CS60021: Scalable Data Mining

Similarity Search and Hashing



GENERALIZATION OF LSH



Locality Sensitive Hashing

[Indyk Motwani]
* Hash family H is locality sensitive if

Pr[h(x) = h(y)]is highif x is close to y

Pr[h(x) = h(y)]is lowif x is far from y

* Not clear such functions exist for all distance functions



Locality sensitive hashing

Originally defined in terms of a similarity function [C'02]

Given universe U and a similarity s: U X U — [0,1], does
there exist a prob distribution over some hash family H such

that
s(x,y)=1-x=y

hpel;i[h(x) =h()] = s(x,y) s(x,y) = s(y,x)



Hamming distance

* Points are bit strings of length d
* H(x,y) = [{i,x; # yi}|



Hamming distance

* Points are bit strings of length d

H(x,y)
d

* Hx,y) = {i,x; #yi}| Sulx,y) =1 —
— x =1011010001,y = 0111010101

—H@y) =3 Syty)=1-==07



Hamming distance

* Points are bit strings of length d

. H !
* Hlx,y) =i, x; #yi}| Suglx,y)=1 — (Zy)

* Define a hash function h by sampling a set of positions
— x =1011010001,y = 0111010101
- S =1{1,5,7}
— h(x) =100, h(y) =100




Existence of LSH

* The above hash family is locality sensitive, k = |S]

Hx, )\
)

Pr[h(x) = h(y)] = (1 -



LSH for angle distance

* X,y are unit norm vectors
+ d(x,y) =cos ™ (x-y) =06
¢« S(x,y)=1—-0/n



LSH for angle distance

X,y are unit norm vectors
d(x,y) =cos™ ' (x-y) =06
Sx,y) =1 —-606/=n

Choose direction v uniformly at random
— h,(x) = sign(v - x)
- Pr[hv(x) — hv(y)] =1 - 9/7-[
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Aside: picking a direction u.a.r.

How to sample a vector x € R%, |x|, = 1 and the direction is
uniform among all possible directions

Generate x = (x4, ....x4), x; ~ N(0, 1) iid
: X
Normalize —
x| 2
— By writing the pdf of the d-dimensional Gaussian in polar form, easy to

see that this is uniform direction on unit sphere
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Jaccard distance: minhashing
Pick a uniform permutation of the element universe U

For any set S,
— h(S) = minyes h(x)

Often easier to visualize if we think of the collection of sets as
a {0,1} matrix
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[Slide from Evimaria Terzi]
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Example
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Why is this LSH?

For setsSand T,
— The first row where one of thetwo hasa 1 belongtoS U T
— We have equality h(S) = h(T), only if both the rows contain 1
— This means that this row belongstoS N T

Hence, the event h(S) = h(T) is same as the eventthat a row in S N
T appears firstamongallrowsinSUT

ISNT]|
|ISUT]

Pr{A(S) = h(T)] =
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Aside: How to choose random permutations

Picking a uniform at random permutation is expensive

In theory, need to choose from a family of min-wise
independent permutations

In practice, can use standard hash functions, hash all the
values and then sort



Which similarities admit LSH?

* There are various similarities and distance that are used in scientific
literature

— Encyclopedia of distances DL'11

* Will there be an LSH for each one of them?
— Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]



LSHable similarities

Thm: S is LSHable = 1 -S is a metric d(x,y) =0 »x=y
d(x,y) = d(y,x)
d(x,y) +d(y,z) = d(x,2)

Fix hash function h € H and define
Ap(A,B) = [h(A) # h(B)]
1 —S(A,B) = I;lr[Ah(A,B)]
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LSHable similarities

Thm: S is LSHable = 1 -S is a metric d(x,y) =0 »x=y
d(x,y) = d(y,x)
d(x,y) +d(y,z) = d(x,2)

Fix hash function h € H and define
Ap(A,B) = [h(A) # h(B)]
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LSHable similarities

Thm: S is LSHable = 1 -S is a metric d(x,y) =0 »x=y
d(x,y) = d(y,x)
d(x,y) +d(y,z) = d(x,2)

Fix hash function h € H and define
Ap(A,B) = [h(A) # h(B)]
1 —S(A,B) = I;lr[Ah(A,B)]

Also
Ay (A,B) + A (B,C) = Ap(A4,C)
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Example of non-LSHable similarities

e d(A,B)=1 —5s(A,B)
2|ANB|
|A|+|B]

— Ex:A ={a},B = {b},C = {a, b}
— s(4,B)=0,s(B,C) =s(A,C) =2/3

* Sorenson-Dice:s(4,B) =
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Example of non-LSHable similarities

e d(A,B)=1 —-5s(A,B)
2|ANB|
|A|+|B]
— Ex:A ={a},B = {b},C = {a, b}
2

— s(A,B)=0,s(B,C) =s(4,C) = 2

* Sorenson-Dice:s(4,B) =

|ANB|
Overlap:s(4, B) = min(|Al,|B)

— s(4,B) =0,s(4,C) =1 = s(B, ()
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Example of non-LSHable similarities

e d(A,B)=1 —5s(A,B)
2|ANB| LS\—\ab\e
al+1B] ies A

- ExA={a},B=1{b},C ={aq, bl ese g3
— s(4,B) =0,s(B,C) =s(4,0) zg

« Sorenson-Dice:s(4,B) =

|ANB|
Overlap:s(4,B) = min(|Al,|B)

— s(4,B) =0,s(4,C) =1 = s(B, ()
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Gap Definition of LSH

IMRS’97, IM’98, GIM’99

o Afamilyis (r,R,p, P) LSH if

Prlh(x) =h(y)]zpifdlxy) <r

hl’el;{[h(x) =h()] <Pifdlxy) =R
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Gap LSH

s All the previous constructions satisfy the gap definition

|SNT|
|SUT |

— Ex:for JS(S,T) =

JD(S,T)<r—-]JS(S,T)=1 —r > Pr[h(S) = h(T)]=JS(S,T)=>1 — r
JD(S,T) =R - JS(S,T) <1 — R = Pr[h(S) = h(T)] = JS(S,T) <1 — R

Henceisa (r,R,1—r,1—R) LSH
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L2 norm
o d(xy) =Vl —y;)?

* u =random unit norm vector, w € R parameter, b ~ Unif[0,w]

u-x+b

* h(x) =| |

w
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L2 norm
d(x,y) = VE,(x; — y:)?

u = random unit norm vector, w € R parameter, b ~ Unif [0, w]
h(x) = | " | ® )
Iflx —yl, <, Prla(x) = h(y)] =

u-x+b

Wk

If lx = yl, > 4w, Pr[h(x) = h(y)] <
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Solving the near neighbour

* (r,c) —near neighbour problem

— Given query point g, return all points p such that
d(p,q) < r and none such thatd(p,q) > cr

— Solving this gives a subroutine to solve the “nearest
neighbour”, by building a data-structure for each r, in
powers of (1 + €)
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How to actually use it?

* Need to amplify the probability of collisions for “near” points



Band construction

* AND-ing of LSH
— Define a composite function H(x) = (h{(x), ... hy (x))

— Pr[H(x) = H(y)] = II; Pr[h;(x) = hy(y)] = Pr[hy (x) = hy ()]*
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Band construction

* AND-ing of LSH
— Define a composite function H(x) = (h{(x), ... hy (x))

— Pr[H(x) = H(y)] = II; Pr[h;(x) = hy(y)] = Pr[hy (x) = hy ()]*

* OR-ing
— Create L independent hash-tables for Hy, H,, ... H},
— Given query q, search in U; H;(q)
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Si S, |Ss|Sa
1 (o ]1]o0
1 ]0 (o |1
o110 |1
o110 |1
o110 |1
1 (o ]1]o0
1 (o ]1]o0

=

Example

S1 S2 S3 S3
hl 1 2 1 2
h2 |2 1 3 1

S1 S2 S3 S3
h3 |3 1 2 1
hd |1 3 2 2
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Why is this better?
* Consider g,y with Pr[h(q) = h(y)] =1 —d(x,y)

* Probability of not finding y as one of the candidates in
U; Hi(q)

1 - (1-1-d¥)
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Creating an LSH

If we have a (7, cr, p, q) LSH
For any y, with |q —y| <,

— Prob of y as candidatein U; Hi(q) = 1 — (1 — PR)L
Foranyz,|q —z| > cr,
— Prob of z as candidate in any fixed H;(q) < gk

— Expected number of such z < Lg*
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Creating an LSH

¢ Ifwehavea (7,cr,p,q) LSH p = :Zigi L =nP k =log(n)/log (%)

* Foranyy,with|qg —y| <,
1
e

L
— Prob of y as candidate in U; Hj(q) >1-— (1 — p") >1 —
 Foranyzl|q —z| >cr,
— Prob of z as candidate in any fixed H;(q) < gk
— Expected numberof suchz < Lgl < L = n”
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Runtime

* Space used =nlt?
* Querytime =n”

: 1
* We can show that for Hamming, angle etc, p = -

— Can get 2-approx near neighbors in 0(\/5) qguery time
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LSH: theory vs practice

* Inorder to design LSH in practice, the theoretical parameter
values are only a guidance

— Typically need to search over the parameter space to find a good
operating point
— Data statistics can provide some guidance (will see in next class)



Summary

Locality sensitive hashing is a powerful tool for near neighbour problems
Trades off space with query time

Practical for medium to large datasets with fairly large number of dimensions
— However, doesn’t really work very well for sparse, very very high dimensional datasets

LSH and extensions are an area of active research and practice



References:

Primary references for this lecture
* Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
* Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH
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