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Data Streams
• In many data mining situations, we do not know the entire data 

set in advance

• Stream Management is important when the input rate is controlled 
externally:
– Google Trends
– Twitter or Facebook status updates

• We can think of the data as infinite and 
non-stationary (the distribution changes 
over time)

2



The Stream Model

• Input elements enter at a rapid rate, 
at one or more input ports (i.e., streams)
– We call elements of the stream tuples

• The system cannot store the entire stream 
accessibly

• Q: How do you make critical calculations about 
the stream using a limited amount of 
(secondary) memory?



General Stream Processing Model
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Reservoir Sampling



Maintaining a fixed-size sample

• Problem: Fixed-size sample
• Suppose we need to maintain a random

sample S of size exactly s tuples
– E.g., main memory size constraint

• Why? Don’t know length of stream in advance
• Suppose at time n we have seen n items

– Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2
Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n= 7, each of the first 7 tuples is included in the sample S with equal prob.
Impractical solution would be to store all the n tuples seen 
so far and out of them pick s at random



• Algorithm (a.k.a. Reservoir Sampling)
– Store all the first s elements of the stream to S
– Suppose we have seen n-1 elements, and now 

the nth element arrives (n > s)
• With probability s/n, keep the nth element, else discard it
• If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

• Claim: This algorithm maintains a sample S
with the desired property:
– After n elements, the sample contains each element seen 

so far with probability s/n

Solution: Fixed Size Sample



Proof: By Induction

• We prove this by induction:
– Assume that after n elements, the sample contains each 

element seen so far with probability s/n
– We need to show that after seeing element n+1 the 

sample maintains the property
• Sample contains each element seen so far with probability s/(n+1)

• Base case:
– After we see n=s elements the sample S has the desired 

property
• Each out of n=s elements is in the sample with probability s/s = 1



Proof: By Induction

1
1

11
1

+
=÷

ø
ö

ç
è
æ -
÷
ø
ö

ç
è
æ

+
+÷
ø
ö

ç
è
æ

+
-

n
n

s
s

n
s

n
s

Element n+1 discarded Element n+1
not discarded

Element in the 
sample not picked



Bloom Filters



Querying
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ISBN present in collection?

IP seen by switch?

10.0.21.102



Solutions
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Exact Solutions
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Querying, Monte Carlo style
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Bloom filter
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[Bloom, 1970]



Bloom filter
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Operations
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Bloom Filter
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Bloom Filter
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Designing Bloom Filter
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Effect of number of hash functions
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False positive analysis
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False positive analysis
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False positive analysis
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• Probability of a bit being zero:

𝑃 𝐵# = 0 = 1 −
1
𝑚

)*

≈ 𝑒-
)*
.

• The expected number of zero bits is given by: 
𝑚𝑒-)*/..

• 𝑃 𝑙𝑜𝑜𝑘𝑢𝑝 𝐵, 𝑥 = 𝑃𝑅𝐸𝑆𝐸𝑁𝑇 = 1 − 𝑒-
<=
>

)

• We can choose 𝑘 to minimize this probability.



Choosing number of hash 
functions
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Bloom filter design
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Applications

• Widespread applications whenever small false positives are 
tolerable

• Used by browsers
– to decide whether an URL is potentially malicious: a BF is used in browser, and 

positives are actually checked with the server. 

• Databases e.g. BigTable, HBase, Cassandra, Postgrepsql use BF 
to avoid disk lookups for non-existent rows/columns

• Bitcoin for wallet synchronization….
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Handling deletions
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[Fan et al 00]
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