CS60021: Scalable Data Mining

Similarity Search and Hashing

GENERALIZATION OF LSH

Locality sensitive hashing

Originally defined in terms of a similarity function [C’02]

Given universe U and a similarity s: U X U = [0,1], does
there exist a prob distribution over some hash family H such

that

B B s(x,y) =1 ->x=y
Pr [h(x) = h(y)] = s(x,y) s(x,y) = s(y,%)

Locality Sensitive Hashing
* Hash family H is locality sensitive if (ndyk Motwani

Pr[h(x) = h(y)]is highif x is close to y

Pr[h(x) = h(y)] is low if x is far from y

 Not clear such functions exist for all distance
functions

Hamming distance

* Points are bit strings of length d

| H(x,y)
* Hx,y) = [{i,x; # yi}l Sulx,y) =1 — Zy

e Define a hash function h by sampling a set of
positions
—x =1011010001,y = 0111010101
- S =1{1,57}
— h(x) = 100, h(y) = 100

LSH for Hamming Distance

* The above hash family is locality sensitive, k =
N

_H(x, y)>k

Prlh(x) = h(y)] = (1 ;.

LSH for angle distance

X,y are unit norm vectors

d(x,y) =cos 1(x-y) =0
S(x,y) =1 -6/

Choose direction v uniformly at random
— h,(x) = sign(v - x)
— Pr[h,(x) =h,()| =1 -6/n

Aside: picking a direction u.a.r.

* How to sample a vector x € R%, |x|, = 1 and the
direction is uniform among all possible directions

* Generate x = (xq,....xg4), x; ~ N(0,1) iid

. X
e Normalize —
|X|z

— By writing the pdf of the d-dimensional Gaussian in polar form, easy to
see that this is uniform direction on unit sphere

Which similarities admit LSH?

e There are various similarities and distance that are used in scientific
literature

— Encyclopedia of distances DL'11

* Will there be an LSH for each one of them?

— Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

LSHable similarities

Thm: S is LSHable = 1 —Sis a metric

dix,y) =0 - x=1y

d(x,y) =d(y,x)
dlx,y) +d(y,z) = d(x,2)

Fix hash function h € H and define
Ap(A,B) = [h(A) # h(B)]
1 —S(A,B) = l;lr[Ah(A, B)]

Also
Ap(A,B) + Ap(B,C) = Ap(4,0C)

Example of non-LSHable

similarities
+ d(A4,B)=1 —5s(A,B)
* Sorenson-Dice:s(4,B) = amill

— Ex: A = {a},B — {b},C — {a,b}
_ S(A'B) — O,S(B, C) — S(A, C) :g

|ANB]|
. Overlapl S(A'B) = min(|Al,|B])

- s(4,B) =0,s(4,C) =1=s(B,()

Gap Definition of LSH

« Afamilyis (r,R,p,q) LSH if

IMRS’97, IM’98, GIM’99

Prlh(x) =h(y)]=pifdxy) <r

heH

Prlh(x) =h(y)] <qif d(x,y) =R

heH

Herep > q.

12

Gap LSH

* All the previous constructions satisfy the gap definition

|1SNT|
|SUT|

— Ex: for JS(S,T) =

JD(S,T) <7 —>JS(5,T) =1 —r > Pr[h(S) = h(T)] = JS(S,T) =1 — r
JD(S,T) =R > JS(S,T) <1 —R - Pr[h(S) = h(T)] =JS(S,T) <1 — R

Henceisa (r,R,1—r,1—R) LSH

« h(0) = |

L2 norm

o d(xy) =VEilx — ;)2

* u =random unit norm vector, w € R parameter, b ~ Unif [0, w]

u-x+b
w

|

Iflx —ylz <=, Prla(x) = h(y)] 2

WK

e If|x —y|, > 4w,Pr[h(x) = h(y)] Si

14

Solving the near neighbour

* (1,c) —near neighbour problem

— Given query point g, return all points p such that
d(p,q) < r and none such thatd(p,q) > cr

— Solving this gives a subroutine to solve the “nearest
neighbour”, by building a data-structure for each 7, in
powers of (1 + €)

How to actually use it?

* Need to amplify the probability of collisions
for “near” points

Band construction

* AND-ing of LSH
— Define a composite function H(x) = (h{(x), ... hx(x))
— Pr[H(x) = H(y)] = II; Pr[h;(x) = h;(y)] = Pr[h,(x) =
by (]

* OR-ing
— Create L independent hash-tables for H{, H,, ... H}
— Given query q, search in U; H;(q)

Example

1

1

e l=l=]=
2

hl

=

0
1

1
0

1
1

L[S]S
0
0

A
B

h2

h3

ha

18

Why is this better?

 Consider g,y with Pr[h(q) = h(y)] =1 — d(x,y)

* Probability of not finding y as one of the candidates in

U; H;(q)
1 - (1-(1-d)k)

Creating an LSH

Query x

If we have a (7, cr,p, g) LSH _log®) ; __p g — 1
(p.q) P = ot L =nP k =log(n)/log (q)
Forany y, with |[x —y| <,

— Prob of y as candidate in U; H;(x) =1 — (1 — Pk)L =1 _i
Foranyz, |x — z| > cr,
— Prob of z as candidate in any fixed H;(x) < q*

— Expected number of such z < LgX < L = n”

- p<l1

20

Runtime

« Space used =nlt?

* Querytime=nP X (k+ d) [time for k-hashes & brute force comparison]

: 1
* We can show that for Homming, angle etc, p = -

— Can get 2-approx near neighbors with O(\/n) neighbour comparisons

LSH: theory vs practice

* Inorder to design LSH in practice, the theoretical parameter
values are only a guidance

— Typically need to search over the parameter space to find a good
operating point

— Data statistics can provide some guidance.

Summary

Locality sensitive hashing is a powerful tool for near neighbour problems
Trades off space with query time

Practical for medium to large datasets with fairly large number of dimensions
— However, doesn’t really work very well for sparse, very very high dimensional datasets

LSH and extensions are an area of active research and practice

References:

* Primary references for this lecture
 Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
* Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

24

http://www.mit.edu/~andoni/LSH

