0-Vi
SGD with
momentum @ §>

Nesterov accelerated gradient

- ldeas:
1. Big jump in the direction of the previous accumulated gradient &

measure the gradient
2. Then make a correction.

* Update:
c Vt= y Vi1t 70 Val(6-p vi)

« = H-w

AdaGrad

Adapts the learning rate to the parameters

Smaller updates (i.e. low learning rates) for parameters
. associated with frequently occurring features

larger updates (i.e. high learning rates) for parameters
associated with infrequent features

Update:

n
0, Fl,i — 9{._-;' > "Gt

RMSprop

- ldea: Use the second moment of gradient vector to
estimate the magnitude of update in a given direction.

* Update:
- E[g?]t= 0.9 E[g?]t1+ 0.1 g2

. 46=- y/N(E[g? + €) O gt

ADAM (Adaptive moment)

- Idea: In addition to storing an exponentially decaying average of
past squared gradients like RMSprop, Adam also keeps an
exponentially decaying average of past gradients.

Updates:

« m=6m,,+(1-6,) g,
v, = 6B,v, 1+ (1-8,) g2

m.,=m,/(1-8,!)
v,=v,/(1-8))

001 =0~ (n/ (NG +€)) A,

Visualization

77777 R
% E N =0

S N
] = Momentum E

~— NAG :
— Adagrad |
- Adadelta

Visualization

— SGD

- Momentum
- NAG

- Adagrad

- Adadelta
- Rmsprop

1.0

Enhancements comparison

accuracy om validation set

0.75

Comparing Model Accuracy

— Constant Ir

e Time-based

- Step decay

- Exponential decay
- Adagrad

— Adadelta

~ RMSprop

e Adam

epochs

80 100

Summary

* There are two main ideas at play:

— Momentum : Provide consistency in update
directions by incorporating past update directions.

— Adaptive gradient : Scale the scale updates to
individual variables using the second moment in
that direction.

— This also relates to adaptively altering step length
for each direction.

References:

e SGD proof by Yuri Nesterov.

e MMDS http://www.mmds.org/

* Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

» Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

35

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

