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GENERALIZATION OF LSH



Locality Sensitive Hashing

•
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Locality sensitive hashing 

•
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Hamming distance
•
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Hamming distance
•
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Hamming distance
•
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Existence of LSH

•
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LSH for angle distance

•

9



LSH for angle distance
•
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Aside: picking a direction u.a.r.

•
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Jaccard distance: minhashing
•
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Example

13

[Slide from Evimaria Terzi] 



Example
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S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

D

B

A

C

F

G

E

S1 S2 S3 S4

1 D 0 1 0 1

2 B 1 0 0 1

3 A 1 0 1 0

4 C 0 1 0 1

5 F 1 0 1 0

6 G 1 0 1 0

7 E 0 1 0 1

2 1 3 1



Why is this LSH?
•
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Aside: How to choose random permutations

• Picking a uniform at random permutation is expensive
• In theory, need to choose from a family of min-wise 

independent permutations

• In practice, can use standard hash functions, hash all the 
values and then sort
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Which similarities admit LSH?
• There are various similarities and distance that are used in scientific 

literature
– Encyclopedia of distances DL’11

• Will there be an LSH for each one of them?
– Similarity is LSHable if there exists an LSH for it
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LSHable similarities

•
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LSHable similarities

•
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LSHable similarities

•
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Example of non-LSHable similarities

•

21



Example of non-LSHable similarities

•
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Example of non-LSHable similarities

•
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These similarities are not LSHable



Gap Definition of LSH

•
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IMRS’97, IM’98, GIM’99 



Gap LSH
•
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L2 norm
•
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L2 norm
•
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Solving the near neighbour

•
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How to actually use it?

• Need to amplify the probability of collisions for “near” points
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Band construction

•
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Band construction

•
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Example
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S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S3

h1 1 2 1 2

h2 2 1 3 1

S1 S2 S3 S3

h3 3 1 2 1

h4 1 3 2 2



Why is this better?
•
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Creating an LSH
•
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Creating an LSH
•
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Runtime

•
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LSH: theory vs practice

• In order to design LSH in practice, the theoretical parameter 
values are only a guidance
– Typically need to search over the parameter space to find a good 

operating point
– Data statistics can provide some guidance (will see in next class)
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Summary
• Locality sensitive hashing is a powerful tool for near neighbour problems

• Trades off space with query time

• Practical for medium to large datasets with fairly large number of dimensions
– However, doesn’t really work very well for sparse, very very high dimensional datasets

• LSH and extensions are an area of active research and practice
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References:

• Primary references for this lecture
• Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
• Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

http://www.mit.edu/~andoni/LSH

