# CS60021: Scalable Data Mining

# Similarity Search and Hashing

Sourangshu Bhattacharya

# **GENERALIZATION OF LSH**

#### **Locality Sensitive Hashing**

[Indyk Motwani]

• Hash family *H* is *locality sensitive* if

Pr[h(x) = h(y)] is high if x is close to y

Pr[h(x) = h(y)] is low if x is far from y

Not clear such functions exist for all distance functions

### Locality sensitive hashing

- Originally defined in terms of a similarity function [C'02]
- Given universe U and a similarity  $s: U \times U \rightarrow [0,1]$ , does there exist a prob distribution over some hash family H such that

$$\Pr_{h \in H}[h(x) = h(y)] = s(x, y) \qquad \begin{array}{l} s(x, y) = 1 \rightarrow x = y \\ s(x, y) = s(y, x) \end{array}$$

### Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$

### Hamming distance

• Points are bit strings of length d

• 
$$H(x,y) = |\{i, x_i \neq y_i\}|$$
  $S_H(x,y) = 1 - \frac{H(x,y)}{d}$   
-  $x = 1011010001, y = 0111010101$   
-  $H(x,y) = 3$   $S_H(x,y) = 1 - \frac{3}{10} = 0.7$ 

#### Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$   $S_H(x,y) = 1 \frac{H(x,y)}{d}$
- Define a hash function h by sampling a set of positions

$$-x = 1011010001, y = 0111010101$$

$$-S = \{1,5,7\}$$
  
- h(x) = 100, h(y) = 100

#### **Existence of LSH**

• The above hash family is locality sensitive, k = |S|

$$\Pr[h(x) = h(y)] = \left(1 - \frac{H(x, y)}{d}\right)^{k}$$

#### LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$



#### LSH for angle distance

- *x*, *y* are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$



Choose direction v uniformly at random

$$-h_{\nu}(x) = sign(\nu \cdot x)$$
$$-\Pr[h_{\nu}(x) = h_{\nu}(y)] = 1 - \theta/\pi$$

### Aside: picking a direction u.a.r.

- How to sample a vector  $x \in \mathbb{R}^d$ ,  $|x|_2 = 1$  and the direction is uniform among all possible directions
- Generate  $x = (x_1, ..., x_d), x_i \sim N(0, 1)$  iid
- Normalize  $\frac{x}{|x|_2}$



 By writing the pdf of the d-dimensional Gaussian in polar form, easy to see that this is uniform direction on unit sphere

### Jaccard distance: minhashing

- Pick a uniform permutation of the element universe U
- For any set *S*,

 $-h(S) = min_{x \in S} h(x)$ 

 Often easier to visualize if we think of the collection of sets as a {0,1} matrix

### Example



| Example |                |                |                |                |   |   |   |   |   |                |                |                |                |
|---------|----------------|----------------|----------------|----------------|---|---|---|---|---|----------------|----------------|----------------|----------------|
|         | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> |   |   | 1 |   |   | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> |
| Α       | 1              | 0              | 1              | 0              |   | D |   | 1 | D | 0              | 1              | 0              | 1              |
| В       | 1              | 0              | 0              | 1              |   | B |   | 2 | В | 1              | 0              | 0              | 1              |
| С       | 0              | 1              | 0              | 1              |   | A |   | 3 | Α | 1              | 0              | 1              | 0              |
| D       | 0              | 1              | 0              | 1              |   | C |   | 4 | С | 0              | 1              | 0              | 1              |
| Ε       | 0              | 1              | 0              | 1              |   | F |   | 5 | F | 1              | 0              | 1              | 0              |
| F       | 1              | 0              | 1              | 0              |   | G |   | 6 | G | 1              | 0              | 1              | 0              |
| G       | 1              | 0              | 1              | 0              |   | E |   | 7 | E | 0              | 1              | 0              | 1              |
|         | -              | -              | -              |                | • |   | • |   | - |                |                |                |                |

3

T

Т

Ζ

### Why is this LSH?

- For sets *S* and *T*,
  - The first row where one of the two has a 1 belong to  $S \cup T$
  - We have equality h(S) = h(T), only if both the rows contain 1
  - This means that this row belongs to  $S \cap T$
- Hence, the event h(S) = h(T) is same as the event that a row in S ∩
   T appears first among all rows in S ∪ T

$$\Pr[h(S) = h(T)] = \frac{|S \cap T|}{|S \cup T|}$$

Aside: How to choose random permutations

- Picking a uniform at random permutation is expensive
- In theory, need to choose from a family of min-wise independent permutations
- In practice, can use standard hash functions, hash all the values and then sort

## Which similarities admit LSH?

- There are various similarities and distance that are used in scientific literature
  - Encyclopedia of distances DL'11
- Will there be an LSH for each one of them?
  - Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

#### LSHable similarities

<u>**Thm</u>: S is LSHable**  $\rightarrow$  1 – S is a metric</u>

 $d(x, y) = 0 \rightarrow x = y$  d(x, y) = d(y, x) $d(x, y) + d(y, z) \ge d(x, z)$ 

#### Fix hash function $h \in H$ and define $\Delta_h(A, B) = [h(A) \neq h(B)]$ $1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$

#### LSHable similarities

<u>Thm</u>: S is LSHable  $\rightarrow 1 - S$  is a metric

 $d(x, y) = 0 \rightarrow x = y$  d(x, y) = d(y, x) $d(x, y) + d(y, z) \ge d(x, z)$ 

Fix hash function  $h \in H$  and define  $\Delta_h(A, B) = [h(A) \neq h(B)]$ 

#### LSHable similarities

<u>Thm</u>: S is LSHable  $\rightarrow$  1 – S is a metric

 $d(x, y) = 0 \rightarrow x = y$  d(x, y) = d(y, x) $d(x, y) + d(y, z) \ge d(x, z)$ 

#### Fix hash function $h \in H$ and define $\Delta_h(A, B) = [h(A) \neq h(B)]$ $1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$

Also

$$\Delta_h(A,B) + \Delta_h(B,C) \ge \Delta_h(A,C)$$

#### Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice :  $s(A, B) = \frac{2|A \cap B|}{|A| + |B|}$

$$- Ex: A = \{a\}, B = \{b\}, C = \{a, b\}$$

$$- s(A, B) = 0, s(B, C) = s(A, C) = 2/3$$

#### Example of non-LSHable similarities

• d(A,B) = 1 - s(A,B)

• Sorenson-Dice : 
$$s(A, B) = \frac{2|A \cap B|}{|A|+|B|}$$
  
- Ex:  $A = \{a\}, B = \{b\}, C = \{a, b\}$   
-  $s(A, B) = 0, s(B, C) = s(A, C) = \frac{2}{3}$ 

• Overlap: 
$$s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$$
  
-  $s(A, B) = 0, s(A, C) = 1 = s(B, C)$ 

### Example of non-LSHable similarities

• 
$$d(A,B) = 1 - s(A,B)$$

• Sorenson-Dice : 
$$s(A, B) = \frac{2|A \cap B|}{|A|+|B|}$$
  
- Ex:  $A = \{a\}, B = \{b\}, C = \{a, b\}$  These similarities are not LSHable  
-  $s(A, B) = 0, s(B, C) = s(A, C) = \frac{2}{3}$   
• Overlap:  $s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$ 

$$- s(A, B) = 0, s(A, C) = 1 = s(B, C)$$

#### Gap Definition of LSH IMRS'97, IM'98, GIM'99

• A family is (r, R, p, P) LSH if

$$\Pr_{h \in H}[h(x) = h(y)] \ge p \text{ if } d(x, y) \le r$$

$$\Pr_{h \in H}[h(x) = h(y)] \le P \text{ if } d(x, y) \ge R$$



#### Gap LSH

• All the previous constructions satisfy the gap definition

- Ex: for 
$$JS(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

$$JD(S,T) \le r \to JS(S,T) \ge 1 - r \to \Pr[h(S) = h(T)] = JS(S,T) \ge 1 - r$$
$$JD(S,T) \ge R \to JS(S,T) \le 1 - R \to \Pr[h(S) = h(T)] = JS(S,T) \le 1 - R$$

Hence is a (r, R, 1 - r, 1 - R) LSH

### L2 norm

- $d(x, y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = random unit norm vector, w \in R parameter, b \sim Unif[0, w]$

• 
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$



### L2 norm

• 
$$d(x, y) = \sqrt{(\sum_i (x_i - y_i)^2)}$$

- $u = random unit norm vector, w \in R parameter, b \sim Unif[0, w]$
- $h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$
- If  $|x y|_2 < \frac{w}{2}$ ,  $\Pr[h(x) = h(y)] \ge \frac{1}{3}$
- If  $|x y|_2 > 4w$ ,  $\Pr[h(x) = h(y)] \le \frac{1}{4}$



## Solving the near neighbour

- (r,c) –near neighbour problem
  - Given query point q, return all points p such that d(p,q) < r and none such that d(p,q) > cr
  - Solving this gives a subroutine to solve the "nearest neighbour", by building a data-structure for each r, in powers of  $(1+\epsilon)$

#### How to actually use it?

• Need to amplify the probability of collisions for "near" points

#### Band construction

- AND-ing of LSH
  - Define a composite function  $H(x) = (h_1(x), ..., h_k(x))$
  - $\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$

#### Band construction

- AND-ing of LSH
  - Define a composite function  $H(x) = (h_1(x), ..., h_k(x))$
  - $\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$
- OR-ing
  - Create L independent hash-tables for  $H_1, H_2, \dots H_L$
  - Given query q, search in  $\bigcup_j H_j(q)$

# Example

|   | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> |
|---|----------------|----------------|----------------|----------------|
| Α | 1              | 0              | 1              | 0              |
| В | 1              | 0              | 0              | 1              |
| С | 0              | 1              | 0              | 1              |
| D | 0              | 1              | 0              | 1              |
| Ε | 0              | 1              | 0              | 1              |
| F | 1              | 0              | 1              | 0              |
| G | 1              | 0              | 1              | 0              |

|    | S1 | S2 |
|----|----|----|
| h1 | 1  | 2  |
| h2 | 2  | 1  |

|    | S1 | S2 | S3 | S3 |
|----|----|----|----|----|
| h3 | 3  | 1  | 2  | 1  |
| h4 | 1  | 3  | 2  | 2  |

S3

S3

#### Why is this better?

- Consider q, y with  $\Pr[h(q) = h(y)] = 1 d(x, y)$
- Probability of not finding y as one of the candidates in  $\cup_j H_j(q)$

$$1 - (1 - (1 - d)^k)^L$$

### Creating an LSH

- If we have a (r, cr, p, q) LSH
- For any y, with |q y| < r,

- Prob of y as candidate in  $\bigcup_j H_j(q) \ge 1 - (1 - p^k)^L$ 

- For any z, |q z| > cr,
  - Prob of z as candidate in any fixed  $H_j(q) \le q^k$
  - Expected number of such  $z \leq Lq^k$

#### Creating an LSH

- If we have a (r, cr, p, q) LSH  $\rho = \frac{\log(p)}{\log(q)}$   $L = n^{\rho} k = \log(n) / \log(\frac{1}{q})$
- For any y, with |q y| < r,

- Prob of y as candidate in  $\bigcup_j H_j(q) \ge 1 - (1 - p^k)^L \ge 1 - \frac{1}{e}$ 

- For any z, |q z| > cr,
  - Prob of z as candidate in any fixed  $H_j(q) \le q^k$
  - Expected number of such  $z \leq Lq^k \leq L = n^{\rho}$

### Runtime

- Space used =  $n^{1+\rho}$
- Query time =  $n^{\rho}$
- We can show that for Hamming, angle etc,  $\rho \approx \frac{1}{c}$

Can get 2-approx near neighbors in  $O(\sqrt{n})$  query time

### LSH: theory vs practice

- In order to design LSH in practice, the theoretical parameter values are only a guidance
  - Typically need to search over the parameter space to find a good operating point
  - Data statistics can provide some guidance (will see in next class)

### Summary

- Locality sensitive hashing is a powerful tool for near neighbour problems
- Trades off space with query time
- Practical for medium to large datasets with fairly large number of dimensions
  - However, doesn't really work very well for sparse, very very high dimensional datasets
- LSH and extensions are an area of active research and practice

#### **References:**

- Primary references for this lecture
  - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
  - Survey by Andoni et al. (CACM 2008) available at <u>www.mit.edu/~andoni/LSH</u>