
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Count distinct

Streaming problem: distinct count

• Universe is 𝑈, number of distinct elements = m, stream
size is 𝑛
– Example: 𝑈 = all IP addresses

– IPs can repeat
– Want to estimate the number of distinct elements in the

stream

3

10.1.21.10, 10.93.28,1,…..,98.0.3.1,…..10.93.28.1…..

Other applications

• Universe = set of all k-grams, stream is
generated by document corpus
– need number of distinct k-grams seen in corpus

• Universe = telephone call records, stream
generated by tuples (caller, callee)
– need number of phones that made > 0 calls

4

Solutions

5

• Seen 𝑛 elements from stream with elements from 𝑈.

• Naïve solution: 𝑂(𝑛 𝑙𝑜𝑔|𝑈|) space
– Store all elements, sort and count distinct
– Store a hashmap, insert if not present

• Bit array: O(|U|) space:
– Bits initialized to 1 only if element seen in stream

• Can we do this in less space ?

Approximations

• 𝜖, 𝛿 −approximations
– Algorithm will use random hash functions
– Will return an answer /𝑛 such that

– This will happen with probability 1 − 𝛿 over the randomness of the
algorithm

6

1 − 𝜖 𝑛 ≤ /𝑛 ≤ 1 + 𝜖 𝑛

First effort

• Stream length: 𝑛, distinct elements: 𝑚
• Proposed algo: Given space 𝑠, sample 𝑠 items from the

stream
– Find the number of distinct elements in this set: 5𝑚

– return m = 5𝑚× 8
9

• Not a constant factor approximation
– 1,1,1,1,…..1,2,3,4,….,n-1

𝑚 − 𝑛 + 1

Linear Counting

• Bit array 𝐵 of size 𝑚, initialized to all zero
• Hash function ℎ: 𝑈 → [𝑚]
• When seeing item 𝑥 , set 𝐵 ℎ 𝑥 = 1

8

Linear Counting

• Bit array 𝐵 of size 𝑚, initialized to all zero
• Hash function ℎ: 𝑈 → [𝑚]
• When seeing item 𝑥 , set 𝐵 ℎ 𝑥 = 1

• 𝑧B = fraction of zero entries

• Return estimate −m log(FG
B
)

9

Linear Counting Analysis

• Pr[position remaining 0] = 1 − H
B

8
≈ 𝑒K

L
G

• Expected number of positions at zero: E zO = 𝑚𝑒K8/B

• Using tail inequalities we can show this is concentrated
• Typically useful only for 𝑚 = Θ(𝑛), often useful in

practice

10

Flajolet Martin Sketch

Flajolet Martin Sketch

• Components
– “random” hash function ℎ: 𝑈 → 2ℓ for some large ℓ
– ℎ(𝑥) is a ℓ −length bit string
– initially assume it is completely random, can relax

• 𝑧𝑒𝑟𝑜 𝑣 = position of rightmost 1 in bit representation of 𝑣
= max{ 𝑖 , 2Z 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 𝑣 }

– 𝑧𝑒𝑟𝑜𝑠 10110 = 1, 𝑧𝑒𝑟𝑜𝑠 110101000 = 3

12

Flajolet Martin Sketch

Initialize:
– Choose a “random” hash function ℎ: 𝑈 → 2ℓ

– 𝑧 ← 0
Process(x)

– if 𝑧𝑒𝑟𝑜𝑠 ℎ 𝑥 > 𝑧, z ← 𝑧𝑒𝑟𝑜𝑠(ℎ 𝑥)
Estimate:
– return 2FaH/b

13

Example

14

h(.)

0110101

1011010

1000100

1111010

Space usage

• We need ℓ ≥ 𝐶 log 𝑛 for some 𝐶 ≥ 3, say
– by birthday paradox analysis, no collisions with high prob

• Sketch : 𝑧 , needs to have only 𝑂(log log 𝑛) bits

• Total space usage = 𝑂(log 𝑛 + log log 𝑛)

15

Intuition

• Assume hash values are uniformly distributed
• The probability that a uniform bit-string

– is divisible by 2 is ½
– is divisible by 4 is ¼
– ….

– is divisible by 2e is Hbf
• We don’t expect any of them to be divisible by 2ghij 8 aH

16

Formalizing intuition

• 𝑆 = set of elements that appeared in stream

• For any 𝑟 ∈ ℓ , 𝑗 ∈ [𝑛], 𝑋op = indicator of zeros(ℎ 𝑗) ≥ 𝑟

• 𝑌o = number of 𝑗 ∈ 𝑈 such that zeros(ℎ 𝑗) ≥ 𝑟
𝑌o =u

p∈v

𝑋op

• Let 𝑧̂ be final value of 𝑧 after algo has seen all data

17

Proof of FM

• 𝑌o > 0 ⟷ 𝑧̂ ≥ 𝑟 , equivalently, 𝑌o = 0 ⟷ 𝑧̂ < 𝑟

• 𝐸 𝑌o = ∑p∈v 𝐸 𝑋op

• 𝐸 𝑌o = 8
b|

• 𝑣𝑎𝑟 𝑌o = ∑p∈v 𝑣𝑎𝑟 𝑋op ≤ ∑p∈v 𝐸 𝑋opb

18

𝑋op = ~1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏
1
2o

0 𝑒𝑙𝑠𝑒

Proof of FM

• 𝑣𝑎𝑟 𝑌o ≤ ∑p∈v 𝐸 𝑋opb ≤ 𝑛/2o

19

Pr 𝑌o > 0 = Pr 𝑌o ≥ 1 ≤
𝐸 𝑌o
1

=
𝑛
2o

Pr 𝑌o = 0 ≤ Pr 𝑌o − 𝐸 𝑌o ≥ 𝐸 𝑌o ≤
𝑣𝑎𝑟 𝑌o
𝐸 𝑌o b ≤

2o

𝑛

Upper bound

Returned estimate /𝑛 = 2F̂aH/b

𝑎 = smallest integer with 2�aH/b ≥ 4𝑛

Pr /𝑛 ≥ 4𝑛 = Pr 𝑧̂ ≥ 𝑎 = Pr 𝑌� > 0 ≤
𝑛
2�

≤
2
4

20

Lower bound

Returned estimate /𝑛 = 2F̂aH/b

𝑏 = largest integer with 2�aH/b ≤ 𝑛/4

Pr /𝑛 ≤
𝑛
4

= Pr 𝑧̂ ≤ 𝑏 = Pr 𝑌�aH = 0 ≤
2�aH

𝑛
≤

2
4

21

Understanding the bound

• By union bound, with prob 1 − b
b
,

• Can get somewhat better constants
• Need only 2-wise independent hash functions,

since we only used variances

22

𝑛
4
≤ /𝑛 ≤ 4𝑛

Improving the probabilities

• To improve the probabilities, a common trick: median of estimates

• Create 5𝑧H, 5𝑧b,…., �𝑧e in parallel
– return median

• Expect at most b
�
𝑘 of them to exceed 4𝑛

• But if median exceeds 4𝑛 , then e
b

of them does à using Chernoff
bound this prob is exp(−Ω 𝑘)

23

Improving the probabilities
• To improve the probabilities, a common trick: median of

estimates

• Create 5𝑧H, 5𝑧b,…., �𝑧e in parallel
– return median

• Using Chernoff bound, can show that median will lie in
8
�
, 4𝑛 with probability 1 − exp(−Ω 𝑘).

• Given error prob 𝛿, choose 𝑘 = O(log H
�
)

24

Summary

• Streaming model– useful abstraction
– Estimating basic statistics also nontrivial

• Estimating number of distinct elements
– Linear counting
– Flajolet Martin

25

k-minimum value Sketch

k-MV sketch

• Developed in an effort to get better accuracy
– Flajolet Martin only give multiplicative accuracy

• Additional capabilities for estimating cardinalities of
union and intersection of streams
– If 𝑆H and 𝑆b are two streams, can compute their union sketch

from individual sketches of 𝑆H and 𝑆b

27

[kMV sketch slides courtesy Cohen-Wang]

Intuition

• Suppose ℎ: 𝑈 → [0,1] is random hash function such
that ℎ 𝑥 ∼ 𝑈 0,1 for all 𝑥 ∈ 𝑈

• Maintain min-hash value 𝑦
– initialize 𝑦 ← 1
– For each item 𝑥Z, 𝑦 ← min(𝑦, ℎ 𝑥Z)

• Expectation of minimum is 𝐸[min
Z
ℎ(𝑥Z)] =

H
8aH

28

Why is expectation of min = H
8aH

?

• Imagine a circle instead of [0, 1]
• Choose 𝑛 + 1 points uniformly at random
• 𝑛 + 1 intervals are formed

• Expected length of each interval is H
8aH

• Think of the first point as the place to cut the circle!

29

k-minimum value sketch

Initialize:
– 𝑦H, . . 𝑦e ← 1,…1
– Unifom random hash functions ℎH,… , ℎe, ℎZ: 𝑈 → [0,1]

Process 𝑥 :
– For all 𝑗 ∈ 𝑘 , 𝑦p ← min(𝑦p, ℎp 𝑥Z)

Estimate:

– return median-of-means(H�H
, … , H�f)

30

Median-of-means

• Given (𝜖, 𝛿) , choose 𝑘 = �
�j log(

H
�)

• Group 𝑡H, … 𝑡e into log(H�) groups of size ��j each

• Find mean 𝑡Z for each group: 𝑍H,…𝑍ghi(��)

• Return /𝑛 =median of 𝑍H,…𝑍ghi(��)

31

Example

32

h1 h2 h3 h4
.45 .19 .10 .92

.35 .51 .71 .20

.21 .07 .93 .18

.14 .70 .50 .25

Complexity

• Total space required =
𝑂(𝑘 log 𝑛) = 𝑂(H

�j
log 𝑛 log(H

�
))

– can be improved
– don’t need floating points, can use ℎ: 𝑈 → 2ℓ as before
– can do with k-wise universal hash functions

• Update time per item = 𝑂(𝑘)
– However, can show that most items will not result in updates

33

Theoretical Guarantees

With probability 1 − 𝛿, returns /𝑛 satisfies

Proof is simple application of expectation and
Chernoff bound

34

1 − 𝜖 𝑛 ≤ /𝑛 ≤ 1 + 𝜖 𝑛

Merging

• For two stream 𝑆H and 𝑆b use same set of
hash functions
– Stream 𝑆Z has sketch (𝑦HZ , … , 𝑦eZ)

• For each j ∈ 𝑘 , find the combined sketch as:
– y� = min(𝑦pH, 𝑦pb)

• Gives estimate of 𝑆H ∪ 𝑆b
35

References:

• Primary reference for this lecture
• Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-

streams-lecnotes.pdf

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

