CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Review: Frequency Estimation

- Given input stream, length m, want a sketch that can answer frequency queries at the end
 - For give item *x*, return an estimate of the frequency
- Algorithms seen
 - Deterministic counter based algorithms: Misra-Gries, SpaceSaving
 - Count-Min sketch

Recall: Count-min sketch

- Model input stream as a vector over \boldsymbol{U}
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$

Count-sketch

- Model input stream as a vector over U
 - f_x is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_i: U \rightarrow [1, d]$
- w sign hash function, each maps $g_i: U \rightarrow \{-1, +1\}$

Count Min Sketch

<u>Initialize</u>

– Choose $h_1, ..., h_w$, $A[w, d] \leftarrow 0$ <u>Process(x, c)</u>:

- For each $i \in [w]$, $A[i, h_i(x)] += c \times g_i(x)$ <u>Query(q)</u>:

- Return median{ $g_i(x)A[i,h_i(x)]$ }

Example

h1		
h2		

	h1,g1	h2,g2
	2,+	1,+
•	3,-	2,+
•	1,+	3,-
\bigcirc	2,-	3,+

Guarantees

Each item is mapped to one bucket per row

Guarantees

•
$$w = \frac{2}{\epsilon^2}$$
 $d = \log\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the *w* estimates, i.e. $Y_i = g_i(x)A[i, h_i(x)], \quad \hat{f}_x = \text{median } Y_i$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E\left[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)\right]$$

Guarantees

$$E[Y_i] = E\left[g_i(x) \ A[i, h_i(x)]\right] = E\left[g_i(x) \sum_{h_i(y)=h_i(x)} f_y \ g_i(y)\right]$$

Notice that for $x \neq y$, $E[g_i(x) \ g_i(y)] = 0$!

$$E[Y_i] = g_i(x)^2 f_x = f_x$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

W=lost Variance analysis Using simple algebra, as well as independence of hash functions, $var(Y_i) = \frac{\left(\sum_{y} f_{y}^{2} - f_{x}^{2}\right)}{d} \le \frac{|f|_{2}^{2}}{d} \qquad |f|_{2}^{2} = \sum_{x} f_{x}^{2}$ Using Chebyshev's inequality $\Pr[|Y_i - f_x| > \epsilon |f|_2] \le \frac{1}{d\epsilon^2} \le \frac{1}{3} \qquad d = \frac{3}{\epsilon^2}$

Finally, use analysis of median-trick with $w = \log\left(\frac{1}{\delta}\right) \leftarrow K = \xi \int_{C}$

Final Guarantees

• Using space $O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\log(n)\right)$, for any query x, we get an estimate, with prob $1 - \delta$

$$f_x - \epsilon |f|_2 \le f_x \le f_x + \epsilon |f|_2$$

Comparisons

Algorithm	$\hat{f}_x - f_x$	Space $ imes log(n)$	Error prob	Model
Misra-Gries	$\left[-\epsilon f _{1},0\right]$	$1/\epsilon$		Insert Only
SpaceSaving	$[0,\epsilon f _1]$	$1/\epsilon$	—) O	Insert Only
CountMin	$[0,\epsilon f _1]$	$\log\left(\frac{1}{\delta}\right)/\epsilon$	$\rightarrow \delta$	Insert+Delete, 〈 strict turnstile
CountSketch	$[-\epsilon f _2,\epsilon f _2]$	$\log\left(\frac{1}{\delta}\right)/\epsilon^2$	δ	Insert+Delete

Summary A_1, \dots, A_k

- CM and Count Sketch to answer point queries about frequencies ۲

 - Linear sketch, hence can be combined across distributed streams
- Count Sketch handle departures naturally •
 - Even if –ve frequencies are present
 - For CM, need strict turnstile
- Extensions to handle range queries and others... ٠
- Actual performance much better than theoretical bound *C* ۲

References:

- Count-sketch:
 - Lecture slides by Graham Cormode <u>http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf</u>
 - Lecture notes by Amit Chakrabarti: <u>http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf</u>
 - Sketch techniques for approximate query processing, Graham Cormode. <u>http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf</u>
- Moment estimation:
 - Mining massive Datasets by Leskovec, Rajaraman, Ullman