
CS60021: Scalable Data Mining 2019

Sample Questions: Reservoir Sampling and Bloom Filters

1. Suggest an algorithm for uniform sampling from distributed streams.

2. What does Bloom filter tell us about an item?

A. An item is definitely in the set or may be not in the set.

B. An item may or may not be in the set.

C. An item is definitely not in the set or may be in the set.

D. An item is definitely in the set.

3. Consider a following Bloom Filter implementation: Let S = {s1, s2, . . . , sm} be the universe.
There is an array A of n bits, A[0] to A[n− 1]. And there are k independent hash functions
h1, h2, . . . , hk, each with a range {0, 1, 2, . . . , n − 1}. We assume that each of the hash
functions map each element in the universe U to a random number uniformly in the range
{0, 1, 2, · · · , n− 1}. For each s ∈ S we set to one all the bits A[hi(s)], for i = 1, . . . , k. Which
of the following statements are True when you increase k, the number of hash functions.

A. there exists a value k0 such that until k reaches k0, increasing k actually decreases the
probability of false positive.

B. there exists a value k0 such that, if k > k0, increasing k causes probability of false positive
to increase.

C. with higher k, more checks are required, and thus the probability of false negative increases.

D. with higher k, more and more ones are set in the array and thus the probability of false
negative decreases.

4. Consider the Bloom Filter implementation from Q2. After all the elements from S are hashed
into the Bloom filter, What is the probability that a specific bit remains 0?
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5. Lets say there are n students {s1, s2, . . . , sn} in the course and they want to use a central
server. We create a hash function, that operates on user-id i.e. student si is hashed to h(si).
We plan to give access to the server in the some ordering (say sorted) of the hash values
returned by h(si). Lets say that the hash value is of b bits and can be considered to be
choosing values uniform at random. Given two fixed users, what is the probability that they
get the same hash value?
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6. Use the information from the above question (i.e. Q4). What is the probability that at least

one pair of students share a same hash value?

A. 1− n(n−1)
2
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)
7. Use the information from the above two questions (i.e. Q4 and Q5). We know that if we use

more bits (i.e. higher value of b), then with high probability the students would get distinct
hash values. We cannot use infinitely many bits, but we are fine if the probability that a pair
of students get same hash value is very low i.e. 1/n. So, how many bits of hash value should
we use so that the the probability that any pair of students get same hash value is at most
1/n?

A. No way, you have to take infinitely many bits

B. b ≥ n

C. b ≥ 3 log2 n is enough.

D. b ≥ n2

8. Deletion of elements from Bloom filter is not allowed. Why?

A. It will increase the false positive rate.

B. Bloom filters are immutable.

C. It leads to deleting other elements hashed to same indices, leading to false negatives.

D. It leads to shrinking of filter size.

9. Suppose we are trying to create “ideal filter”. How many bits (b) are necessary to represent
all the sets of N elements from the universe of size U allowing false positives for at most a
fraction λ of the universe and no false negatives? (Hint: Each b-bit string for the ideal filter
must accept all N elements and at most λ(U −N) non-elements. There should be at least
one b bit for every set of size N . How many such b-bit strings need be there?)

(a) b = N log2(λ)

(b) b = N λ

(c) b = N log2 ( 1
λ)
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10. You have a huge dataset of fingerprints for which you want to create a Bloom filter. The
dataset is distributed on 10 different machines. Let us denote the dataset at machine i to
be Mi. Your goal is to maintain a array of m bits and use k hash functions for each of the
fingerprints. The set of k hash functions are the same in all the machines.

Consider the following two strategies of creating the Bloom filters:
Strategy-1:

• For each machine i create a local Bloom filter Bi

• return BU = bitwise OR of Bi’s

Strategy-2:

• Take the union of fingerprints MU = ∪10i=1Mi by gathering the data on one machine

• return Bloom filter BU created using data M .

Which of the following statements are True:

A. BU will have a higher false positive rate as compared to BU as the number of 1’s in BU is
at least the number of 1’s in Bi (i = 1, 2, . . . , 10)

B. BU will be same as BU
C. BU will have a lesser false positive rate as compared to BU as the number of 1’s in BU is

at least the number of 1’s in Bi (i = 1, 2, . . . , 10)

D. We cannot say anything about the false positive rates of both the Bloom filters

11. Consider the information from the previous question (i.e. Q9). And here are couple of more
strategies for creating the Bloom filter.

Strategy-3:

• For each machine i create a local Bloom filter Bi

• return BI = bitwise AND of Bi’s

Strategy-4:

• Take the intersection of fingerprints MI = ∩10i=1Mi by gathering the data on one machine

• return Bloom filter BI created using data MI .

A. BI will have a higher false positive rate as compared to BI as the number of 0’s in BI is
at least the number of 0’s in Bi (i = 1, 2, . . . , 10)

B. The false positive rate in BI is at most the false positive rate in each of Bi (i = 1, 2, . . . , 10),
but can be larger than the false positive rate of BI

C. BI will have a lesser false positive rate as compared to BI as the number of 0’s in BI is at
least the number of 0’s in Bi (i = 1, 2, . . . , 10)

D. We cannot say anything about the false positive rates of both the false positive rates.

E. BI will be same as BI

3


