CS60021: Scalable Data Mining

Similarity Search and Hashing

MULTI-PROBE LSH

K projections

Locality Sensitive Hashing

L tables

@\

Find in
buckets

Sort
matches
by
distance

Picture courtesy Slaney et al.

Given input data, radius r, approx factor c and
confident 6

Output: if there is any point at distance < r then w.p.
1 — 4 return one at distance < cr

Algo: Choose (k, L).
do L times
iid hash functions : {hj; hjc}
Create hash table H; by putting each x in bucket
H;(x) = (hiy (x), ... hix (%))
Store non-empty buckets in normal hash table

K projections

Locality Sensitive Hashing

L tables

@\

Find in
buckets

Picture courtesy Slaney et al.

Sort
matches
by
distance

Given input data, radius r, approx factor c and
confident 6

Output: if there is any point at distance < r then w.p.
1 — 4 return one at distance < cr

Query: Find out all points in buckets H;(q) H.(q)
and return ones that are < cr

Drawbacks

* Trading space with time, strongly super-linear space

— Even in practice, typically 5-20 times more memory than dataset itself

* Space-time tradeoff mostly practical effective for
medium-high dimensions, dense vectors

— recent advances in ML about dense embeddings

Probing multiple times

* |dea: Can we reduce space while not affecting query time by
too much?

— need to hit buckets that have high probability of the containing the nearest
neighbour

Entropy based LSH

* Assume that we know R(p, g) = distance from query g to
nearest neighbour p
— Buckets are a random partition of the data

— The success probability of a bucket (i.e. of containing p) depends only
on R(p,q)
— Ideally, we can sort the buckets by this probability

Entropy based LSH

[Panigrahy’ 06]

* Elegant way to sample from the success
probability distribution

— Perturb the query point repeatedly and probe
— Buckets that have high probability should come up ofte
— Theoretical guarantee

Multi-probe LSH

* Look at neighbouring buckets!
* Consider LSH for L2

q-v+b

hv,b (CI) = \

Multi-probe LSH

e Supposek =3

* Hi(q) = (5,8,3)
 We consider buckets that differ in one position, two positions, ...

Formalizing

« A€ {-1,0,+1}* be a “perturbation” vector
— Eg.A=(-10,+1,41,0....—-1)
— We get a new hash bucket by doing H(gq) + A
— Say A has at most S nonzeros
— Number of possible A is:

* Isthere a natural way to order these buckets for searching?

Success Probability Estimation

/
\ \\\ ’ Xi(-1) "Xi(f)'

T

i@
Y Y Y
hi(q)-1 hi(q) hi(q)+1

Image from Lv et al.

fi;(q) = q - v; + b; be the projection
of q

x;(+1) and x;(—1) be the distance of
the projection to the two boundaries

filg) — fi(p) ~ N(O,Clp —ql) by
property of normal distribution

Success Probability Estimation

/
\ \\\ ’ Xi(-1) "Xi(f)'

T

i@
Y Y Y
hi(q)-1 hi(q) hi(q)+1

Image from Lv et al.

x;(+1) and x;(—1) be the distance of the
projection to the two boundaries

filg) — fi(p) ~ N(O,Clp —ql) by
property of normal distribution

Pr(h;(p) = hi(q) + 1] = exp(—Cx;(+1)?)

Ordering buckets

 IfA=(6;..8;) then
Pr[H(p) = H(q) + A] = Pr[][h;(q) = h;(q) + &]

~ 1_[exp(—Cx;(6;)%) = exp (—Cz Xi(5i)2>

Ex:A=(+1,0,—-1),

Ordering buckets

Define score(A) = Y x;(5;)?

Lower the score, higher the probability of p being in
the bucket

Order the buckets by the score and search them in
this order

Query directed ordering

. {1} —— (1.2} — {1.2.3} —> {1,234} -
* When a query g arrives l 15 |
— Calculate H(q) {1;}—»{1,;,4}—»{1345} -----
— Calculate { x;(+1)?, x;(=1)%,i=1..k} | (15

— Sort (call theseas z; < 7z, ... < Zy)
* Start with A = {1}
* Repeatedly do either shift or expand

— shift replace max(A4) by 1+max(A)
— expand adds 1+max(A) to A

Multiprobe LSH

* Using a min-heap at query time we can use the shift and
expand operations to explore all buckets in order

— Can optimize further

* |n practice, will stop after a budget

Number of Hash Tables

128

Experiments

‘basic —5—
entropy -0

multi-probe A

1 P L

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Recall

Number of Hash Tables

128

64

32

16

8

4

audio
" basic —& e
entropy .
multi—probe s :,,-;:=='= jas 2]

i
'““%u_...
e & |
A . |
s
2 | | ‘ I . 1 1 1 1
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

Recall

18

1

Summary

While LSH is a powerful technique, there are few areas of concern, memory usage
among them

Entropy and Multi-probe LSH are elegant solutions that are useful in practice
— Shown to be useful in practice, reduce space usage by a factor
— also form part of the state-of-art LSH system

Intuition based on idea of probing multiple buckets in a query-dependent manner

References:

* Primary references for this lecture
* Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin
Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007

* R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of
ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.

20

