
CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya



Frequent count



Streaming model revisited

• Data is seen as incoming sequence
– can be just element-ids, or (id, frequency update) tuple

• Arrival only streams

• Arrival + departure
– Negative updates to frequencies possible
– Can represent fluctuating quantities, e.g. 
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Review: Frequency Estimation in 
one pass
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Recall: Count-min sketch
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Count-sketch
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Count Sketch

7



8

Example
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Guarantees
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Guarantees
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Guarantees
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Variance analysis
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Final Guarantees
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Comparisons
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Algorithm Error prob Model

Misra-Gries 0 Insert Only

SpaceSaving 0 Insert Only

CountMin Insert

CountSketch Insert+Delete



(3) Computing Moments



Generalization: Moments
• Suppose a stream has elements chosen 

from a set A of N values

• Let mi be the number of times value i occurs 
in the stream

• The kth moment is
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Special Cases

• 0thmoment = number of distinct elements
– The problem just considered

• 1st moment = count of the numbers of 
elements = length of the stream
– Easy to compute

• 2nd moment = surprise number S =
a measure of how uneven the distribution is
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Example: Surprise Number

• Stream of length 100
• 11 distinct values

• Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise S = 910

• Item counts: 90, 1, 1, 1, 1, 1, 1, 1 ,1, 1, 1  
Surprise S = 8,110
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AMS method
• AMS method works for all moments
• Gives an unbiased estimate.
• We will just concentrate on the 2nd moment S.
• We pick and keep track of many variables X:

– For each variable X, store X.el and X.val
• X.el corresponds to the item I
• X.val corresponds to the count of item I

– Note this requires a count in main memory, so 
number of Xs is limited 

• Our goal is to compute S = Σi mi
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One random variable (X)

• How to set X.val and X.el ? 
– Assume stream has length n (we relax this later)
– Pick some random time t (t<n) to start, so that any time is 

equally likely 
– Let at time t the stream have item i. We set X.el = i
– Then we maintain count c (X.val = c) of the number of is in 

the stream starting from the chosen time t

• Then  the estimate of the 2nd moment ( Σi mi
2 ) is:

S = f(X) = n (2 c -1)
– Note, we will keep track of multiple Xs, (X1, X2,... Xk) and 

our final estimate will be:
S = 1/k Σj f(Xj)



Expectation Analysis
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Time t when
the last i is 
seen (ct=1)

Time t when
the penultimate

i is seen (ct=2)

Time t when
the first i is 
seen (ct=mi)

Group times
by the value
seen

a a a a

1 32 ma

b b b b

Count:

Stream:

mi … total count of 
item i in the stream 

(we are assuming 
stream has length n)

• 2nd moment is S = Σi mi
2

• Ct - number of times item at time t appears 
from time t onwards (c1=ma , c2=ma-1, c3=mb)

• E[f(X)] = 1/n Σt=1
n n (2ct - 1)

= 1/n Σi n (1 + 3 + 5 + … + 2 mi - 1)



Higher-Order Moments
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• For estimating kth moment we essentially use 
the same algorithm but change the estimate:
– For k=2 we used n (2·c – 1)

For k=3 we use: n (3·c2 – 3c + 1) (where c=X.val) 

• Why? 
– For k=2: Remember we had (1+3+5+⋯+(2mi-1)) and 

we showed terms 2c-1 (for c=1,...,m) sum to m2

– 2c – 1 = c2 – (c-1)2

– For k=3: c3 - (c-1)3 = 3c2 - 3c + 1

• Generally: Estimate = n (ck – (c-1)k)



Combining Samples
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Streams Never End: Fixups
• (1) The variables X have n as a factor –

keep n separately; just hold the count in X
• (2) Suppose we can only store k counts.  

We must throw some Xs out as time goes on:
– Objective: Each starting time t is selected with 

probability k/n 
– Solution: (fixed-size sampling!)

• Choose the first k times for k variables
• When the nth element arrives (n > k), choose it with 

probability k/n
• If you choose it, throw one of the previously stored variables

X out, with equal probability
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AMS algorithm



AMS ALGORITHM USING SKETCHES



Generalization of AMS Algorithm

• Stream of pair (i,c), i € {1,…,U} and c is positive 
integer.

• x[i] = x[i] + c for each update
• Join size: x.y = Σi=1

U (x[i] y[i])
• Pth Moment: FP(x) = Σi=1

U x[i]2

• h : {1,…U} è {+1,-1}



Generalization of AMS Algorithm



Generalization of AMS Algorithm



Generalization of AMS Algorithm

• Var(Z2) ≤ 2F2(x)2



Generalization of AMS Algorithm



Generalization of AMS Algorithm



Generalization of AMS Algorithm



Generalization of AMS Algorithm



Generalization of AMS Algorithm



RANGE QUERIES







Range Sum Example

• AMS approach to this, the error scales proportional to F2(𝑓) F2(𝑓′)
So here the error grows proportional to the square root of the length of the range.

• Using the Count-Min sketch approach, the error is proportional to F1(h−l +1), i.e. it 
grows proportional to the length of the range

• Using the Count-Min sketch to approximate counts, the accuracy of the answer is 
proportional to (F1 log n)/w. For large enough ranges, this is an exponential 
improvement in the error.

e.g. To estimate the range sum of [2…8], it is decomposed 
into the ranges [2…2], [3…4], [5…8], and the sum of the 
corresponding nodes in the binary tree as the estimate.

39



Theorem 4 ],[ˆ],[ rlarla £
de £+> ]log2],[],[ˆPr[

1
anrlarla !

Proof : Theorem 1
ii aa ˆ£

],[ˆ],[ rlarla £

E(Σ error for each estimator) nlog2= E(error for each estimator)

■

1
log2 a

e
n !e

£

d£<>- -deanrlarla ]log2],[],[ˆPr[
1

!

40



41

References:

• Primary references for this lecture
• Lecture slides by Graham Cormode

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
• Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-

streams-lecnotes.pdf
• Sketch techniques for approximate query processing, Graham Cormode. 

http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

