
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

• Data is seen as incoming sequence
– can be just element-ids, or ids +frequency updates

• Arrival only streams

• Arrival + departure
– Negative updates to frequencies possible

– Can represent fluctuating quantities, e.g. monitoring databases.

3

Frequency Estimation

• Given the input stream, answer queries about item
frequencies at the end
– Useful in many practical applications e.g. finding most popular pages

from website logs, detecting DoS attacks, database optimization

• Also used as subroutine in many problems
– Entropy estimation, TF-IDF, Language models etc

4

Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to
answer all frequency queries exactly?

– No

Q2. Can we create a sketch to answer frequencies of the “most frequent”
elements exactly?

– No

Q3. Sketch to estimate frequencies of “most frequent” elements
approximately?

– YES!

5

Approximate Heavy Hitters

• Given an update stream of length 𝑚, find out all elements that occur
“frequently”

– e.g. at least 1% of the time

– cannot be done in sublinear space, one pass

• Find out elements that occur at least 𝜙𝑚 times, and none that appears
< (𝜙 − 𝜖)𝑚 times

– Error 𝜖

– Related question: estimate each frequency with error ±𝜖𝑚

6

Majority Algorithm
• Whether any item in a stream has majority at a given time:

– Strict majority: >N/2

• Arrivals only model

• Start with a counter set to zero

• For each item
– if counter = 0, pick new item and increment counter

– else if new item is same as item in hand, increment counter

– else decrement counter

7

Majority Algorithm

• Start with a counter set to zero

• For each item
– if counter = 0, pick new item and increment counter

– else if new item is same as item in hand, increment counter

– else decrement counter

• If there is a majority item, it is in hand at the end

• Proof: Since majority occurs > N/2 times, not all occurrences can be
cancelled out

8

Frequent count [Misra-Gries]

• Keep 𝑘 counters and items in hand

Initialize:

– Set all counters to 0

Process(𝑥)

– if 𝑥 is same as any item in hand, increment its counter

– else if number of items < 𝑘, store 𝑥 with counter = 1

– else drop 𝑥 and decrement all counters

Query(𝑞)

– If 𝑞 is in hand return its counter, else 0

9

Frequent count

• 𝑓𝑥 be the true frequency of element 𝑥

• At the end, some set of elements is stored with
counter values

• If 𝑞𝑢𝑒𝑟𝑦 𝑦 in hand, ෡𝑓𝑦 = counter value, else ෡𝑓𝑦 = 0

10

Theoretical Bound

Claim: No element with frequency > 𝑚/𝑘 is
missed at the end

Intuition: Each decrement (including drop) is
charged with 𝑘 arrivals. Therefore, will have
some copy of an item with frequency > 𝑚/𝑘

11

Stronger Claim

Choose 𝑘 =
1

𝜖
. For every item 𝑥, with frequency

𝑓𝑥 the algo can return an estimate ෡𝑓𝑥 such that

Same intuition, whenever we drop a copy of
item 𝑥, we also drop 𝑘 − 1 copies of other items

12

𝑓𝑥 − 𝜖𝑚 ≤ ෡𝑓𝑥 ≤ 𝑓𝑥

Summary

• Simple deterministic algorithm to estimate heavy
hitters
– Works only in the arrival model

• Proposed in 1982, rediscovered multiple times with
modifications

• Our next lecture will discuss other algorithms

13

Space saving

Space Saving Algorithm

• Keep 𝑘 counters and items in hand

Initialize:

– Set all counters to 0

Process(𝑥)

– if 𝑥 is same as any item in hand, increment its counter

– else if number of items < 𝑘, store 𝑥 with counter = 1

– else replace item with smallest counter by 𝑥, increment
counter

Query(𝑞)

– If 𝑞 is in hand return its counter, else 0

15

Analysis

• Claim 1: All items with true count > 𝜖𝑚 are present in hand
at the end

• Claim 2: For every element x, the estimate መ𝑓𝑥 satisfies:

𝑓𝑥 ≤ መ𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚

16

Analysis

Claim 1: All items with true count > 𝜖𝑚 are present in hand at
the end

• Smallest counter value, 𝑚𝑖𝑛, is at most 𝜖𝑚
– Counters sum to 𝑚, by induction

– 1/𝜖 counters, so average is 𝜖𝑚, hence smallest is less

• True count of an uncounted item is between 0 and 𝑚𝑖𝑛

– Proof by induction, true initially, 𝑚𝑖𝑛 increases
monotonically

– Consider last time the item was dropped

17

Counter based vs “sketch” based

• Counter based methods

– Misra-Gries, Space-Saving, ….

– Work for arrival only streams

– In practice somewhat more efficient: space, and especially update time

• Sketch based methods

– “Sketch” is informally defined as a “compact” data structure that allows both inserts
and deletes

– Use hash functions to compute a linear transform of the input

– Work naturally for arrivals + departure

18

Count-Min Sketch

Count-min sketch

• Model input stream as a vector over 𝑈

– 𝑓𝑥 is the entry for dimension 𝑥

• Creates a small summary 𝑤 × 𝑑

• Use 𝑤 hash functions, each maps 𝑈 → [1, 𝑑]

20

w

d

Count Min Sketch

Initialize

– Choose ℎ1, . . , ℎ𝑤, 𝐴 𝑤, 𝑑 ← 0

Process 𝑥, 𝑐 :

– For each 𝑖 ∈ 𝑤 , 𝐴 𝑖, ℎ𝑖(𝑥) += 𝑐

Query 𝑞 :

– Return min
𝑖
𝐴[𝑖, ℎ𝑖(𝑥)]

21

22

Example

22

h1 h2

2 1

1 2

1 3

3 2

h1

h2

Guarantees

Space = 𝑂 𝑤𝑑

Update time = 𝑂(𝑤)

Each item is mapped to one bucket per row

23

𝑥, +𝑐

Guarantees

𝑑 =
2

𝜖
w = log

1

𝛿

𝑌1… . 𝑌𝑤 be the 𝑤 estimates, i.e. 𝑌𝑖 = 𝐴 𝑖, ℎ𝑖 𝑥 , ෡𝑓𝑥 = min 𝑌𝑖
𝑖

Each estimate ෡𝑓𝑥 always satisfies ෡𝑓𝑥 ≥ 𝑓𝑥

𝐸 𝑌𝑖 = σ𝑦:ℎ𝑖 𝑦 =ℎ𝑖(𝑥)
𝑓𝑦 = 𝑓𝑥 + 𝜖 𝑚 − 𝑓𝑥 /2

24

Guarantees

d =
2

𝜖
w = log

1

𝛿

𝑌1… . 𝑌𝑤 be the 𝑤 estimates, i.e. 𝑌𝑖 = 𝐴 𝑖, ℎ𝑖 𝑥 , ෡𝑓𝑥 = min 𝑌𝑖
𝑖

Each estimate ෡𝑓𝑥 always satisfies ෡𝑓𝑥 ≥ 𝑓𝑥

𝐸 𝑌𝑖 = ෍

𝑦:ℎ𝑖 𝑦 =ℎ𝑖(𝑥)

𝑓𝑦 = 𝑓𝑥 + 𝜖 𝑚 − 𝑓𝑥 /2

Applying Markov’s inequality,

25

Pr 𝑌𝑖 − 𝑓𝑥 > 𝜖𝑚 ≤
𝜖 𝑚 − 𝑓𝑥

2𝜖𝑚
≤
1

2

Guarantee

• Since we are taking minimum of log
1

𝛿
such random variables,

• Hence, with probability 1 − 𝛿, for any query 𝑥

26

Pr ෡𝑓𝑥 > 𝑓𝑥 + 𝜖𝑚 ≤ 2
− log

1
𝛿 ≤ 𝛿

𝑓𝑥 ≤ ෡𝑓𝑥 ≤ 𝑓𝑥 + 𝜖𝑚

Summary

• Two algorithms for frequency estimation

– Counter based: Space Saving

– Sketch based: Count-Min

• Guiding principle: use error bounds as design parameters of
the data structure

• More to come…

27

28

References:

• Primary references for this lecture
• Lecture slides by Graham Cormode

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
• Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-

streams-lecnotes.pdf
• Sketch techniques for approximate query processing, Graham Cormode.

http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

