
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

GENERALIZATION OF LSH

Locality sensitive hashing

• Originally defined in terms of a similarity function [C’02]

• Given universe 𝑈 and a similarity 𝑠: 𝑈 × 𝑈 → [0,1] , does
there exist a prob distribution over some hash family 𝐻 such
that

3

Pr
h∈𝐻

ℎ 𝑥 = ℎ 𝑦 = 𝑠(𝑥, 𝑦)
𝑠 𝑥, 𝑦 = 1 → 𝑥 = 𝑦
𝑠 𝑥, 𝑦 = 𝑠(𝑦, 𝑥)

Locality Sensitive Hashing

• Hash family 𝐻 is locality sensitive if

• Not clear such functions exist for all distance
functions

Pr ℎ 𝑥 = ℎ 𝑦 is high if 𝑥 is close to 𝑦

Pr ℎ 𝑥 = ℎ 𝑦 is low if 𝑥 is far from 𝑦

[Indyk Motwani]

Hamming distance

• Points are bit strings of length 𝑑

• 𝐻 𝑥, 𝑦 = | 𝑖, 𝑥𝑖 ≠ 𝑦𝑖 | 𝑆𝐻 𝑥, 𝑦 = 1 −
𝐻 𝑥,𝑦

𝑑

• Define a hash function ℎ by sampling a set of
positions

– 𝑥 = 1011010001, 𝑦 = 0111010101

– 𝑆 = 1,5,7

– ℎ 𝑥 = 100, ℎ 𝑦 = 100

5

LSH for Hamming Distance

• The above hash family is locality sensitive, 𝑘 =
|𝑆|

6

Pr ℎ 𝑥 = ℎ 𝑦 = 1 −
𝐻 𝑥, 𝑦

𝑑

𝑘

LSH for angle distance

• 𝑥, 𝑦 are unit norm vectors

• 𝑑 𝑥, 𝑦 = cos−1 𝑥 ⋅ 𝑦 = 𝜃
• 𝑆 𝑥, 𝑦 = 1 − 𝜃/𝜋

• Choose direction 𝑣 uniformly at random

– ℎ𝑣 𝑥 = 𝑠𝑖𝑔𝑛 𝑣 ⋅ 𝑥

– Pr ℎ𝑣 𝑥 = ℎ𝑣 𝑦 = 1 − 𝜃/𝜋

7

Aside: picking a direction u.a.r.

• How to sample a vector 𝑥 ∈ 𝑅𝑑 , 𝑥 2 = 1 and the
direction is uniform among all possible directions

• Generate 𝑥 = 𝑥1, … . 𝑥𝑑 , 𝑥𝑖 ∼ 𝑁(0, 1) iid

• Normalize
𝑥

𝑥 2

– By writing the pdf of the d-dimensional Gaussian in polar form, easy to
see that this is uniform direction on unit sphere

8

Which similarities admit LSH?

• There are various similarities and distance that are used in scientific
literature

– Encyclopedia of distances DL’11

• Will there be an LSH for each one of them?

– Similarity is LSHable if there exists an LSH for it

9

[slide courtesy R. Kumar]

LSHable similarities

Thm: S is LSHable→ 1 – S is a metric

Fix hash function ℎ ∈ 𝐻 and define
Δℎ 𝐴, 𝐵 = [ℎ 𝐴 ≠ ℎ 𝐵]
1 − S A, B = Pr

ℎ
[Δℎ 𝐴, 𝐵]

Also
Δℎ 𝐴, 𝐵 + Δℎ 𝐵, 𝐶 ≥ Δℎ 𝐴, 𝐶

10

𝑑 𝑥, 𝑦 = 0 → 𝑥 = 𝑦
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑(𝑥, 𝑧)

Example of non-LSHable
similarities

• 𝑑 𝐴,𝐵 = 1 − 𝑠(𝐴, 𝐵)

• Sorenson-Dice : 𝑠 𝐴, 𝐵 =
2 𝐴∩𝐵

𝐴 + 𝐵

– Ex: 𝐴 = 𝑎 , 𝐵 = 𝑏 , 𝐶 = {𝑎, 𝑏}

– 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐵, 𝐶 = 𝑠 𝐴, 𝐶 =
2

3

• Overlap: 𝑠 𝐴, 𝐵 =
𝐴∩𝐵

min 𝐴 , 𝐵

– 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐴, 𝐶 = 1 = 𝑠(𝐵, 𝐶)

11

Gap Definition of LSH

• A family is 𝑟, 𝑅, 𝑝, 𝑞 LSH if

Pr
ℎ∈𝐻

ℎ 𝑥 = ℎ 𝑦 ≥ 𝑝 𝑖𝑓 𝑑 𝑥, 𝑦 ≤ 𝑟

Pr
ℎ∈𝐻

ℎ 𝑥 = ℎ 𝑦 ≤ 𝑞 𝑖𝑓 𝑑 𝑥, 𝑦 ≥ 𝑅

Here 𝑝 > 𝑞.

12

IMRS’97, IM’98, GIM’99

Gap LSH

• All the previous constructions satisfy the gap definition

– Ex: for 𝐽𝑆 𝑆, 𝑇 =
𝑆∩𝑇

𝑆∪𝑇

Hence is a 𝑟, 𝑅, 1 − 𝑟, 1 − 𝑅 LSH

13

𝐽𝐷 𝑆, 𝑇 ≤ 𝑟 → 𝐽𝑆 𝑆, 𝑇 ≥ 1 − 𝑟 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≥ 1 − 𝑟

𝐽𝐷 𝑆, 𝑇 ≥ 𝑅 → 𝐽𝑆 𝑆, 𝑇 ≤ 1 − 𝑅 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≤ 1 − 𝑅

L2 norm

• 𝑑 𝑥, 𝑦 = √(σ𝑖 𝑥𝑖 − 𝑦𝑖
2

• 𝑢 = random unit norm vector, 𝑤 ∈ 𝑅 parameter, 𝑏 ∼ 𝑈𝑛𝑖𝑓[0, 𝑤]

• ℎ 𝑥 = ⌊
𝑢⋅𝑥+𝑏

𝑤
⌋

• If 𝑥 − 𝑦 2 <
𝑤

2
, Pr ℎ 𝑥 = ℎ 𝑦 ≥

1

3

• If 𝑥 − 𝑦 2 > 4𝑤, Pr ℎ 𝑥 = ℎ 𝑦 ≤
1

4

14

Solving the near neighbour

• 𝑟, 𝑐 −near neighbour problem

– Given query point 𝑞, return all points 𝑝 such that
𝑑 𝑝, 𝑞 < 𝑟 and none such that 𝑑 𝑝, 𝑞 > 𝑐𝑟

– Solving this gives a subroutine to solve the “nearest
neighbour”, by building a data-structure for each 𝑟 , in
powers of (1 + 𝜖)

15

How to actually use it?

• Need to amplify the probability of collisions
for “near” points

16

Band construction

• AND-ing of LSH

– Define a composite function 𝐻 𝑥 = (ℎ1 𝑥 ,… ℎ𝑘 𝑥)

– Pr 𝐻 𝑥 = 𝐻 𝑦 = Πi Pr ℎ𝑖 𝑥 = ℎ𝑖 𝑦 = Pr[

]

ℎ1 𝑥 =

ℎ1 𝑦
𝑘

• OR-ing

– Create 𝐿 independent hash-tables for 𝐻1, 𝐻2, …𝐻𝐿

– Given query 𝑞, search in ∪𝑗 𝐻𝑗(𝑞)

17

Example

18

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S3

h1 1 2 1 2

h2 2 1 3 1

S1 S2 S3 S3

h3 3 1 2 1

h4 1 3 2 2

Why is this better?

• Consider 𝑞, 𝑦 with Pr ℎ 𝑞 = ℎ 𝑦 = 1 − 𝑑(𝑥, 𝑦)

• Probability of not finding 𝑦 as one of the candidates in
∪𝑗 𝐻𝑗 𝑞

1 − 1 − 1 − 𝑑 𝑘 𝐿

19

Creating an LSH
• Query 𝑥

• If we have a (𝑟, 𝑐𝑟, 𝑝, 𝑞) LSH

• For any 𝑦, with 𝑥 − 𝑦 < 𝑟,

– Prob of 𝑦 as candidate in ∪𝑗 𝐻𝑗 𝑥 ≥ 1 − 1 − 𝑝𝑘
𝐿
≥ 1 −

1

𝑒

• For any 𝑧, 𝑥 − 𝑧 > 𝑐𝑟,

– Prob of 𝑧 as candidate in any fixed 𝐻𝑗(𝑥) ≤ 𝑞𝑘

– Expected number of such 𝑧 ≤ 𝐿𝑞𝑘 ≤ 𝐿 = 𝑛𝜌

– 𝜌 < 1

20

𝜌 =
log 𝑝

log 𝑞
𝐿 = 𝑛𝜌 𝑘 = log 𝑛 / log

1

𝑞

Runtime

• Space used = 𝑛1+𝜌

• Query time = 𝑛𝜌 × (𝑘 + 𝑑) [time for k-hashes & brute force comparison]

• We can show that for Hamming, angle etc, 𝜌 ≈
1

𝑐

– Can get 2-approx near neighbors with 𝑂(√𝑛) neighbour comparisons

21

LSH: theory vs practice

• In order to design LSH in practice, the theoretical parameter
values are only a guidance
– Typically need to search over the parameter space to find a good

operating point

– Data statistics can provide some guidance.

22

Summary

• Locality sensitive hashing is a powerful tool for near neighbour problems

• Trades off space with query time

• Practical for medium to large datasets with fairly large number of dimensions

– However, doesn’t really work very well for sparse, very very high dimensional datasets

• LSH and extensions are an area of active research and practice

23

24

References:

• Primary references for this lecture
• Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
• Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

http://www.mit.edu/~andoni/LSH

