
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:

• Outline:

– What is Big Data?

– Issues with Big Data

– What is Hadoop ?

– What is Map Reduce ?

– Example Map Reduce program.

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk
– ~4 months to read the data

• ~ 400 hard drives to store the data

• Takes even more to do something useful with the data!

• Today, a standard architecture for such problems is emerging:
– Cluster of commodity Linux nodes
– Commodity network (ethernet) to connect them

3

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

4

Large-scale Computing

• Large-scale computing for data mining problems on commodity
hardware

• Challenges:

– How do you distribute computation?

– How can we make it easy to write distributed programs?

– Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• People estimated Google had ~1M machines in 2011

– 1,000 machines fail every day!

5

Big Data Challenges

• Scalability: processing should scale with increase in data.

• Fault Tolerance: function in presence of hardware failure

• Cost Effective: should run on commodity hardware

• Ease of use: programs should be small

• Flexibility: able to process unstructured data

• Solution: Map Reduce !

Idea and Solution

• Issue: Copying data over a network takes time

• Idea:

– Bring computation close to the data

– Store files multiple times for reliability

• Map-reduce addresses these problems

– Elegant way to work with big data

– Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS

– Programming model

• Map-Reduce

7

Storage Infrastructure

• Problem:
– If nodes fail, how to store data persistently?

• Answer:
– Distributed File System:

• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
– Huge files (100s of GB to TB)
– Data is rarely updated in place
– Reads and appends are common

8

What is Hadoop ?

• A scalable fault-tolerant distributed system for data storage
and processing.

• Core Hadoop:
• Hadoop Distributed File System (HDFS)

• Hadoop YARN: Job Scheduling and Cluster Resource Management

• Hadoop Map Reduce: Framework for distributed data processing.

• Open Source system with large community support.
https://hadoop.apache.org/

What is Map Reduce ?

• Method for distributing a task across multiple servers.

• Proposed by Dean and Ghemawat, 2004.

• Consists of two developer created phases:
• Map

• Reduce

• In between Map and Reduce is the Shuffle and Sort phase.

• User is responsible for casting the problem into map – reduce framework.

• Multiple map-reduce jobs can be “chained”.

Programming Model: MapReduce

11

Task: Word Count

Case 1:
– File too large for memory, but all <word, count> pairs fit in memory

Case 2:

• Count occurrences of words:
– words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per a line

• Case 2 captures the essence of MapReduce
– Great thing is that it is naturally parallelizable

12

MapReduce: Overview

• Sequentially read a lot of data

• Map:
– Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:
– Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and
Reduce change to fit the problem

13

MapReduce: The Map Step

v
k

k v

k v

map

v
k

v
k

…

k v

map

Input

key-value pairs

Intermediate

key-value pairs

…

k v

14

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate

key-value pairs

Group
by key

reduce

reduce

k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups

Output

key-value pairs

More Specifically

• Input: a set of key-value pairs

• Programmer specifies two methods:

– Map(k, v) → <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

– E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

– Reduce(k’, <v’>*) → <k’, v’’>*

• All values v’ with same key k’ are reduced together
and processed in v’ order

• There is one Reduce function call per unique key k’

MapReduce: Word Counting

The crew of the space shuttle

Endeavor recently returned to Earth

as ambassadors, harbingers of a

new era of space exploration.

Scientists at NASA are saying that

the recent assembly of the Dextre

bot is the first step in a long-term

space-based man/mache

partnership. '"The work we're doing

now -- the robotics we're doing -- is

what we're going to need

……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)
(space, 1)

(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and produces
a set of key-value pairs

Group by key:
Collect all pairs with same

key

Reduce:
Collect all values

belonging to the key and
output

(key, value)

Provided by the

programmer

Provided by the

programmer

(key, value)(key, value)

Se
q

u
en

ti
al

ly
 r

ea
d

 t
h

e
d

at
a

O
n

ly

se
q

u
en

ti
al

 r

ea
d

s

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the

document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over

counts

result = 0

for each count v in values:

result += v

emit(key, result)

HADOOP

Map Phase

• User writes the mapper method.

• Input is an unstructured record:
• E.g. A row of RDBMS table,

• A line of a text file, etc

• Output is a set of records of the form: <key, value>
• Both key and value can be anything, e.g. text, number, etc.

• E.g. for row of RDBMS table: <column id, value>

• Line of text file: <word, count>

Shuffle/Sort phase

• Shuffle phase ensures that all the mapper output records with the
same key value, goes to the same reducer.

• Sort ensures that among the records received at each reducer,
records with same key arrives together.

Reduce phase

• Reducer is a user defined function which processes mapper
output records with some of the keys output by mapper.

• Input is of the form <key, value>
• All records having same key arrive together.

• Output is a set of records of the form <key, value>
• Key is not important

Parallel picture

Example

Word Count: Count the total no. of occurrences of each word

Map Reduce - Example

What was the max/min temperature for the last century ?

Hadoop Map Reduce

❑ Provides:
❑ Automatic parallelization and Distribution

❑ Fault Tolerance

❑ Methods for interfacing with HDFS for colocation of computation and storage of output.

❑ Status and Monitoring tools

❑ API in Java

❑ Ability to define the mapper and reducer in many languages through Hadoop streaming.

HDFS

What’s HDFS

• HDFS is a distributed file system that is fault tolerant, scalable and
extremely easy to expand.

• HDFS is the primary distributed storage for Hadoop applications.

• HDFS provides interfaces for applications to move themselves closer to
data.

• HDFS is designed to ‘just work’, however a working knowledge helps in
diagnostics and improvements.

Components of HDFS

There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem, it maintains
and manages the file system metadata. E.g; what blocks make
up a file, and on which datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are
usually quite a few of these.

HDFS

• Design Assumptions
• Hardware failure is the norm.

• Streaming data access.

• Write once, read many times.

• High throughput, not low latency.

• Large files.

• Characteristics:
• Performs best with modest number of large files

• Optimized for streaming reads

• Layer on top of native file system.

HDFS

• Data is organized into file and directories.

• Files are divided into blocks and distributed to nodes.

• Block placement is known at the time of read

• Computation moved to same node.

• Replication is used for:

• Speed

• Fault tolerance

• Self healing.

HDFS Architecture

NameNode Metadata

• Meta-data in Memory

– The entire metadata is in main memory

– No demand paging of meta-data

• Types of Metadata

– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g creation time, replication factor

• A Transaction Log

– Records file creations, file deletions. etc

DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores meta-data of a block (e.g. CRC)

– Serves data and meta-data to Clients

• Block Report

– Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes

HDFS – User Commands (dfs)

List directory contents

Display the disk space used by files

hdfs dfs –ls

hdfs dfs -ls /

hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/

hdfs dfs -du -h /hbase/data/hbase/namespace/

hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS – User Commands (dfs)

Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata

hdfs dfs -ls

hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata

hdfs dfs -ls –R

cd tutorials/data/

hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs

md5sum geneva.csv geneva.csv.hdfs

HDFS – User Commands (acls)

List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt

hdfs dfs -ls –R

hdfs dfs -cat tdataset/tfile.txt

HDFS read client

Source: Hadoop: The Definitive Guide

HDFS write Client

Source: Hadoop: The Definitive Guide

Block Placement

• Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable

NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)

Data Pipelining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• Usually, when all replicas are written, the Client moves on to write the next

block in file

46

Conclusion:

• We have seen:
• The structure of HDFS.
• The shell commands.
• The architecture of HDFS system.
• Internal functioning of HDFS.

MAPREDUCE INTERNALS

Hadoop Map Reduce

• Provides:
• Automatic parallelization and Distribution

• Fault Tolerance

• Methods for interfacing with HDFS for colocation of computation and storage of output.

• Status and Monitoring tools

• API in Java

• Ability to define the mapper and reducer in many languages through Hadoop streaming.

Wordcount program

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

Wordcount program - Main

public class WordCount {

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

} }

Wordcount program - Mapper

public static class TokenizerMapper extends Mapper<Object, Text, Text,

IntWritable>{

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken()); context.write(word, one);

}

}

}

Wordcount program - Reducer

public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context context
)

throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

Wordcount program - running

export JAVA_HOME=[Java home directory]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]

Wordcount in python

Mapper.py

Wordcount
in python

Reducer.py

Execution code
bin/hadoop dfs -ls

bin/hadoop dfs –copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file

wordcount-py.example/mapper.py -mapper wordcount-

py.example/mapper.py -file wordcount-py.example/reducer.py -reducer

wordcount-py.example/reducer.py -input example -output java-output

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Map Reduce Data Flow

Hadoop MR Data Flow

Source: Hadoop: The Definitive Guide

Shuffle and sort

Source: Hadoop: The Definitive Guide

Data Flow

62

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Fault tolerance

❑Comes from scalability and cost effectiveness

❑HDFS:
❑Replication

❑Map Reduce
❑Restarting failed tasks: map and reduce

❑Writing map output to FS

❑Minimizes re-computation

Coordination: Master

65

Failures

❑Task failure
❑Task has failed – report error to node manager, appmaster, client.

❑Task not responsive, JVM failure – Node manager restarts tasks.

❑Application Master failure

❑Application master sends heartbeats to resource manager.

❑If not received, the resource manager retrieves job history of the run tasks.

❑Node manager failure

Dealing with Failures

• Map worker failure
– Map tasks completed or in-progress at

worker are reset to idle

– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle

– Reduce task is restarted

• Master failure
– MapReduce task is aborted and client is notified

67

How many Map and Reduce jobs?

• M map tasks, R reduce tasks

• Rule of a thumb:
– Make M much larger than the number of nodes in the

cluster

– One DFS chunk per map is common

– Improves dynamic load balancing and speeds up
recovery from worker failures

• Usually R is smaller than M
– Because output is spread across R files

68

Task Granularity & Pipelining

• Fine granularity tasks: map tasks >> machines
– Minimizes time for fault recovery

– Can do pipeline shuffling with map execution

– Better dynamic load balancing

69

Refinements: Backup Tasks

• Problem
– Slow workers significantly lengthen the job completion time:

• Other jobs on the machine
• Bad disks
• Weird things

• Solution
– Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
– Dramatically shortens job completion time

70

Refinement: Combiners

• Often a Map task will produce many pairs of the form (k,v1), (k,v2),
… for the same key k
– E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:

– combine(k, list(v1)) → v2

– Combiner is usually same
as the reduce function

• Works only if reduce
function is commutative and associative

71

Refinement: Combiners

• Back to our word counting example:

– Combiner combines the values of all keys of a single
mapper (single machine):

– Much less data needs to be copied and shuffled!

72

Refinement: Partition Function

73

74

References:

• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of
Massive Datasets. 2nd edition. - Cambridge University Press.
http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

