
CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya

Much of ML is optimization
Linear Classifica-on Maximum Likelihood

K-Means

argmax
✓

nX

i=1

log p✓(xi)

arg min
µ1,µ2,. . . ,µk

J(µ) =
kX

j=1

X

i2Cj

||xi � µj ||2

argmin
w

nX

i=1

||w||2 + C
nX

i=1

⇠i

s.t. 1� yix
T
i w ⇠i

⇠i � 0

2

Stochastic optimization
• Goal of machine learning :

– Minimize expected loss

given samples

• This is Stochastic Optimization
– Assume loss function is convex

3

Batch (sub)gradient descent for ML
• Process all examples together in each step

• Entire training set examined at each step
• Very slow when n is very large

4

Stochastic (sub)gradient descent
• “OpNmize” one example at a Nme
• Choose examples randomly (or reorder and

choose in order)
– Learning representaNve of example distribuNon

5

Stochastic (sub)gradient descent

• Equivalent to online learning (the weight vector w
changes with every example)

• Convergence guaranteed for convex functions (to local
minimum)

6

SGD convergence

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

IteraNons / updates

Stochastic gradient descent
• Given dataset 𝐷 = { 𝑥%, 𝑦% , … , 𝑥), 𝑦) }

• Loss function: 𝐿 𝜃, 𝐷 = %
-
∑/0%- 𝑙(𝜃; 𝑥/, 𝑦/)

• For linear models: 𝑙 𝜃; 𝑥/, 𝑦/ = 𝑙(𝑦/, 𝜃5𝜙 𝑥/)
• Assumption 𝐷 is drawn IID from some distribution
𝒫.

• Problem:
min
;
𝐿(𝜃, 𝐷)

Stochastic gradient descent
• Input: 𝐷
• Output: �̅�

Algorithm:
• Initialize 𝜃>
• For 𝑡 = 1,… , 𝑇

𝜃BC% = 𝜃B − 𝜂B𝛻;𝑙(𝑦B, 𝜃5𝜙 𝑥B)

• �̅� = ∑GHI
J KG;G

∑GHI
J KG

.

SGD convergence
• Expected loss: 𝑠 𝜃 = 𝐸𝒫[𝑙(𝑦, 𝜃5𝜙 𝑥]
• Optimal Expected loss: 𝑠∗ = 𝑠 𝜃∗ = min

;
𝑠(𝜃)

• Convergence:

𝐸Q; 𝑠 �̅� − 𝑠∗ ≤
𝑅T + 𝐿T ∑B0%5 𝜂BT

2∑B0%5 𝜂B
• Where: 𝑅 = 𝜃> − 𝜃∗

• 𝐿 = max𝛻𝑙(𝑦, 𝜃5𝜙 𝑥)

SGD convergence proof
• Define 𝑟B = 𝜃B − 𝜃∗ and 𝑔B = 𝛻;𝑙 𝑦B, 𝜃5𝜙 𝑥B
• 𝑟BC%T = 𝑟BT + 𝜂BT 𝑔B T − 2𝜂B 𝜃B − 𝜃∗ 5𝑔B
• Taking expectaNon w.r.t 𝒫, �̅� and using 𝑠∗ − 𝑠 𝜃B ≥

𝑔B5(𝜃∗ − 𝜃B), we get:
𝐸Q; 𝑟BC%T − 𝑟BT ≤ 𝜂BT𝐿T + 2𝜂B 𝑠∗ − 𝐸Q; 𝑠 𝜃B

• Taking sum over 𝑡 = 1,… , 𝑇 and using

𝐸Q; 𝑟BC%T − 𝑟>T ≤ 𝐿T\
B0>

5]%

𝜂BT + 2\
B0>

5]%

𝜂B(𝑠∗ − 𝐸Q;[𝑠 𝜃B])

SGD convergence proof
• Using convexity of 𝑠:

\
B0>

5]%

𝜂B 𝐸Q; 𝑠 �̅� ≤ 𝐸Q;[\
B0>

5]%

𝜂B𝑠 𝜃B]

• Substituting in the expression from previous slide:

𝐸Q; 𝑟BC%T − 𝑟>T ≤ 𝐿T\
B0>

5]%

𝜂BT + 2\
B0>

5]%

𝜂B 𝑠∗ − 𝐸Q; 𝑠 �̅�

• Rearranging the terms proves the result.

SGD - Issues

• Convergence very sensitive to learning rate
() (oscillations near solution due to probabilistic
nature of sampling)
– Might need to decrease with time to ensure the

algorithm converges eventually

• Basically – SGD good for machine learning
with large data sets!

13

Mini-batch SGD
• Stochastic – 1 example per iteration
• Batch – All the examples!
• Mini-batch SGD:

– Sample m examples at each step and perform SGD
on them

• Allows for parallelization, but choice of m
based on heuristics

14

Example: Text categorization
• Example by Leon Bottou:

– Reuters RCV1 document corpus
• Predict a category of a document

– One vs. the rest classification
– n = 781,000 training examples (documents)
– 23,000 test examples
– d = 50,000 features

• One feature per word
• Remove stop-words
• Remove low frequency words

Example: Text categorization
• Questions:

– (1) Is SGD successful at minimizing f(w,b)?
– (2) How quickly does SGD find the min of f(w,b)?
– (3) What is the error on a test set?

16

Training time Value of f(w,b) Test error
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

Optimization “Accuracy”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality
SGD-SVM is super fast

SGD vs. Batch Conjugate Gradient
• SGD on full dataset vs. Conjugate Gradient on a

sample of n training examples

Bottom line: Doing a simple (but fast) SGD update many times is better than
doing a complicated (but slow) CG update a few times

Theory says: Gradient descent
converges in linear time 𝒌. Conjugate

gradient converges in 𝒌.
𝒌… condition number

Practical Considerations
• Need to choose learning rate h and t0

• Leon suggests:
– Choose t0 so that the expected initial updates are

comparable with the expected size of the weights
– Choose h:

• Select a small subsample
• Try various rates h (e.g., 10, 1, 0.1, 0.01, …)
• Pick the one that most reduces the cost
• Use h for next 100k iterations on the full dataset

÷
ø
ö

ç
è
æ

¶
¶

+
+

-¬+ w
yxLCw

tt
ww ii

t
t

tt
),(

0
1

h

Learning rate comparison

Practical Considerations
• Sparse Linear SVM:

– Feature vector xi is sparse (contains many zeros)
• Do not do: xi = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,…]
• But represent xi as a sparse vector xi=[(4,1), (9,5), …]

– Can we do the SGD update more efficiently?

– Approximated in 2 steps:
cheap: xi is sparse and so few

coordinates j of w will be updated
expensive: w is not sparse, all

coordinates need to be updated

÷
ø
ö

ç
è
æ

¶
¶

+-¬
w
yxLCwww ii),(h

w
yxLCww ii

¶
¶

-¬
),(h

)1(h-¬ ww

Practical Considerations
¡ Solu-on 1: 𝒘 = 𝒔 ⋅ 𝒗

– Represent vector w as the
product of scalar s and vector v

– Then the update procedure is:
• (1) 𝒗 = 𝒗 − 𝜼𝑪 𝝏𝑳 𝒙𝒊,𝒚𝒊

𝝏𝒘
• (2) 𝒔 = 𝒔(𝟏 − 𝜼)

• Solu-on 2:
– Perform only step (1) for each training example
– Perform step (2) with lower frequency

and higher h

w
yxLCww ii

¶
¶

-¬
),(h

)1(h-¬ ww

Two step update procedure:

(1)

(2)

Practical Considerations
• Stopping criteria:

How many iterations of SGD?
– Early stopping with cross validation

• Create a validation set
• Monitor cost function on the validation set
• Stop when loss stops decreasing

– Early stopping
• Extract two disjoint subsamples A and B of training data
• Train on A, stop by validating on B
• Number of epochs is an estimate of k
• Train for k epochs on the full dataset

THEORETICAL GUARRANTEES

SGD Analysis

SGD Analysis

SGD Analysis

SGD Analysis

SGD Analysis

SGD Analysis

• Proof of theorem:

SGD Analysis

SGD Analysis

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

• Idea: Perform a parameter update for each
training example x(i) and label y(i)

• Update: 𝜃 = 𝜃 - 𝜂 ∙ ∇𝜃 J (𝜃; x(i), y(i))

• Performs redundant computations for large datasets

Momentum gradient descent
• Idea: Overcome ravine oscillations by momentum
• Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃 J(𝜃)

• 𝜃 = 𝜃 - vt

SGD

SGD with
momentum

Nesterov accelerated gradient
• Ideas:

1. Big jump in the direction of the previous accumulated gradient &
measure the gradient
2. Then make a correction.

• Update:

• vt = 𝛾 vt-1 + 𝜂 ∙ ∇𝜃J(𝜃-𝛾 vt-1)

• 𝜃 = 𝜃 - vt

AdaGrad

•
Adapts the learning rate to the parameters

Smaller updates (i.e. low learning rates) for parameters
associated with frequently occurring features

larger updates (i.e. high learning rates) for parameters
associated with infrequent features

•

Update:

RMSprop
• Idea: Use the second moment of gradient vector to

estimate the magnitude of update in a given direction.

• Update:

• E[g2]t = 0.9 E[g2]t-1 + 0.1 gt2

• 𝛥𝜃t = - 𝜂 / √(E[g2]t + ϵ) ⊙ gt

ADAM (Adaptive moment)
• Idea: In addition to storing an exponentially decaying average of

past squared gradients like RMSprop, Adam also keeps an
exponentially decaying average of past gradients.

• Updates:
• mt = β1mt−1 + (1−β1) gt
• vt = β2vt−1 + (1−β2) gt

2

• m̂t = mt / (1 − β1
t)

• vt̂ = vt / (1 − β2
t)

• θt+1 = θt − (η / (vt̂ + ϵ)) m̂t

ADAM (Adaptive moment)
• Updates imply:

• Bias in expecNon:

VisualizaNon

Visualization

Enhancements comparison

LINEAR RATE METHODS

StochasNc Averaged Gradient

Slide taken from Mark Schmidt

SAG Convergence Rate

SAG Convergence Rate

SAG Convergence Rate

• Use SGD for well conditioned problems.
• Use Accelerated SGD for ill-conditioned

problems where N is lower than 𝑂(𝐶).
• Otherwise use SAG.

SAG ImplementaNon

SAG Implementation

StochasNc Variance Reduced GD

BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

Batch normalizaNon:
Other benefits in pracNce

• BN reduces training Nmes. (Because of less Covariate Shik, less
exploding/vanishing gradients.)

• BN reduces demand for regularizaNon, e.g. dropout or L2 norm.

– Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. I.e. the network can no
longer just memorize values and their correct answers.)

• BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

• BN enables training with saturaNng nonlineariNes in deep networks, e.g.
sigmoid. (Because the normalizaNon prevents them from gelng stuck in
saturaNng ranges, e.g. very high/low values for sigmoid.)

Batch normalization:
Better accuracy , faster.

BN applied to MNIST (a), and acDvaDons of a
randomly selected neuron over Dme (b, c),
where the middle line is the median acDvaDon,
the top line is the 15th percenDle and the
boMom line is the 85th percenDle.

Why the naïve approach Does not
work?

• Normalizes layer inputs to zero mean and unit variance.
whitening.

• Naive method: Train on a batch. Update model
parameters. Then normalize. Doesn't work: Leads to
exploding biases while distribuNon parameters (mean,
variance) don't change.

– If we do it this way gradient always ignores the effect
that the normalizaNon for the next batch would have

– i.e. : “The issue with the above approach is that the
gradient descent opNmizaNon does not take into
account the fact that the normalizaNon takes place”

Doing it the “correct way”
Is too expensive!

• A proper method has to include the current example batch
and somehow all previous batches (all examples) in the
normalization step.

• This leads to calculating in covariance matrix and its inverse square
root. That's expensive. The authors found a faster way!

The proposed soluNon: To add an
extra regularizaNon layer

A new layer is added so the gradient can “see”
the normalizaNon and make adjustments if
needed.

Algorithm Summary:
Normalization via Mini-Batch Statistics

• Each feature (component) is normalized individually
• NormalizaNon according to:

– componentNormalizedValue = (componentOldValue -
E[component]) / sqrt(Var(component))

• A new layer is added so the gradient can “see” the
normalizaNon and made adjustments if needed.
– The new layer has the power to learn the idenNty funcNon

to de-normalize the features if necessary!
– Full formula: newValue = gamma * componentNormalizedValue +

beta (gamma and beta learned per component)

• E and Var are esNmated for each mini batch.
• BN is fully differenNable.

The Batch Transformation: formally from the paper.

The full algorithm as proposed in the paper

Alg 1 (previous slide)

Architecture modification

Note that BN(x) is different
during test…

Vs.

Populations stats vs. sample stats
• In algorithm 1, we are

esNmaNng the true
mean and variance
over the enNre
populaNon for a given
batch.

• When doing inference
you’re minibatching
your way through the
enNre dataset, you’re
calculaNng staNsNcs on
a per sample/batch
basis. We want our
sample staNsNcs to
be unbiased to
populaNon staNsNcs.

ACCELERATING BN NETWORKS
Batch normalization only not enough!

• Increase learning rate.
• Remove Dropout.
• Shuffle training examples more thoroughly
• Reduce the L2 weight regularizaNon.
• Accelerate the learning rate decay.
• Reduce the photometric distorNons.

67

References:
• SGD proof by Yuri Nesterov.

• MMDS hzp://www.mmds.org/

• Mini-course by Mark Schmidt: hzps://www.cs.ubc.ca/~schmidtm/SVAN16/

• Blog of SebasDan Ruder hMp://ruder.io/opDmizing-gradient-descent/

• Learning rate comparison hMps://towardsdatascience.com/learning-rate-schedules-
and-adapDve-learning-rate-methods-for-deep-learning-2c8f433990d1

http://www.mmds.org/
https://www.cs.ubc.ca/~schmidtm/SVAN16/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

