CS60021: Scalable Data Mining

Large Scale Machine Learning



Much of ML is optimization

Linear Classification Maximum Likelihood
n mn
argminz ||w]|? + C’Zé};
w
i=1 i=1 arg max Z log pg(x;)
s.t. 1 —yix] w < & =1

& >0

K-Means

H1,12,. -

k
arg min Z Z ||2s — /ij’|2
j=1lieC}



Stochastic optimization

* Goal of machine learning :
— Minimize expected loss

mhin L(h) = E [loss(h(zx),y)]

given samples (z;,y;) i =1,2...m

* This is Stochastic Optimization

— Assume loss function is convex



Batch (sub)gradient descent for ML

* Process all examples together in each step

n

wk D (k) - (l Z 8L(w,$i7yi)>

n 4 ow
=1

where L is the regularized loss function

* Entire training set examined at each step

* Very slow when nis very large



Stochastic (sub)gradient descent

 “Optimize” one example at a time

* Choose examples randomly (or reorder and
choose in order)
— Learning representative of example distribution

for 2 =1 to n:
8[/(’(1),33@,3/1)

wk D) o ®) ~

where L is the regularized loss function



Stochastic (sub)gradient descent

for 2 =1 to n:
8L<w7x27yz>

ow

where L is the regularized loss function

e Equivalent to online learning (the weight vector w
changes with every example)

* Convergence guaranteed for convex functions (to local
minimum)



SGD convergence

5 | 4
w
=)
©
> i _
c
e
s
c T i
S
g—
T |
2 M
o
@
= o .
@)

-10 ] ] 1 ] ] ]

i} 500 1000 1500 2000 2500 3000 3500

lterations / updates



Stochastic gradient descent

« Given dataset D = {(x1,¥1), ., Vi) }
 Loss function: L(6,D) = % ?':1 L(8; xi, Vi)
* For linear models: 1(8; x;, y;) = L(y;, 0T p(x;))

 Assumption D is drawn IID from some distribution
P.

* Problem:
m@in L(6,D)



Stochastic gradient descent

* Input: D )
 Qutput: 0

Algorithm:
e |nitialize Y
. Fort:1,...,T1 .
Ottt = 0t — . Vol(y., 8T P (x,))
~ ZZ:l T}tet
6 = :
Zz:=1 Nt




SGD convergence

 Expected loss: s(8) = E5[l(y, 8T ¢ (x)]
Optimal Expected loss: s* = s(8%) = m@in s(6)

Convergence:

Egls(0)] —s* <

Where: R = ||60° — 6*||
L =maxVI(y, 0T p(x))



SGD convergence proof

Definer; = ||60¢ — 0*|| and g, = Vgl(yt,GTgb(xt))
rée1 =18 +nEllgell® — 20 (6F — 69)7 g,

Taking expectation w.r.t P, 8 and using s* — s(8%) >
gl (6" — 0Y, we get:

Eglrée — ré] S nil? + 21 (s* — Eg[s(6D)])

Taking sumovert =1, ..., T and using

T-1 T-1
FglrZa — 131 <12 ) n+2 ) ne(s™ — Egls(0)])
t=0 t=0



SGD convergence proof

e Using convexity of s:
& T—1 y T—1

(Z m) Egls(@)] < Egl ) nes(89]
t=0

t=0

e Substituting in the e¥p|iession frTon11 previous slide:

Eglré —16] < L7 Z g + 2 z ne(s™ — Egls(0)])
t=0 t=0

e Rearranging the terms proves the result.



SGD - Issues

* Convergence very sensitive to learning rate

("1t) (oscillations near solution due to probabilistic
nature of sampling)

— Might need to decrease with time to ensure the
algorithm converges eventually

* Basically —SGD good for machine learning
with large data sets!

13



Mini-batch SGD

e Stochastic—1 example per iteration
e Batch — All the examples!
* Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

* Allows for parallelization, but choice of m
based on heuristics

14



Example: Text categorization

 Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n =781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words

 Remove low frequency words



Example: Text categorization

e Questions:

— (1) Is SGD successful at minimizing f(w,b)?
— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

16



Optimization “Accuracy”

Training time (secs)
SGD SVM
100 1
SGD
50 ¢ _—
: LibLi Conventional
IDLINear SVM

| —ersr
041 001 0001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Optimization quality: | f(w,b) — f (wort bort) |

For optimizing f(w,b) within reasonable quality
SGD-SVM is super fast



SGD vs. Batch Conjugate Gradient

* SGD on full dataset vs. Conjugate Gradient on a
sample of n training examples Theory says: Gradient descent

- converges in linear time k. Conjugate
Average Test Loss gradient converges/in Vk.
0.4 ) . . k... condition number
n=10000 | n=100000 | n=781265
0.35 n=30000 |n=300000
03+ stochastic
0.25 ¢+
0.2 +
0.15 |
0.1 " } 1 )
0.001 0.01 0.1 1 10 100 1000
Time (seconds)

Bottom line: Doing a simple (but fast) SGD update many times is better than
doing a complicated (but slow) CG update a few times



Practical Considerations

* Need to choose learning rate n and t,

Wt+1 < Wt T / ntt (Wt + C aL(axZ,yl)j
+1, W

* Leon suggests:

— Choose t,so that the expected initial updates are
comparable with the expected size of the weights
— Choosen:
e Select a small subsample
* Try various rates n (e.g., 10, 1, 0.1, 0.01, ...)
* Pick the one that most reduces the cost
* Use n for next 100k iterations on the full dataset



accuracy om validation set

0.70 4

0.65 1

0.60 1

055

0.50 1

Learning rate comparison

Comparing Model Accuracy

H AAAL A~
X ”‘v JNAS N A \/\,\/
‘/\ N i '
/ l./ \‘
’f
J
f
l
!
fll
|
wewe Constant Ir
ww Time-based
~— Step decay
~ Exponential decay
0 ’ N ] o 100

epochs



Practical Considerations
* Sparse Linear SVM:

— Feature vector x; is sparse (contains many zeros)
* Do notdo: x;=[0,0,0,1,0,0,0,0,5,0,0,0,0,0,0, ...]
* But represent x;as a sparse vector X;=[(4,1), (9,9), ...
— Can we do the SGD update more efficiently?

o carem)
N <— M=\ M+ —
C o)

— Approximated in 2 steps:
M cheap: x; is sparse and so few
coordinates j of w will be updated

w<«—w(l—n) expensive: w is not sparse, all
coordinates need to be updated



Practical Considerations

= Solutionl:w=s:v

— Represent vector w as the Two step update procedure:
product of scalar s and vect(?r v (1)W(_W_77C8L(xi,yi)
— Then the update procedure is: ow

v, 2) wew(l-n)
c (v = v _nCaL(x,,y,) (2)

ow
* (2)s=s(1-n)
e Solution 2:
— Perform only step (1) for each training example

— Perform step (2) with lower frequency
and higher n



Practical Considerations

* Stopping criteria:
How many iterations of SGD?

— Early stopping with cross validation
* Create a validation set
e Monitor cost function on the validation set
» Stop when loss stops decreasing
— Early stopping
* Extract two disjoint subsamples A and B of training data
* Train on A, stop by validating on B
* Number of epochs is an estimate of k
* Train for k epochs on the full dataset



THEORETICAL GUARRANTEES



Stochastic Optimization

Dual

o
® B '
§ sule sl . (Quasi-) Newton'’s
= Nesterov'’s 5 >
o celeration i Method
First-order Methods Second-order Methods N

SGD, SCD,

SVRG, SAGA, Stochastic (Quasi-)
FW+VR, ADMM+VR

ACC+SGD+VR, etc.

Newton’s Method




Convergence Rate and Computational Complexity

Overall Complexity (€) = Convergence Rate™(€) * Complexity of each iteration

Strongly Convex + Smooth Convex + Smooth
Convergence Rate Complexity of = Overall Complexity Convergence = Complexity of Overall Complexity

each iteration Rate each iteration

O el ) 0 el | o) 0 )
ey

SCD t 0(n) 1)) | max f; 0(n) 1
0 (exp (- d - max Q,) (For separable | ¢ ("d ‘maxQ; - log (Z)) 0 ( é ) | (For separable 0nd-maxf; - =

cases) cases)

1. When data size n is very large, SGD is faster than GD.
2. SCD is faster than GD for separable cases. (max; < g < dB;, maxQ; < Q < dQ))




SGD Analysis

THEOREM 14.8  Let B,p > (. Let f be a convez function and let w* € argming o p f(W).

Assume that SGD s run for T iterations with 1 = ?2 . Assume also that for
I 2T

all t, ||vy|| < p with probability 1. Then,

< Bp
E - —_
f(w)] ﬁ
Therefore, for any € > 0, to achieve E[f(W)] — ) <€, it suffices to run the
SGD algorithm for a number of iterations that satzsﬁes
2 2
T>—— B

€2



SGD Analysis

LEMMA 14.1 Let vy,...,vy be an arbitrary sequence of vectors. Any algorithm
with an initialization wV) = 0 and an update rule of the form

witt = wlt) — py, (14.4)

satisfies

| N |3

—W Vt

M’%

Z vell*. (14.5)

In particular, for every B,p > 0, if for all t we have that ||v¢|| < p and if we set

= ;g_?r, then for every w* with ||w*|| < B we have

t=1

1 Wv<ﬂ

M'ﬂ

t



SGD Analysis

Proof Using algebraic manipulations (completing the square), we obtain:

1
<W(t) o W*,Vt> — 7—7<W(t) _ w*,'rlvt>
1 N *
= 5 (W =W vl 4wl — w2 + 02 v )
1

e (D) ox )2 (£)  o*[|2 n 2
277( |w W+ 1w = W) + S llvell,



SGD Analysis

where the last equality follows from the definition of the update rule. Summing
the equality over £, we have

T T
* x * 1

D (w—whvi) = oo 37 (SIw D = WP WO = wH?) 45 5 vl

t=1 t=1 t=1

1 T

The first sum on the right-hand side is a telescopic sum that collapses to

lw® — w2 — Wl — w2,



SGD Analysis

Plugging this in Equation (14.6), we have

T T
R 1 ; . U
D W —wve) = o (Iw = w P = T w ) 4 53 vl

t=1 t=1

1 *
< g llw® — w4 3 Z v

T
1 * 12 n 2
= 5w 1P+ 5 3 Ivel®
t=1
where the last equality is due to the definition w(!) = 0. This proves the first

part of the lemma (Equation (14.5)). The second part follows by upper bounding
|lw*|| by B, ||v¢| by p, dividing by T, and plugging in the value of 7. O



SGD Analysis

Proof of theorem:

M%

w() *))] .
t:l

Since Lemma 14.1 holds for any sequence vy, vy, ...vp, it applies to SGD as well.

E[f(w)—f(w')] < E [%

Vit virT

By taking expectation of the bound in the lemma we have

1 T
72w —ww)

< (14.9)

NI

It is left to show that

T
Vi l%z (t) w ] [%Z ) —w* v,)], (14.10)

t=1



SGD Analysis

Using the linearity of the expectation we have
1 T
t *

vi:.T
t=1

T
1
- (t) _ «w*
E T tgzl(w W™, vi)

viT

Next, we recall the law of total expectation: For every two random variables «, /3,
and a function g, E,[g(a)] = Ez E,[g(a)|3]. Setting o = vy.; and B = vy, we
get that

E (W —w* v;)] = E [(wl!) —w*, v;)]

vi:.T Vi:t

= E E [(w(t) —wW vy | Vi) .
Viit—1 Vit

Once we know v;.,_1, the value of w'¥) is not random any more and therefore

]E ]E [(W(t) — W*,Vt> |V1:t_1] = ]E (W(t) — W*, ]E[Vt |V1:t_1]> .
Viit—1 Vit Viit—1 Vi



SGD Analysis

Since w') only depends on vy.;_; and SGD requires that Ey, [v, | w(?] € 9f(w"))
we obtain that Ey, [v; | vi4_1] € f(w?). Thus,

E (W(t)—W*’g[VHVI:t—l]) 2 VIE [f (W) — f(w*)].

Vi:t—1 1: t—1

Overall, we have shown that

E [(w" —w"v)]> E [f(w)— f(w")]

vi:.T Viit—1

= E [f(w®) = f(w")].

Summing over t, dividing by 7', and using the linearity of expectation, we get
that Equation (14.10) holds, which concludes our proof. O



ACCELERATED GRADIENT DESCENT



Stochastic gradient descent

- ldea: Perform a parameter update for each
training example x(i) and label y(i)

. Update: &= &- y- 72Jd (& x(i), y(i))

- Performs redundant computations for large datasets



Momentum gradient descent

. ldea: Overcome ravine oscillations by momentum

- Update: >oD
BN =)
. 9= 8- v




Nesterov accelerated gradient

- ldeas:
1. Big jump in the direction of the previous accumulated gradient &

measure the gradient
2. Then make a correction.

* Update:
e Vt= y Vi1t 0 Val(G-p vi)

« = -t



AdaGrad

Adapts the learning rate to the parameters

Smaller updates (i.e. low learning rates) for parameters
. associated with frequently occurring features

larger updates (i.e. high learning rates) for parameters
associated with infrequent features

Update:

.
0, 1i — 91,1' — "Gti
VvV Grii + €



RMSprop

- ldea: Use the second moment of gradient vector to
estimate the magnitude of update in a given direction.

* Update:
- E[g?]i= 0.9 E[g?]t-1+ 0.1 g¢2

. A46r=- 1/ \(E[g2]i + €) O gt



ADAM (Adaptive moment)

- ldea: In addition to storing an exponentially decaying average of
past squared gradients like RMSprop, Adam also keeps an
exponentially decaying average of past gradients.

Updates:

e my=6m;;+(1-6;) g;
o V;=6,v 1+ (1-6;) g
« my=my/(1-6)

e Vi=Vv¢/(1-86)

. l?t+1=19t‘(’7/(\/‘2"'e))rﬁt



ADAM (Adaptive moment)

- Updates imply: t
ve=01-082)) B5 " g
i=1

* Bias in expection:

E[v)] = E [(1 — f2) Zﬁg_i - g;

t
=Elg7]-(1-B2) Y By +¢
t=1

=E[g7]- (1-B3) +¢



Visualization




Visualization

- SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0




Enhancements comparison

Comparing Model Accuracy

0.75

0.70 -

§ 0.65

s

o

h=

™

>

g

® 0.60

— |

v

-
- Constant Ir

055 1 ! ! e Time-based
— Step decay
- Exponential decay
- Adagrad
—  Adadelta
~ RMSprop
0.50 t t T e Adam
0 20 40 60 80 100

epochs



LINEAR RATE METHODS



Stochastic Averaged Gradient

e Can we have a rate of O(p’) with only 1 gradient evaluation per iteration?
e YES! The stochastic average gradient (SAG) algorithm:

e Randomly select i; from {1,2,..., N} and compute f;, (z°).
ot &
t+1 _ t t
T = - E_l Y;

e Memory: y! = Vfi(z") from the last + where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).

[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’'t change.

o Assumption becomes accurate as ||z!*T! — zt|| — 0.

Slide taken from Mark Schmidt



SAG Convergence Rate

If each f! is L—continuous and f is strongly-convex,
with oy = 1/16L SAG has

E[f () — f(z")] < (1 ~ min {MLL SLN}) .

where
4L o2

C=[f(a") = f@)]+ 2" = 2" " + 7

Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1\V 1
1] — — < —— | = 0.8825.
( 8N> —exp( 8)

o For ill-conditioned problems, almost same as deterministic method (but N times
faster).



SAG Convergence Rate

@ Assume that N = 700000, L = 0.25, u = 1/N:

2
e Gradient method has rate <§—;5) = (0.99998.

o Accelerated gradient method has rate (1 — f) = 0.99761.
e SAG (N iterations) has rate (1 — min { &7, 5 sy })Z = 0.88250

o fastest possible first-order method: (%) = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
e Deterministic gradient bound (for typical L, p, and N).

e Number of f; evalliations to reach e:
e Stochastic: O((1/€)).
° Zradi::t: O(O]\(f%(lo/g()l)/e))
o Accelerated: O(N\/%log(l/e)).
e SAG: O(max{N, /%}log(l/e)).



SAG Convergence Rate

* Use SGD for well conditioned problemes.

e Use Accelerated SGD for ill-conditioned
problems where N is lower than 0(+/C).

e Otherwise use SAG.



SAG Implementation

@ Basic SAG algorithm:
o while(1)
e Sample i from {1,2,..., N}.
o Compute f/(z).
o d=d—vy;+ fi(z)
o y; = fi(x).
o T =1x— §d.
@ Practical variants of the basic algorithm allow:
e Regularization.

e Sparse gradients.
e Automatic step-size selection.

@ Common to use adaptive step-size procedure to estimate L.
e Termination criterion.
o Canuse ||zt —2'||/a = +d = ||V f(z")| to decide when to stop.

Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].



SAG Implementation

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

@ Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
e Performance is intermediate between |AG and SAG.

@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVfi(z) = Vfiy)ll < Lillz —yll.

improves rate to depend on L ean instead of Lay.
(with bigger step size)
e Adaptively estimate L; as you go. (see paper/code).
e Slowly learns to ignore well-classified examples.



SAG with Adaptive Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum

Effective Passes Effective Passes

@ Datasets where SAG had the worst relative performance.



SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

§ 107 1 -5
S =
£ £
Q Q
O (0]
- R 3
£ 10 - C
£ =
o [}
2 2
3 @
8 107" -8
r- —
107 T T T T ]O—H’ T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Adaptive non-uniform sampling helps a lot.



Stochastic Variance Reduced GD

SVRG algorithm:
@ Start with xg

@ fors=0,1,2...
o d. = % Z,\:l fi(zs)
° ZEO:-TS

o fort=1,2,...m

e Randomly pick i; € {1,2,..., N}
o i ="t —ou(fl (2'71) — fi, (zs) + ds).

o v, = x' forrandom t € {1,2,...,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and z;.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination,
handles sparsity/regularization, non-uniform sampling, mini-batches).



BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638 cs838.html



http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

Batch normalization:
Other benefits in practice

BN reduces training times. (Because of less Covariate Shift, less
exploding/vanishing gradients.)

BN reduces demand for regularization, e.g. dropout or L2 norm.

— Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. l.e. the network can no
longer just memorize values and their correct answers.)

BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

BN enables training with saturating nonlinearities in deep networks, e.g.
sigmoid. (Because the normalization prevents them from getting stuck in
saturating ranges, e.g. very high/low values for sigmoid.)



Batch normalization:
Better accuracy , faster.

— 2 2 s
0.9 ”
0.8 ! [~ = = WithoutBN 0 0
With BN M
07 10K 20K 30K 40K 50|<‘2 -2
(a) (b) Without BN (c) With BN

BN applied to MNIST (a), and activations of a
randomly selected neuron over time (b, c),
where the middle line is the median activation,
the top line is the 15th percentile and the
bottom line is the 85th percentile.



Why the naive approach Does not
work?

* Normalizes layer inputs to zero mean and unit variance.
whitening.

* Naive method: Train on a batch. Update model
parameters. Then normalize. Doesn't work: Leads to
exploding biases while distribution parameters (mean,
variance) don't change.

— If we do it this way gradient always ignores the effect
that the normalization for the next batch would have

— i.e.: “The issue with the above approach is that the
gradient descent optimization does not take into
account the fact that the normalization takes place”



Doing it the “correct way”

|s too expensive!

e A proper method has to include the current example batch
and somehow all previous batches ( all examples) in the

normalization step.

e This leads to calculating in covariance matrix and its inverse square
root. That's expensive. The authors found a faster way!

The issue with the above approach is that the gradient de-
scent optimization does not take into account the fact that
the normalization takes place. To address this issue, we
would like to ensure that, for any parameter values, the net-
work always produces activations with the desired distri-
bution. Doing so would allow the gradient of the loss with
respect to the model parameters to account for the normal-
ization, and for its dependence on the model parameters &.
Let again x be a layer input, treated as a vector, and A" be
the set of these inputs over the training data set. The nor-
malization can then be written as a transformation

% = Norm(x, &)

which depends not only on the given training example x
but on all examples X" — each of which depends on &
if x is generated by another layer. For backpropagation,
we would need to compute the Jacobians BNomm(x, X)

ax
MNomix.A). jgnoring the latter term would lead to the ex-

and

plosi":;n described above. Within this framework, whiten-
ing the layer mputs is expensive, as it requires computing
the covariance matrix Cov[x] = E, -y [xx"] — E[x|E[x]”
and its inverse square root, to produce the whitened acti-
vations Cov[x]~"/?(x — E[x]), as well as the derivatives of
these transforms for backpropagation. This motivates us to
seek an alternative that performs input normalization in a
way that is differentiable and does not require the analysis
of the entire training set after every parameter update.



The proposed solution: To add an

*.

. L
!, a pair of parameters

we rntl'qduce,?nl'eucln activation z(¥),
ex ra re g l 51, 4] which scale and shift the normalized value:

y

NN without BN

Output
W,
Hidden
Layer
Wy
Input

(k) — f.-]T.[.f.'j- 1 I-..;p[.l'\']

Input

NN without BN

A new layer is added so the gradient can “see”
the normalization and make adjustments if

needed.



Algorithm Summary:
Normalization via Mini-Batch Statistics

* Each feature (component) is normalized individually
 Normalization according to:

— componentNormalizedValue = (componentOldValue -
E[component]) / sqrt(Var(component))
* Anew layeris added so the gradient can “see” the
normalization and made adjustments if needed.

— The new layer has the power to learn the identity function
to de-normalize the features if necessary!

— Full formula: newValue = gamma * componentNormalizedValue +
beta (gamma and beta learned per component)

* E and Var are estimated for each mini batch.
BN is fully differentiable.



The Batch Transformation: formally from the paper.

Input: Values of 2z over a mini-batch: B = {z1. . };
Parameters to be learned: v, 3
Output: {y; = BN, s(z:)}

I L
B — — Z T // mini-batch mean
mei=
1 m
OB o Z(iﬁz — ps)’ // mini-batch variance
1=1
. Ti — .
T — — KB // normalize

\/0123+6

Yi < vx; + 5 = BN, g(x;) // scale and shift




The full algorithm as proposed in

Input: Network N with trainable parameters ©;
subset of activations {z*/ } [

Output: Batch-normalized network for inference, Nii
: Ny + N // Training BN network
cfork=1...Kdo

Add transformation y'*’
Ngx (Alg. 1)
Modify each layer in Ny with input z'*) to take

y'*) instead \
5: end for
6: Train Ny, to optimize the parameters
O U {y™, g,
7: Nk + Niy  // Inference BN network with frozen

// parameters
g fork=1...Kdo

// For clarity, z = z'%) v = %) pyp = p',(_f:', etc.
10:  Process multiple training mini-batches B, each of
size m, and average over them:
E[z] + Eg[us]
Var[z| + -Z=Eg|o]

m—1

Wy

-rfl‘i'BZiJ(z(k)) to

R

0

11:  In Ni%, replace the transform y = BN, s(z) with

. ~ . _ ~Elx
vy= Var[z] +e &+ (ﬁ ;;Var[.t]+e.)

12: end for
Algorithm 2: Training a Batch-Normalized Network

the paper

Alg 1 (previous slide)

Note that BN(x) is differe!
during test...

1
of EZ{E'E — pB)?

i=1

Vs.

Var[z] + m—”erg[crE,-]



Populations stats vs. sample stats

* Inalgorithm 1, we are
estimating the true
mean and variance
over the entire
population for a given
batch.

* When doing inference

you’re minibatching
your way through the

Population Statistics
over N

Sample/Batch Statistics
over m

entire dataset, you’re
calculating statistics on
a per sample/batch

Mean
Estimate

Ze Ti

.

=

basis. We want our
sample statistics to

Variance
Estimate

— 1 (e — )2
o= —p)

be unbiased to
population statistics.




ACCELERATING BN NETWORKS
Batch normalization only not enough!

* Increase learning rate.

* Remove Dropout.

e Shuffle training examples more thoroughly
 Reduce the L2 weight regularization.

e Accelerate the learning rate decay.

* Reduce the photometric distortions.



References:

e SGD proof by Yuri Nesterov.

e MMDS http://www.mmds.org/

* Mini-course by Mark Schmidt: https://www.cs.ubc.ca/~schmidtm/SVAN16/

* Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

* Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-

and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

67


http://www.mmds.org/
https://www.cs.ubc.ca/~schmidtm/SVAN16/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

