CS60021: Scalable Data Mining

Streaming Algorithms



Data Streams

* In many data mining situations, we do not know the entire data
set in advance

* Stream Management is important when the input rate is controlled
externally:
— Google Trends
— Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)



The Stream Model

* Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)
— We call elements of the stream tuples

* The system cannot store the entire stream
accessibly

* Q: How do you make critical calculations about
the stream using a limited amount of
(secondary) memory?



General Stream Processing Model
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Reservoir Sampling



Maintaining a fixed-size sample

* Problem: Fixed-size sample
e Suppose we need to maintain a random
sample S of size exactly s tuples
— E.g., main memory size constraint

Why? Don’t know length of stream in advance

* Suppose at time n we have seen n items
— Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

Stream:ixcyﬁkcdeg...
J

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random




Solution: Fixed Size Sample
* Algorithm (a.k.a. Reservoir Sampling)
— Store all the first s elements of the streamto S

— Suppose we have seen n-1 elements, and now
the nth element arrives (n > s)
* With probability s/n, keep the nt" element, else discard it

* If we picked the nt" element, then it replaces one of the
s elements in the sample S, picked uniformly at random

* Claim: This algorithm maintains a sample §
with the desired property:

— After n elements, the sample contains each element seen
so far with probability s/n



Proof: By Induction

 We prove this by induction:
— Assume that after n elements, the sample contains each
element seen so far with probability s/n

— We need to show that after seeing element n+1 the
sample maintains the property
» Sample contains each element seen so far with probability s/(n+1)

e Base case:

— After we see n=s elements the sample S has the desired
property
» Each out of n=s elements is in the sample with probability s/s = 1



Proof: By Induction

Inductive hypothesis: After n elements, the sample S contains
each element seen so far with prob. s/n

Now element n+1 arrives

Inductive step: For elements already in S, probability that the
algorithm keepsitin Sis:

(-

Element n+1 Element in the
not discarded sample not picked

So, at time n, tuples in S were there with prob. s/n

Element n+1 discarded

Time n—n+1, tuple stayed in S with prob. n/(n+1)
s, __3
n n+l n+1

So prob. tupleisin Sattime n+1 =



Bloom Filters



Querying

ISBN present in collection?

IP seen by switch?
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Solutions

* Universe U, but need to store a set of nitems, n < |U]|
* Hash table of size m:
— Space O(nlog|U))

— Query time 0( )

n
m
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Exact Solutions

* Universe U, but need to store a set of nitems, n < |U]|

 Hash table of size m:
— Space O(nlog|U))

— Query time O (%)
e Bit array of size |U|
— Space = |U|

— Query time 0(1)
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Querying, Monte Carlo style

In hash table construction, we used random hash functions
— we never return incorrect answer
— query time is a random variable
— These are Las Vegas algorithms

In Monte-Carlo randomized algorithms, we are allowed to
return incorrect answers with (small) probability, say, 0
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Bloom filter

[Bloom, 1970]

 Abit-array B, |B| = m
* k hash functions, h{, hy, ..., hy, each h; € U - |m]
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Bloom filter

 Abit-array B, |B| = m
* k hash functions, h{, hy, ..., hy, each h; € U - |m]
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Operations

* Initialize(B)
— fori € {1,..m}, B[i]=0

* Insert (B, x)
— fori €{1,..k}, Blh;(x)] =1

* Lookup (B,x)
— If Aieqs,.. iy B[Ri(x)] , return PRESENT, else ABSENT
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Bloom Filter

If the element x has been added to the Bloom filter, then

Lookup (B, X) always return PRESENT
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Bloom Filter

If the element x has been added to the Bloom filter, then

Lookup(B, X) always return PRESENT

* If x has not been added to the filter before?
— Lookup sometimes still return PRESENT

Sl
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Designing Bloom Filter

Want to minimize the probability that we return a
false positive

Parameters m = |B| and k = number of hash
functions

k =1 = normal bit-array

What is effect of changing k?



Effect of number of hash functions

* Increasing k

— Possibly makes it harder for false positives to
happen in Lookup because of Ajegq gy B[hi(x)]

— But also increases the number of filled up
positions

 We can analyse to find out an “optimal k”



False positive analysis

* m = |B|, nelements inserted

* If x has not been inserted, what is the

probability that Lookup (B, x) returns
PRESENT?



False positive analysis

* m = |B|, nelements inserted

* If x has not been inserted, what is the

probability that Lookup (B, x) returns
PRESENT?

* Assume {hq, h,, ... h;} are independent and
Prih;(1) =j]| = —for all positions j



False positive analysis

Probability of a bit being zero:
kn

1 kn
PB-=O=(1——) ~e m
[ j ] - €
The expected number of zero bits is given by:
me—kn/m.

knk

Pllookup(B,x) = PRESENT] = (1 —e m

We can choose k to minimize this probability.



Choosing number of hash
functions

—kn/m

° p = e
* Log (False Positive) =

log(1 — p)* = klog(1 —p) = ——log(p) log(1 - p)

Minimized at p = %, i.,e. k = mlog(2)/n
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Bloom filter design

* This “optimal” choice gives false positive =
2—m log(2)/n

* If we want a false positive rate of § , setm =
[log(%)n]

log?(2)

Example: If we want 1% FPR, we need 7 hash functions
and total 10n bits
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Applications

Widespread applications whenever small false positives are
tolerable

Used by browsers

— to decide whether an URL is potentially malicious: a BF is used in browser, and
positives are actually checked with the server.

Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF
to avoid disk lookups for non-existent rows/columns

Bitcoin for wallet synchronization....



Handling deletions

e Chief drawback is that BF does not allow

deletions
[Fan et al 00]

* Counting Bloom Filter

— Every entry in BF is a small counter rather than a single bit
— Insert(x) increments all counters for {h;(x)} by 1

— Delete(x) decrements all {h;(x)} by 1

— maintains 4 bits per counter

— False negatives can happen, but only with low probability
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