#### CS60021: Scalable Data Mining

#### Similarity Search and Hashing

Sourangshu Bhattacharya

#### **GENERALIZATION OF LSH**

# Locality sensitive hashing

- Originally defined in terms of a similarity function [C'02]
- Given universe U and a similarity  $s: U \times U \rightarrow [0,1]$ , does there exist a prob distribution over some hash family H such that

$$\Pr_{h \in H}[h(x) = h(y)] = s(x, y) \qquad \begin{array}{l} s(x, y) = 1 \rightarrow x = y \\ s(x, y) = s(y, x) \end{array}$$

#### Locality Sensitive Hashing

• Hash family *H* is *locality sensitive* if [Indyk Motwani]

Pr[h(x) = h(y)] is high if x is close to y

Pr[h(x) = h(y)] is low if x is far from y

 Not clear such functions exist for all distance functions

#### Hamming distance

- Points are bit strings of length *d*
- $H(x,y) = |\{i, x_i \neq y_i\}|$   $S_H(x,y) = 1 \frac{H(x,y)}{d}$
- Define a hash function h by sampling a set of positions

$$-x = 1011010001, y = 0111010101$$
$$-S = \{1,5,7\}$$
$$-h(x) = 100, h(y) = 100$$

#### LSH for Hamming Distance

• The above hash family is locality sensitive, k = |S|

$$\Pr[h(x) = h(y)] = \left(1 - \frac{H(x, y)}{d}\right)^k$$

## LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$



• Choose direction v uniformly at random

$$-h_{v}(x) = sign(v \cdot x)$$
$$-\Pr[h_{v}(x) = h_{v}(y)] = 1 - \theta/\pi$$

#### Aside: picking a direction u.a.r.

• How to sample a vector  $x \in R^d$ ,  $|x|_2 = 1$  and the direction is uniform among all possible directions



- Generate  $x = (x_1, ..., x_d), x_i \sim N(0, 1)$  iid
- Normalize  $\frac{x}{|x|_2}$ 
  - By writing the pdf of the d-dimensional Gaussian in polar form, easy to see that this is uniform direction on unit sphere

# Which similarities admit LSH?

- There are various similarities and distance that are used in scientific literature
  - Encyclopedia of distances DL'11
- Will there be an LSH for each one of them?
  - Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

#### LSHable similarities

<u>Thm</u>: S is LSHable  $\rightarrow$  1 – S is a metric

$$d(x, y) = 0 \rightarrow x = y$$
  

$$d(x, y) = d(y, x)$$
  

$$d(x, y) + d(y, z) \ge d(x, z)$$

Fix hash function 
$$h \in H$$
 and define  

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

Also

$$\Delta_h(A,B) + \Delta_h(B,C) \ge \Delta_h(A,C)$$

# Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice :  $s(A, B) = \frac{2|A \cap B|}{|A|+|B|}$

$$- Ex: A = \{a\}, B = \{b\}, C = \{a, b\}$$

$$- s(A,B) = 0, s(B,C) = s(A,C) = \frac{2}{3}$$

• Overlap: 
$$s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$$
  
-  $s(A, B) = 0, s(A, C) = 1 = s(B, C)$ 

# Gap Definition of LSH

• A family is (r, R, p, q) LSH if

IMRS'97, IM'98, GIM'99

$$\Pr_{h \in H}[h(x) = h(y)] \ge p \text{ if } d(x, y) \le r$$
$$\Pr_{h \in H}[h(x) = h(y)] \le q \text{ if } d(x, y) \ge R$$



Here p > q.

# Gap LSH

• All the previous constructions satisfy the gap definition - Ex: for  $JS(S,T) = \frac{|S \cap T|}{|S \cup T|}$ 

$$JD(S,T) \le r \to JS(S,T) \ge 1 - r \to \Pr[h(S) = h(T)] = JS(S,T) \ge 1 - r$$
$$JD(S,T) \ge R \to JS(S,T) \le 1 - R \to \Pr[h(S) = h(T)] = JS(S,T) \le 1 - R$$

Hence is a (r, R, 1 - r, 1 - R) LSH

#### L2 norm

• 
$$d(x, y) = \sqrt{(\sum_i (x_i - y_i)^2)}$$

•  $u = random unit norm vector, w \in R$  parameter,  $b \sim Unif[0, w]$ 

• 
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$

• If 
$$|x - y|_2 < \frac{w}{2}$$
,  $\Pr[h(x) = h(y)] \ge \frac{1}{3}$ 

• If  $|x - y|_2 > 4w$ ,  $\Pr[h(x) = h(y)] \le \frac{1}{4}$ 



# Solving the near neighbour

- (*r*, *c*) near neighbour problem
  - Given query point q, return all points p such that d(p,q) < r and none such that d(p,q) > cr
  - Solving this gives a subroutine to solve the "nearest neighbour", by building a data-structure for each r, in powers of  $(1+\epsilon)$

#### How to actually use it?

 Need to amplify the probability of collisions for "near" points

#### Band construction

- AND-ing of LSH
  - Define a composite function  $H(x) = (h_1(x), ..., h_k(x))$
  - $-\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$
- OR-ing
  - Create L independent hash-tables for  $H_1, H_2, \dots H_L$
  - Given query q, search in  $\cup_j H_j(q)$

#### Example

|   | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> |
|---|----------------|----------------|----------------|----------------|
| Α | 1              | 0              | 1              | 0              |
| В | 1              | 0              | 0              | 1              |
| С | 0              | 1              | 0              | 1              |
| D | 0              | 1              | 0              | 1              |
| E | 0              | 1              | 0              | 1              |
| F | 1              | 0              | 1              | 0              |
| G | 1              | 0              | 1              | 0              |



|    | <b>S1</b> | S2 | <b>S</b> 3 | <b>S3</b> |
|----|-----------|----|------------|-----------|
| h1 | 1         | 2  | 1          | 2         |
| h2 | 2         | 1  | 3          | 1         |

|    | <b>S1</b> | S2 | <b>S</b> 3 | <b>S</b> 3 |
|----|-----------|----|------------|------------|
| h3 | 3         | 1  | 2          | 1          |
| h4 | 1         | 3  | 2          | 2          |

#### Why is this better?

- Consider q, y with  $\Pr[h(q) = h(y)] = 1 d(x, y)$
- Probability of not finding y as one of the candidates in  $\cup_j H_j(q)$

$$1 - (1 - (1 - d)^k)^L$$

#### Creating an LSH

 $\rho = \frac{\log(p)}{\log(q)}$   $L = n^{\rho}$   $k = \log(n) / \log\left(\frac{1}{q}\right)$ 

- Query *x*
- If we have a (r, cr, p, q) LSH
- For any y, with |x y| < r,
  - Prob of y as candidate in  $\bigcup_i H_i(x) \ge 1 (1 p^k)^L \ge 1 \frac{1}{2}$
- For any z, |x z| > cr,
  - Prob of z as candidate in any fixed  $H_i(x) \le q^k$
  - Expected number of such  $z \leq Lq^k \leq L = n^{\rho}$

 $-\rho < 1$ 

#### Runtime

- Space used =  $n^{1+\rho}$
- Query time =  $n^{\rho} \times (k + d)$  [time for k-hashes & brute force comparison]

- We can show that for Hamming, angle etc,  $\rho \approx \frac{1}{c}$ 
  - Can get 2-approx near neighbors with  $O(\sqrt{n})$  neighbour comparisons

# LSH: theory vs practice

- In order to design LSH in practice, the theoretical parameter values are only a guidance
  - Typically need to search over the parameter space to find a good operating point
  - Data statistics can provide some guidance.

#### Summary

- Locality sensitive hashing is a powerful tool for near neighbour problems
- Trades off space with query time
- Practical for medium to large datasets with fairly large number of dimensions
  - However, doesn't really work very well for sparse, very very high dimensional datasets
- LSH and extensions are an area of active research and practice

#### **References:**

- Primary references for this lecture
  - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
  - Survey by Andoni et al. (CACM 2008) available at <u>www.mit.edu/~andoni/LSH</u>