
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya



MULTI-PROBE LSH



Locality Sensitive Hashing

Given input data, radius r, approx factor c and 
confident 𝛿

Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟

Algo: Choose 𝑘, 𝐿 .

do L times

iid hash functions ∶ hi1… . hik
Create hash table 𝐻𝑖 by putting each 𝑥 in bucket 

𝐻𝑖 𝑥 = ℎ𝑖1 𝑥 , …ℎ𝑖𝑘 𝑥

Store non-empty buckets in normal hash table

3

Picture courtesy Slaney et al.



Locality Sensitive Hashing

Given input data, radius r, approx factor c and 
confident 𝛿

Output: if there is any point at distance ≤ 𝑟 then w.p.
1 − 𝛿 return one at distance ≤ 𝑐𝑟

Query: Find out all points in buckets 𝐻1 𝑞 … . 𝐻𝐿(𝑞)
and return ones that are ≤ 𝑐𝑟

4

Picture courtesy Slaney et al.



Drawbacks

• Trading space with time, strongly super-linear space 
– Even in practice, typically 5-20 times more memory than dataset itself

• Space-time tradeoff mostly practical effective for 
medium-high dimensions, dense vectors
– recent advances in ML about dense embeddings

5



Probing multiple times

• Idea: Can we reduce space while not affecting query time by 
too much?
– need to hit buckets that have high probability of the containing the nearest 

neighbour

6



Entropy based LSH

• Assume that we know 𝑅 𝑝, 𝑞 = distance from query 𝑞 to 
nearest neighbour 𝑝
– Buckets are a random partition of the data

– The success probability of a bucket (i.e. of containing 𝑝) depends only 
on 𝑅 𝑝, 𝑞

– Ideally, we can sort the buckets by this probability 

7



Entropy based LSH

• Elegant way to sample from the success 
probability distribution 
– Perturb the query point repeatedly and probe

– Buckets that have high probability should come up often

– Theoretical guarantee

8

𝑞

[Panigrahy’ 06]



Multi-probe LSH

• Look at neighbouring buckets!

• Consider LSH for L2

9

ℎ𝑣,𝑏 𝑞 =
𝑞 ⋅ 𝑣 + 𝑏

𝑤



Multi-probe LSH

• Suppose 𝑘 = 3

• 𝐻1 𝑞 = (5, 8, 3)

• We consider buckets that differ in one position, two positions, … 

10



Formalizing

• Δ ∈ −1,0,+1 𝑘 be a “perturbation” vector
– E.g. Δ = (−1, 0, +1, +1, 0… .−1)

– We get a new hash bucket by doing 𝐻 𝑞 + Δ

– Say Δ has at most 𝑆 nonzeros

– Number of possible Δ is: 

• Is there a natural way to order these buckets for searching?

11



Success Probability Estimation

𝑓𝑖 𝑞 = 𝑞 ⋅ 𝑣𝑖 + 𝑏𝑖 be the projection 
of q 

𝑥𝑖 +1 𝑎𝑛𝑑 𝑥𝑖(−1) be the distance of 
the projection to the two boundaries

𝑓𝑖 𝑞 − 𝑓𝑖 𝑝 ∼ 𝑁 0, 𝐶 𝑝 − 𝑞 by 
property of normal distribution

12

Image from Lv et al.



Success Probability Estimation

𝑥𝑖 +1 𝑎𝑛𝑑 𝑥𝑖(−1) be the distance of the 
projection to the two boundaries

𝑓𝑖 𝑞 − 𝑓𝑖 𝑝 ∼ 𝑁 0, 𝐶 𝑝 − 𝑞 by 
property of normal distribution

Pr ℎ𝑖 𝑝 = ℎ𝑖 𝑞 + 1 ≈ exp(−𝐶𝑥𝑖 +1
2)

13

Image from Lv et al.



Ordering buckets

• If Δ = 𝛿1…𝛿𝑘 then
Pr 𝐻 𝑝 = 𝐻 𝑞 + Δ = Pr∏ ℎ𝑖 𝑞 = ℎ𝑖 𝑞 + 𝛿𝑖

Ex: Δ = +1, 0, −1 , 

14

≈ ෑexp −𝐶𝑥𝑖 𝛿𝑖
2 = exp −𝐶෍𝑥𝑖 𝛿𝑖

2



Ordering buckets

• Define 𝑠𝑐𝑜𝑟𝑒 Δ = σ 𝑥𝑖 𝛿𝑖
2

• Lower the score, higher the probability of 𝑝 being in 
the bucket 

• Order the buckets by the score and search them in 
this order

15



Query directed ordering

• When a query 𝑞 arrives
– Calculate 𝐻(𝑞)

– Calculate { 𝑥𝑖 +1
2, 𝑥𝑖 −1

2, 𝑖 = 1…𝑘}

– Sort (call these as 𝑧1 ≤ 𝑧2… ≤ 𝑧2𝑘 )

• Start with 𝐴 = {1}

• Repeatedly do either shift or expand
– shift replace max(𝐴) by 1+max(A)

– expand adds 1+max(A) to A

16



Multiprobe LSH

• Using a min-heap at query time we can use the shift and 
expand operations to explore all buckets in order
– Can optimize further

• In practice, will stop after a budget 

17



Experiments

18



Summary

• While LSH is a powerful technique, there are few areas of concern, memory usage 
among them

• Entropy and Multi-probe LSH are elegant solutions that are useful in practice

– Shown to be useful in practice, reduce space usage by a factor 

– also form part of the state-of-art LSH system

• Intuition based on idea of probing multiple buckets in a query-dependent manner

19



20

References:

• Primary references for this lecture
• Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin 

Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007

• R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of 
ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.


