CS60021: Scalable Data Mining

Streaming Algorithms

Frequent count

Streaming model revisited

* Data is seen as incoming sequence

— can be just element-ids, or (id, frequency update) tuple

* Arrival only streams

* Arrival + departure

— Negative updates to frequencies possible
— Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in
one pass

* Given input stream, length m, want a sketch that can answer frequency
gueries at the end

— For give item x, return an estimate of the frequency

* Algorithms seen
— Deterministic counter based algorithms: Misra-Gries, SpaceSaving
— Count-Min sketch

Recall: Count-min sketch

* Model input stream as a vector over U
— £, is the entry for dimension x

* Creates a small summary wxd

* Use w hash functions, each maps U — [1,d]

Count-sketch

Model input stream as a vector over U
— fx is the entry for dimension x

* Creates a small summary wxd
* Use w hash functions, h;: U = [1,d]

w sign hash function, each maps gi: U = {—1, +1}

Count Sketch

Initialize

— Choose hq,..,h,,, Alw,d] < 0
Process(x, ¢):

— Foreachi € [w], Ali,h; (x)] += cXg;(x)
Query(q):

— Return median{g; (x)Ali, h;(x)]}

Example

000000000000 -
() 2,+ 1,+
@) 3 2,+
hl [1,+ 3,-
h2 @ 3,+

Guarantees

space = 0 (wd) I
Update time=0(w) [| | |

I
@ N

Each item is mapped to one bucket per row

Guarantees

. w=i dzlog(%)

€2

Y;Y, be the w estimates, i.e. Y; = g;(x)A[i,h;(x)], f. = median ¥;

l

EIY] = E[gi() Ali, ()] = E [gl(x) f, gi(y)]

hi(y)=h;(x)

10

Guarantees

EY,] = E[g,(0) Ali, i 0)]] = E [gl(x)
hi(y)=h;(x)

Notice that forx # y,E[g;(x) g;(y)] = 0!
ElY;] = gi(x)zfx = fx

We analyse the variance in order to bound the error
For simplicity assume hash functions all independent

fygi(Y)]

11

Variance analysis

Using simple algebra, as well as independence of hash functions, |f|5 = fo

(nyy fo) |f|2
d d

var(Y;) =
Using Chebyshev’s inequality
1 1
3
Pr[m—fx|>€|f|2]S@S§ d=—

Finally, use analysis of median-trick with w = log (%)

12

Final Guarantees

* Using space O(log()log(n)) for any

query x, we get an estimate, with prob1 — 0
fio —€lfl2<fx < fx+elfl;

Comparisons

Misra-Gries [—€lfl1,0] Insert Only
SpaceSaving [0,€elf 1] 1/€ 0 Insert Only
CountMin [0,€lf1] log()/E 6 Insert

CountSketch [—€lfl2 €lf 2] log()/e 1) Insert+Delete

14

(3) Computing Moments

Generalization: Moments

e Suppose a stream has elements chosen
from a set A of N values

* Let m; be the number of times value i occurs
in the stream

e The ktr moment is

ZieA (mi)k

16

Special Cases

ZieA (mi)k

e 0"moment = number of distinct elements
— The problem just considered

* 1St moment = count of the numbers of
elements = length of the stream
— Easy to compute

e 2"d moment = surprise number S =
a measure of how uneven the distribution is

Example: Surprise Number

Stream of length 100
11 distinct values

ltem counts: 10,9,9,9,9,9,9,9,9,9,9
Surprise $ =910

ltem counts: 90,1,1,1,1,1,1,1,1,1,1
Surprise $=8,110

18

AMS method

AMS method works for all moments
Gives an unbiased estimate.
We will just concentrate on the 2"¥ moment S.

We pick and keep track of many variables X:

— For each variable X, store X.el and X.val
» X.el corresponds to the item |
e X.val corresponds to the count of item |

— Note this requires a count in main memory, so
number of Xs is limited

Our goal is to compute S =35 m?

One random variable (X)

e How to set X.val and X.el ?

— Assume stream has length n (we relax this later)

— Pick some random time t (t<n) to start, so that any time is
equally likely

— Let at time t the stream have item i. We set X.el =i

— Then we maintain count ¢ (X.val = c¢) of the number of is in
the stream starting from the chosen time t

* Then the estimate of the 2" moment (2, m:?) is:
S=f(X)=n(2c-1)

— Note, we will keep track of multiple Xs, (X;, X,,... X,) and
our final estimate will be:

S=1/k zj.f(Xj)

Expectation Analysis

Count: 1T 2 3 Ma
—_— — — — - - —>
Stream: a a b b b a b a

* 2nd moment is S = I, m.?

* C,- number of times item at time t appears
from time t onwards (¢c,=m, , ¢c,=m_-1, c;=m,)

o E[f(X)] =1/n5,.," n (2c,- 1) et

item 7 in the stream

=1/n Z,n(l +3+5+...+2m,--1) (we are assuming

stream has length n)

/ \ Time t when Time t when

Time t when the penultimate the firstiis

Group times the lastiis
by the value i is seen (¢=2) seen (c;=m)
seen (c,=1)

seen
21

Higher-Order Moments

* For estimating kth moment we essentially use
the same algorithm but change the estimate:

— For k=2 we used n (2:c—-1)
For k=3 we use: n (3-c2—3c + 1) (where c=X.val)

e Why?

— For k=2: Remember we had (1+3+5+:--+(2m;-1)) and
we showed terms 2c-1 (for c=1,...,m) sum to m?

—2c-1=c?-(c-1)?
— Fork=3:¢3-(c-1)3=3c?*-3c+ 1
* Generally: Estimate = n (ck - (c-1)¥)

22

Combining Samples

* In practice:
— Compute f(X) =n(2 c- 1) for
as many variables X as you can fit in memory
— Average them in groups

— Take median of averages

* Problem: Streams never end

— We assumed there was a number n,
the number of positions in the stream

— But real streams go on forever, son is
a variable — the number of inputs seen so far

23

Streams Never End: Fixups

(1) The variables X have n as a factor —
keep n separately; just hold the count in X

(2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:

— Objective: Each starting time t is selected with
probability k/n
— Solution: (fixed-size sampling!)
e Choose the first k times for k variables

e When the nt" element arrives (n > k), choose it with
probability k/n

* If you choose it, throw one of the previously stored variables
X out, with equal probability

AMS algorithm

Initialize : (m.r.a) < (0.0.0)

Process :

m«<—m++1 f < randombit withPr[f =1]=1/m if f = 1 then
a<«—j r<»0

if /] = a then

re<—r+1

N

Output : m(r* —(r — k)

AMS ALGORITHM USING SKETCHES

Generalization of AMS Algorithm

Stream of pair (i,c), i €{1,...,U} and c is positive
Integer.

x[i] = x[i] + ¢ for each update
Join size: x.y = 2._,Y (x[i] y[i])
Pth Moment: Fp(x) = Z._,Y x[i]?

lx — yll2 =+ F2(x — y).

h:{1,..U} = {+1,-1}

Generalization of AMS Algorithm

UPDATE(i, ¢, 2) ESTIMATEJS(x, y)
Input: item i, count c, sketch z Input: sketch x, sketch y

1: for j =1to w do Output: estimate of x - y

2: fork=1toddo 1: for j =1tow do

3: z[jlkl+=h;jr(@) *c 2: avgljl=0;

3: fork=1toddo

ESTIMATE F>(z) 4 avgljl+=x[j1k] x y[jl[k]/w;
Input: sketch z 5: Return(median(avg))

1: Return ESTIMATEJS(z, 2)

Fig. 1 AMS algorithm for estimating join and self-join size

Generalization of AMS Algorithm

Lemma 1 E(Z?) = F,(x)

Proof

U
Z (,)2x[,]2)+5 Y 2rG)R()x[ilx[/]

I<i<j<U

U
=Y x[i’ +0=F(x).

Generalization of AMS Algorithm

e Var(Z2) < 2F,(x)?

E(z*) —E(2%)’

(o))- (o)

Var(Z?)

Generalization of AMS Algorithm

U
=E((Zh(i)4x[i]4+ > 6h)*h() x[ix([jT

i=1 I<i<j<U

+ Y 12hG)*h()h()x[iTx[j1x[K]
LiFjF#k
+) 4R (h()x[iPxLj]

I<i#j<U

+ Y 120G@)R()HAEADx[i]x]]]x[k]x[l])

I<i<j<k<I<U

(Zx[z] + Y 2x(i] x[;])

I<i<j<U

Generalization of AMS Algorithm

U
=) x[il'+) 6x[iPx[j)
i=1

I<i<j<U

U
—(Zx[i]4+ > 2x[i]2x[j]2)
i=1

l<i<j<U

=4) x[i]zx[j]z)ngg.

1<i<j<U

Generalization of AMS Algorithm

Fact 1 (Variance Reduction) Let X; be independent and identically distributed ran-
dom variables. Then

Var(z %) = iVar(Xl).

i=1

Fact 2 (The Chebyshev Inequality) Given a random variable X,

Var(X)

Pr| X —E(X)| >k] < v

Generalization of AMS Algorithm

Theorem 1 An (¢, 8)-approximation of F», the self-join size, can be computed in
space O(GL2 log 1/8) machine words in the streaming model. Each update takes time

O (25 log1/8).

Proof Applying the Chebyshev inequality to the average of w = ;—3 copies of the

estimate Z generates a new estimate Y such that

Var(Y) Var(Z) 2F; 1
€2F? ce2F} (16/e2)e2F} 8

PrllY — F2| <eP,] <

Generalization of AMS Algorithm

Fact 3 (Application of Chernoff Bounds) Let R be a range of values R =

[Rmin..Rmax], and let Y; be d = 4log1/8 independent and identically distributed
random variable such that Pr[Y; ¢ R] < %. Then

Pr[(medianf=1 Y;) ¢ R] <34,

that is, if there is constant probability that each Y; falls within the desired range R,

then taking the median of O(log1/8) copies of Y; reduces the failure probability
to 4.

Hence, applying the Chernoff bound result from Fact 3 to the median of 4log 1/
copies of the average Y gives the probability of the results being outside the range
of € F from F, as 8. The space required is that to maintain O(e% log 1/8) copies
of the original estimate. Each of these requires a counter and a 4-wise independent
hash function, both of which can be represented with a constant number of machine
words under the standard RAM model. [

RANGE QUERIES

Dyadic Intervals

» Define Ig n partitions of [n]

Ilg n

{1,2,3,4,5,6,7,8,...}

{{1,2},{3,4},{5,6},{7,8},...}
{{1,2,3,4},{5.6,7,8},...}

{{1,2,3,4,5,6,7,8},...}

{{1,2,3,4,5,6,7,8,...,n}}

» Exercise: Any interval [/, j] can be written as the union of < 2Ign of
the above intervals. E.g., for n = 256,

[48,107] = [48, 48]U[49, 64]U[65, 96]U[97, 104]U[105, 106]U[107, 107]

Call such a decomposition, the canonical decomposition.

Range Queries and Quantiles

> Range Query: For 1 <1 <j < n, estimate f; j = fi + fiy1 + ...+ f
» Approximate Median: Find j such that

fii+...+f
f1+...+6'_1

m/2 —em and

>
< m/2+em

Can approximate median via binary search of range queries.
» Algorithm:

1. Construct Ig n Count-Min sketches, one for each Z; such that for any
| € 7; we have an estimate f; for f; such that

Plfi<fi<fitem>1-6.
2. To estimate [i,j], let hUhU...U Ik be canonical decomposition. Set
ﬁi,j] = fll +...+ﬁk

3. Hence, P [f[,-,j] < ﬁ,-,j] < 2emlg n] >1-—24lgn.

Range Sum Example

* AMS approach to this, the error scales proportional to \/Fz(f) F,(f)
So here the error grows proportional to the square root of the length of the range.

* Using the Count-Min sketch approach, the error is proportional to F,(h-I +1), i.e. it
grows proportional to the length of the range

* Using the Count-Min sketch to approximate counts, the accuracy of the answer is

proportional to (F; log n)/w. For large enough ranges, this is an exponential
improvement in the error.

e.g. To estimate the range sum of [2...8], it is decomposed

into the ranges [2...2], [3...4], [5...8], and the sum of the
corresponding nodes in the binary tree as the estimate.

8 000000

Using dyadic ranges to answer a range query 39

Theoremd4 a[l,r]<a[l,r]
Prla[l,r]> a[l,r]+2¢logn|d| 1< 6

a. <

I i

Proof: theorem1 mmm) all,r]<a[l,r]

IS

E(Z error for each estimator) = 210gn E(error for each estimator)
P
< ZIOgn—HaH1
e
Prla[l,r]—a[l,r]>2logn|jd| 1<e™ <&

Analysis
Time to produce the estimate O[log(n)log lj
o)

Space used O[m log lj
£ o

Time for updates O(log(n) log%j

Remark: the guarantee will be more
useful when stated without terms of log »
In the approximation bound. 1

40

References:

Primary references for this lecture
* Lecture slides by Graham Cormode
http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
* Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-
streams-lecnotes.pdf
» Sketch techniques for approximate query processing, Graham Cormode.
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

41

http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

