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In this Lecture:

• Outline:

– What is Big Data?

– Issues with Big Data

– What is Hadoop ?

– What is Map Reduce ?

– Example Map Reduce program.



Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk
– ~4 months to read the data

• ~ 400 hard drives to store the data

• Takes even more to do something useful with the data!

• Today, a standard architecture for such problems is emerging:
– Cluster of commodity Linux nodes
– Commodity network (ethernet) to connect them
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Cluster Architecture
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Large-scale Computing

• Large-scale computing for data mining problems on commodity 
hardware

• Challenges:

– How do you distribute computation?

– How can we make it easy to write distributed programs?

– Machines fail:

• One server may stay up 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• People estimated Google had ~1M machines in 2011

– 1,000 machines fail every day!
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Big Data Challenges

• Scalability: processing should scale with increase in data.

• Fault Tolerance: function in presence of hardware failure

• Cost Effective: should run on commodity hardware

• Ease of use: programs should be small

• Flexibility: able to process unstructured data

• Solution: Map Reduce !



Idea and Solution

• Issue: Copying data over a network takes time

• Idea:

– Bring computation close to the data

– Store files multiple times for reliability

• Map-reduce addresses these problems

– Elegant way to work with big data

– Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS

– Programming model

• Map-Reduce
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Storage Infrastructure

• Problem:
– If nodes fail, how to store data persistently? 

• Answer:
– Distributed File System:

• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
– Huge files (100s of GB to TB)
– Data is rarely updated in place
– Reads and appends are common
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What is Hadoop  ?

• A scalable fault-tolerant distributed system for data storage 
and processing.

• Core Hadoop:
• Hadoop Distributed File System (HDFS)

• Hadoop YARN: Job Scheduling and Cluster Resource Management

• Hadoop Map Reduce: Framework for distributed data processing.

• Open Source system with large community support.
https://hadoop.apache.org/  



What is Map Reduce ?

• Method for distributing a task across multiple servers.

• Proposed by Dean and Ghemawat,  2004.

• Consists of two developer created phases:
• Map

• Reduce

• In between Map and Reduce is the Shuffle and Sort phase.

• User is responsible for casting the problem into map – reduce framework.

• Multiple map-reduce jobs can be “chained”.



Programming Model: MapReduce
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Task: Word Count

Case 1:
– File too large for memory, but all <word, count> pairs fit in memory

Case 2:

• Count occurrences of words:
– words(doc.txt) | sort | uniq -c

• where words takes a file and outputs the words in it, one per a line

• Case 2 captures the essence of MapReduce
– Great thing is that it is naturally parallelizable
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MapReduce: Overview

• Sequentially read a lot of data

• Map:
– Extract something you care about

• Group by key: Sort and Shuffle

• Reduce:
– Aggregate, summarize, filter or transform

• Write the result

Outline stays the same, Map and 
Reduce change to fit the problem
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MapReduce: The Map Step
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MapReduce: The Reduce Step
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More Specifically

• Input: a set of key-value pairs

• Programmer specifies two methods:

– Map(k, v) → <k’, v’>*

• Takes a key-value pair and outputs a set of key-value pairs

– E.g., key is the filename, value is a single line in the file

• There is one Map call for every (k,v) pair

– Reduce(k’, <v’>*) → <k’, v’’>*

• All values v’ with same key k’ are reduced together 
and processed in v’ order

• There is one Reduce function call per unique key k’



MapReduce: Word Counting
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Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the 

document

for each word w in value:

emit(w, 1)

reduce(key, values):

// key: a word; value: an iterator over 

counts

result = 0

for each count v in values:

result += v

emit(key, result)



HADOOP



Map Phase

• User writes the mapper method.

• Input is an unstructured record:
• E.g. A row of RDBMS table,

• A line of a text file, etc

• Output is a set of records of the form: <key, value>
• Both key and value can be anything, e.g. text, number, etc.

• E.g. for row of RDBMS table: <column id, value>

• Line of text file: <word, count>



Shuffle/Sort phase

• Shuffle phase ensures that all the mapper output records with the 
same key value, goes to the same reducer.

• Sort ensures that among the records received at each reducer, 
records with same key arrives together.



Reduce phase

• Reducer is a user defined function which processes mapper 
output records with some of the keys output by mapper.

• Input is of the form <key, value>
• All records having same key arrive together.

• Output is a set of records of the form <key, value>
• Key is not important



Parallel picture



Example

Word Count: Count the total no. of occurrences of each word



Map Reduce - Example

What was the max/min temperature for the last  century ?



Hadoop Map Reduce

❑ Provides:
❑ Automatic parallelization and Distribution

❑ Fault Tolerance

❑ Methods for interfacing with HDFS for colocation of computation and storage of output.

❑ Status and Monitoring tools

❑ API in Java

❑ Ability to define the mapper and reducer in many languages through Hadoop streaming.



HDFS



What’s HDFS

• HDFS is a distributed file system that is fault tolerant, scalable and 
extremely easy to expand.

• HDFS is the primary distributed storage for Hadoop applications.

• HDFS provides interfaces for applications to move themselves closer to 
data.

• HDFS is designed to ‘just work’, however a working knowledge helps in 
diagnostics and improvements.



Components of HDFS

There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem,  it maintains 
and manages the file system metadata. E.g; what blocks make 
up a file, and on which datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are 
usually quite a few of these.





HDFS

• Design Assumptions
• Hardware failure is the norm.

• Streaming data access.

• Write once, read many times.

• High throughput, not low latency.

• Large files.

• Characteristics:
• Performs best with modest number of large files

• Optimized for streaming reads

• Layer on top of native file system.



HDFS

• Data is organized into file and directories.

• Files are divided into blocks and distributed to nodes.

• Block placement is known at the time of read

• Computation moved to same node.

• Replication is used for:

• Speed

• Fault tolerance

• Self healing.



HDFS Architecture



NameNode Metadata

• Meta-data in Memory

– The entire metadata is in main memory

– No demand paging of meta-data

• Types of Metadata

– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g creation time, replication factor

• A Transaction Log

– Records file creations, file deletions. etc



DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores meta-data of a block (e.g. CRC)

– Serves data and meta-data to Clients

• Block Report

– Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes



HDFS – User Commands (dfs)

List directory contents

Display the disk space used by files

hdfs dfs –ls

hdfs dfs -ls /

hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/

hdfs dfs -du -h /hbase/data/hbase/namespace/

hdfs dfs -du -s /hbase/data/hbase/namespace/



HDFS – User Commands (dfs)

Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata

hdfs dfs -ls

hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata

hdfs dfs -ls –R

cd tutorials/data/

hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs

md5sum geneva.csv geneva.csv.hdfs



HDFS – User Commands (acls)

List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt

hdfs dfs -ls –R

hdfs dfs -cat tdataset/tfile.txt



HDFS read client

Source: Hadoop: The Definitive Guide



HDFS write Client

Source: Hadoop: The Definitive Guide



Block Placement

• Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable



NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)



Data Pipelining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• Usually, when all replicas are written, the Client moves on to write the next 

block in file
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Conclusion:

• We have seen:
• The structure of HDFS.
• The shell commands.
• The architecture of HDFS system.
• Internal functioning of HDFS.



MAPREDUCE INTERNALS



Hadoop Map Reduce

• Provides:
• Automatic parallelization and Distribution

• Fault Tolerance

• Methods for interfacing with HDFS for colocation of computation and storage of output.

• Status and Monitoring tools

• API in Java

• Ability to define the mapper and reducer in many languages through Hadoop streaming.



Wordcount program

import java.io.IOException; 

import java.util.StringTokenizer; 

import org.apache.hadoop.conf.Configuration; 

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Text; 

import org.apache.hadoop.mapreduce.Job; 

import org.apache.hadoop.mapreduce.Mapper; 

import org.apache.hadoop.mapreduce.Reducer; 

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 



Wordcount program - Main

public class WordCount { 

public static void main(String[] args) throws Exception { 

Configuration conf = new Configuration(); 

Job job = Job.getInstance(conf, "word count"); 

job.setJarByClass(WordCount.class); 

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class); 

job.setReducerClass(IntSumReducer.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(IntWritable.class); 

FileInputFormat.addInputPath(job, new Path(args[0])); 

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1); 

} }



Wordcount program - Mapper

public static class TokenizerMapper extends Mapper<Object, Text, Text, 

IntWritable>{ 

private final static IntWritable one = new IntWritable(1); 

private Text word = new Text(); 

public void map(Object key, Text value, Context context ) 

throws IOException, InterruptedException { 

StringTokenizer itr = new StringTokenizer(value.toString()); 

while (itr.hasMoreTokens()) { 

word.set(itr.nextToken()); context.write(word, one); 

} 

} 

}



Wordcount program - Reducer

public static class IntSumReducer extends 
Reducer<Text,IntWritable,Text,IntWritable> { 

private IntWritable result = new IntWritable(); 

public void reduce(Text key, Iterable<IntWritable> values, Context context 
) 

throws IOException, InterruptedException { 

int sum = 0; 

for (IntWritable val : values) { 

sum += val.get(); 

} 

result.set(sum); 

context.write(key, result); 

} 

}



Wordcount program - running

export JAVA_HOME=[ Java home directory ]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]



Wordcount in python

Mapper.py



Wordcount 
in python

Reducer.py



Execution code
bin/hadoop dfs -ls 

bin/hadoop dfs –copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file 

wordcount-py.example/mapper.py -mapper wordcount-

py.example/mapper.py -file wordcount-py.example/reducer.py -reducer 

wordcount-py.example/reducer.py -input example -output java-output

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local



Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide



Map Reduce Data Flow





Hadoop MR Data Flow

Source: Hadoop: The Definitive Guide



Shuffle and sort

Source: Hadoop: The Definitive Guide



Data Flow
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Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide



Fault tolerance

❑Comes from scalability and cost effectiveness

❑HDFS:
❑Replication

❑Map Reduce
❑Restarting failed tasks: map and reduce

❑Writing map output to FS

❑Minimizes re-computation



Coordination: Master
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Failures

❑Task failure
❑Task has failed – report error to node manager, appmaster, client.

❑Task not responsive, JVM failure – Node manager restarts tasks.

❑Application Master failure

❑Application master sends heartbeats to resource manager.

❑If not received, the resource manager retrieves job history of the run tasks.

❑Node manager failure



Dealing with Failures

• Map worker failure
– Map tasks completed or in-progress at 

worker are reset to idle

– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle 

– Reduce task is restarted

• Master failure
– MapReduce task is aborted and client is notified
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How many Map and Reduce jobs?

• M map tasks, R reduce tasks

• Rule of a thumb:
– Make M much larger than the number of nodes in the 

cluster

– One DFS chunk per map is common

– Improves dynamic load balancing and speeds up 
recovery from worker failures

• Usually R is smaller than M
– Because output is spread across R files
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Task Granularity & Pipelining

• Fine granularity tasks: map tasks >> machines
– Minimizes time for fault recovery

– Can do pipeline shuffling with map execution

– Better dynamic load balancing 
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Refinements: Backup Tasks

• Problem
– Slow workers significantly lengthen the job completion time:

• Other jobs on the machine
• Bad disks
• Weird things

• Solution
– Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
– Dramatically shortens job completion time
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Refinement: Combiners

• Often a Map task will produce many pairs of the form (k,v1), (k,v2), 
… for the same key k
– E.g., popular words in the word count example

• Can save network time by 
pre-aggregating values in 
the mapper:

– combine(k, list(v1)) → v2

– Combiner is usually same 
as the reduce function

• Works only if reduce 
function is commutative and associative
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Refinement: Combiners

• Back to our word counting example:

– Combiner combines the values of all keys of a single 
mapper (single machine):

– Much less data needs to be copied and shuffled!
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Refinement: Partition Function
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