CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or (id, frequency update) tuple
- Arrival only streams

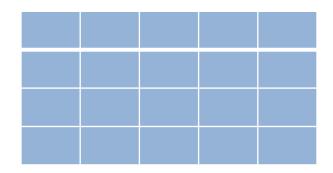
- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in one pass

- Given input stream, length *m*, want a sketch that can answer frequency queries at the end
 - For give item x, return an estimate of the frequency
- Algorithms seen
 - Deterministic counter based algorithms: Misra-Gries, SpaceSaving
 - Count-Min sketch

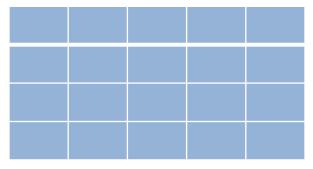
Recall: Count-min sketch

- Model input stream as a vector over U- f_x is the entry for dimension x
- Creates a small summary w×d
- Use w hash functions, each maps $U \rightarrow [1, d]$



Count-sketch

- Model input stream as a vector over U
 - f_x is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, $h_i: U \rightarrow [1, d]$
- w sign hash function, each maps $g_i: U \rightarrow \{-1, +1\}$



Count Sketch

<u>Initialize</u>

– Choose $h_1, ..., h_w$, $A[w, d] \leftarrow 0$ <u>Process(x, c)</u>:

- For each $i \in [w]$, $A[i, h_i(x)] += c \times g_i(x)$ Query(q):

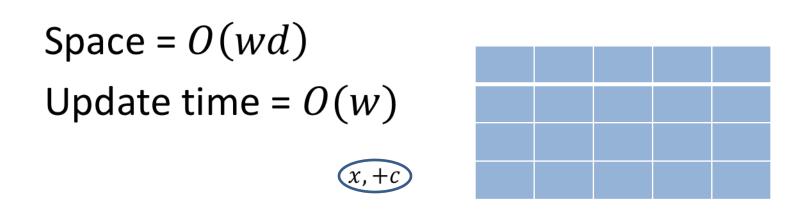
- Return median{ $g_i(x)A[i, h_i(x)]$ }

Example

h1		
h2		

	h1,g1	h2,g2
	2,+	1,+
•	3,-	2,+
	1,+	3,-
\bigcirc	2,-	3,+

Guarantees



Each item is mapped to one bucket per row

Guarantees

•
$$w = \frac{2}{\epsilon^2}$$
 $d = \log\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the *w* estimates, i.e. $Y_i = g_i(x)A[i, h_i(x)], \quad \widehat{f}_x = \text{median } Y_i$

$$E[Y_i] = E[g_i(x) A[i, h_i(x)]] = E\left[g_i(x) \sum_{h_i(y) = h_i(x)} f_y g_i(y)\right]$$

Guarantees

$$E[Y_i] = E\left[g_i(x) A[i, h_i(x)]\right] = E\left[g_i(x) \sum_{h_i(y)=h_i(x)} f_y g_i(y)\right]$$

Notice that for $x \neq y$, $E[g_i(x) g_i(y)] = 0$!

$$E[Y_i] = g_i(x)^2 f_x = f_x$$

We analyse the variance in order to bound the error For simplicity assume hash functions all independent

Variance analysis

Using simple algebra, as well as independence of hash functions, $|f|_2^2 = \sum_x f_x^2$ $var(Y_i) = \frac{\left(\sum_y f_y^2 - f_x^2\right)}{d} \le \frac{|f|_2^2}{d}$

Using Chebyshev's inequality

$$\Pr[|Y_i - f_x| > \epsilon |f|_2] \le \frac{1}{d\epsilon^2} \le \frac{1}{3} \qquad d = \frac{3}{\epsilon^2}$$

Finally, use analysis of median-trick with $w = \log\left(\frac{1}{\delta}\right)$

Final Guarantees

• Using space $O\left(\frac{1}{\epsilon^2}\log\left(\frac{1}{\delta}\right)\log(n)\right)$, for any query x, we get an estimate, with prob $1 - \delta$ $f_x - \epsilon |f|_2 \le f_x \le f_x + \epsilon |f|_2$

Comparisons

Algorithm	$\widehat{f_x} - f_x$	Space $ imes log(n)$	Error prob	Model
Misra-Gries	$[-\epsilon f _1,0]$	$1/\epsilon$	0	Insert Only
SpaceSaving	$[0,\epsilon f _1]$	$1/\epsilon$	0	Insert Only
CountMin	$[0,\epsilon f _1]$	$\log\left(\frac{1}{\delta}\right)/\epsilon$	δ	Insert
CountSketch	$[-\epsilon f _2,\epsilon f _2]$	$\log\left(\frac{1}{\delta}\right)/\epsilon^2$	δ	Insert+Delete

(3) Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The k^{th} moment is $\sum_{i \in A} (m_i)^k$

Special Cases $\sum_{i \in A} (m_i)^k$

- Othmoment = number of distinct elements

 The problem just considered
- 1st moment = count of the numbers of elements = length of the stream

Easy to compute

 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

AMS method

- AMS method works for all moments
- Gives an unbiased estimate.
- We will just concentrate on the 2nd moment S.
- We pick and keep track of many variables X:
 - For each variable X, store X.el and X.val
 - X.el corresponds to the item I
 - X.val corresponds to the count of item I
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_{i} m_{i}^{2}$

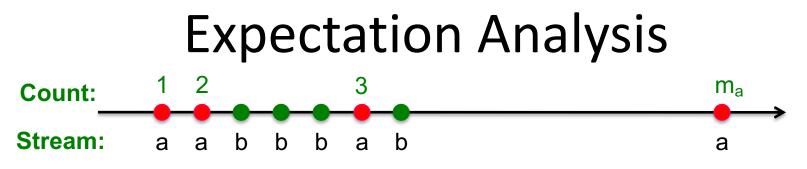
One random variable (X)

- How to set X.val and X.el ?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2^{nd} moment ($\Sigma_i m_i^2$) is:

S = f(X) = n (2 c - 1)

 Note, we will keep track of multiple Xs, (X₁, X₂,... X_k) and our final estimate will be:

 $S = 1/k \Sigma_j f(X_j)$



- 2nd moment is $S = \Sigma_i m_i^2$
- C_t number of times item at time t appears from time t onwards (c₁=m_a, c₂=m_a-1, c₃=m_b)
- $E[f(X)] = 1/n \sum_{t=1}^{n} n (2c_t 1)$ = $1/n \sum_i n (1 + 3 + 5 + ... + 2 m_i - 1)$

m_i ... totàl count of item *i* in the stream (we are assuming stream has length **n**)

Group times by the value seen Time t when th the last *i* is *i* seen (*c_t=1*)

Time **t** when the penultimate **i** is seen (**c**_t=**2**) Time **t** when the first **i** is seen (**c**_t=**m**_i)

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used n (2·c 1)
 For k=3 we use: n (3·c² 3c + 1) (where c=X.val)

• Why?

– For k=2: Remember we had (1+3+5+···+(2m_i-1)) and we showed terms 2c-1 (for c=1,...,m) sum to m²

$$-2c-1=c^2-(c-1)^2$$

- For k=3: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

Generally: Estimate = n (c^k - (c-1)^k)

Combining Samples

• In practice:

- Compute f(X) = n(2 c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

• Problem: Streams never end

- We assumed there was a number *n*,
 the number of positions in the stream
- But real streams go on forever, so *n* is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor –
 keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some X out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the nth element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables
 X out, with equal probability

AMS algorithm

Initialize : $(m, r, a) \leftarrow (0, 0, 0)$ **Process** j: $m \leftarrow m + 1$ $\beta \leftarrow$ random bit with $\Pr[\beta = 1] = 1/m$ if $\beta = 1$ then $\begin{vmatrix} a \leftarrow j & r \leftarrow 0 \\ if \ j = a \text{ then} \\ \lfloor r \leftarrow r + 1 \end{vmatrix}$

Output : $m(r^k - (r-1)^k)$

AMS ALGORITHM USING SKETCHES

- Stream of pair (i,c), i € {1,...,U} and c is positive integer.
- x[i] = x[i] + c for each update
- Join size: x.y = Σ_{i=1}^U (x[i] y[i])
- Pth Moment: $F_P(x) = \sum_{i=1}^{U} x[i]^2$

$$\|\boldsymbol{x}-\boldsymbol{y}\|_2 = \sqrt{F_2(\boldsymbol{x}-\boldsymbol{y})}.$$

• h : {1,...U} → {+1,-1}

UPDATE(i, c, z)**Input:** item *i*, count *c*, sketch *z*

1: for j = 1 to w do 2: for k = 1 to d do 3: $z[j][k] + = h_{j,k}(i) * c$

ESTIMATE $F_2(z)$ Input: sketch z

1: **Return** ESTIMATEJS(z, z)

ESTIMATEJS(x, y)Input: sketch x, sketch y Output: estimate of $x \cdot y$

- 1: for j = 1 to w do
- 2: avg[j] = 0;
- 3: **for** k = 1 to *d* **do**
- 4: avg[j] + = x[j][k] * y[j][k]/w;
- 5: **Return**(median(*avg*))

Fig. 1 AMS algorithm for estimating join and self-join size

Lemma 1 $E(Z^2) = F_2(x)$

Proof

$$\mathsf{E}(Z^2) = \mathsf{E}\left(\left(\sum_{i=1}^U h(i)\mathbf{x}[i]\right)^2\right)$$
$$= \mathsf{E}\left(\sum_{i=1}^U h(i)^2 \mathbf{x}[i]^2\right) + \mathsf{E}\sum_{1 \le i < j \le U} 2h(i)h(j)\mathbf{x}[i]\mathbf{x}[j]$$
$$= \sum_{i=1}^U \mathbf{x}[i]^2 + 0 = F_2(\mathbf{x}).$$

• $Var(Z^2) \leq 2F_2(x)^2$

$$\operatorname{Var}(Z^{2}) = \operatorname{E}(Z^{4}) - \operatorname{E}(Z^{2})^{2}$$
$$= \operatorname{E}\left(\left(\sum_{i=1}^{U} h(i)\boldsymbol{x}[i]\right)^{4}\right) - \left(\sum_{i=1}^{U} \boldsymbol{x}[i]^{2}\right)^{2}$$

$$= \mathsf{E} \left(\left(\sum_{i=1}^{U} h(i)^{4} \mathbf{x}[i]^{4} + \sum_{1 \le i < j \le U} 6h(i)^{2} h(j)^{2} \mathbf{x}[i]^{2} \mathbf{x}[j]^{2} \right)$$

$$+ \sum_{i,i \ne j \ne k} 12h(i)^{2} h(j)h(k) \mathbf{x}[i]^{2} \mathbf{x}[j] \mathbf{x}[k]$$

$$+ \sum_{1 \le i \ne j \le U} 4h^{3}(i)h(j) \mathbf{x}[i]^{3} \mathbf{x}[j]$$

$$+ \sum_{1 \le i < j < k < l \le U} 12h(i)h(j)h(k)h(l) \mathbf{x}[i] \mathbf{x}[j] \mathbf{x}[k] \mathbf{x}[l] \right)$$

$$- \left(\sum_{i=1}^{U} \mathbf{x}[i]^{4} + \sum_{1 \le i < j \le U} 2\mathbf{x}[i]^{2} \mathbf{x}[j]^{2} \right)$$

$$= \sum_{i=1}^{U} \mathbf{x}[i]^{4} + \sum_{1 \le i < j \le U} 6\mathbf{x}[i]^{2}\mathbf{x}[j]^{2}$$
$$- \left(\sum_{i=1}^{U} \mathbf{x}[i]^{4} + \sum_{1 \le i < j \le U} 2\mathbf{x}[i]^{2}\mathbf{x}[j]^{2}\right)$$
$$= 4 \sum_{1 \le i < j \le U} \mathbf{x}[i]^{2}\mathbf{x}[j]^{2}\right) \le 2F_{2}^{2}.$$

Fact 1 (Variance Reduction) Let X_i be independent and identically distributed random variables. Then

$$\operatorname{Var}\left(\sum_{i=1}^{w} \frac{X_i}{w}\right) = \frac{1}{w}\operatorname{Var}(X_1).$$

Fact 2 (The Chebyshev Inequality) Given a random variable X,

$$\Pr\left[\left|X - \mathsf{E}(X)\right| \ge k\right] \le \frac{\mathsf{Var}(X)}{k^2}$$

Theorem 1 An (ϵ, δ) -approximation of F_2 , the self-join size, can be computed in space $O(\frac{1}{\epsilon^2} \log 1/\delta)$ machine words in the streaming model. Each update takes time $O(\frac{1}{\epsilon^2} \log 1/\delta)$.

Proof Applying the Chebyshev inequality to the average of $w = \frac{16}{\epsilon^2}$ copies of the estimate Z generates a new estimate Y such that

$$\Pr[|Y - F_2| \le \epsilon F_2] \le \frac{\operatorname{Var}(Y)}{\epsilon^2 F_2^2} = \frac{\operatorname{Var}(Z)}{\epsilon \epsilon^2 F_2^2} = \frac{2F_2^2}{(16/\epsilon^2)\epsilon^2 F_2^2} = \frac{1}{8}.$$

Fact 3 (Application of Chernoff Bounds) Let R be a range of values $R = [R_{\min}..R_{\max}]$, and let Y_i be $d = 4 \log 1/\delta$ independent and identically distributed random variable such that $\Pr[Y_i \notin R] \leq \frac{1}{8}$. Then

 $\Pr\left[\left(\operatorname{median}_{i=1}^{d} Y_{i}\right) \notin R\right] \leq \delta,$

that is, if there is constant probability that each Y_i falls within the desired range R, then taking the median of $O(\log 1/\delta)$ copies of Y_i reduces the failure probability to δ .

Hence, applying the Chernoff bound result from Fact 3 to the median of $4 \log 1/\delta$ copies of the average Y gives the probability of the results being outside the range of ϵF_2 from F_2 as δ . The space required is that to maintain $O(\frac{1}{\epsilon^2} \log 1/\delta)$ copies of the original estimate. Each of these requires a counter and a 4-wise independent hash function, both of which can be represented with a constant number of machine words under the standard RAM model.

RANGE QUERIES

Dyadic Intervals

Define lg n partitions of [n]

$$\begin{array}{rcl} \mathcal{I}_{0} &=& \{1,2,3,4,5,6,7,8,\ldots\} \\ \mathcal{I}_{1} &=& \{\{1,2\},\{3,4\},\{5,6\},\{7,8\},\ldots\} \\ \mathcal{I}_{2} &=& \{\{1,2,3,4\},\{5,6,7,8\},\ldots\} \\ \mathcal{I}_{3} &=& \{\{1,2,3,4,5,6,7,8\},\ldots\} \\ \vdots &\vdots \\ \mathcal{I}_{\lg n} &=& \{\{1,2,3,4,5,6,7,8,\ldots,n\}\} \end{array}$$

► Exercise: Any interval [i, j] can be written as the union of ≤ 2 lg n of the above intervals. E.g., for n = 256,

 $[48, 107] = [48, 48] \cup [49, 64] \cup [65, 96] \cup [97, 104] \cup [105, 106] \cup [107, 107]$

Call such a decomposition, the *canonical decomposition*.

Range Queries and Quantiles

- ▶ Range Query: For $1 \le i \le j \le n$, estimate $f_{[i,j]} = f_i + f_{i+1} + \ldots + f_j$
- Approximate Median: Find j such that

$$egin{array}{rll} f_1+\ldots+f_j&\geq&m/2-\epsilon m \ f_1+\ldots+f_{j-1}&\leq&m/2+\epsilon m \end{array}$$

Can approximate median via binary search of range queries.

- Algorithm:
 - 1. Construct lg *n* Count-Min sketches, one for each \mathcal{I}_i such that for any $I \in \mathcal{I}_i$ we have an estimate \tilde{f}_i for f_i such that

$$\mathbb{P}\left[f_{l} \leq \tilde{f}_{l} \leq f_{l} + \epsilon m\right] \geq 1 - \delta$$
.

2. To estimate [i, j], let $I_1 \cup I_2 \cup \ldots \cup I_k$ be canonical decomposition. Set

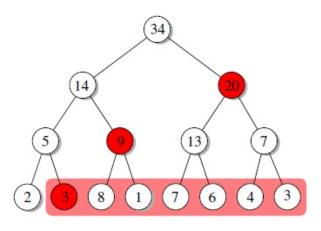
$$\tilde{f}_{[i,j]} = \tilde{f}_{I_1} + \ldots + \tilde{f}_{I_k}$$

3. Hence,
$$\mathbb{P}\left[f_{[i,j]} \leq \tilde{f}_{[i,j]} \leq 2\epsilon m \lg n\right] \geq 1 - 2\delta \lg n$$
.

Range Sum Example

- AMS approach to this, the error scales proportional to $\sqrt{F_2(f) F_2(f')}$ So here the error grows proportional to the square root of the length of the range.
- Using the Count-Min sketch approach, the error is proportional to F₁(h-l +1), i.e. it grows proportional to the length of the range
- Using the Count-Min sketch to approximate counts, the accuracy of the answer is proportional to (F₁ log n)/w. For large enough ranges, this is an exponential improvement in the error.

e.g. To estimate the range sum of [2...8], it is decomposed into the ranges [2...2], [3...4], [5...8], and the sum of the corresponding nodes in the binary tree as the estimate.



Theorem 4
$$a[l,r] \leq \hat{a}[l,r]$$

 $\Pr[\hat{a}[l,r] > a[l,r] + 2\varepsilon \log n \|\vec{a}\|_1] \leq \delta$
Proof: Theorem 1 $a_i \leq \hat{a}_i$
 $a[l,r] \leq \hat{a}[l,r]$

E(Σ error for each estimator) = $2 \log n$ E(error for each estimator) $\leq 2 \log n \frac{\varepsilon}{e} \|\vec{a}\|_{1}$ Pr $[\hat{a}[l,r] - a[l,r] > 2 \log n \|\vec{a}\|_{1}] < e^{-d} \leq \delta$

Analysis

Time to produce the estimate $O\left(\log(n)\log\frac{1}{\delta}\right)$

Space used

 $O\left(\frac{\log(n)}{\varepsilon}\log\frac{1}{\delta}\right)$

Time for updates

 $O\left(\log(n)\log\frac{1}{\delta}\right)$

Remark : the guarantee will be more useful when stated without terms of $\log n$ In the approximation bound.

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode <u>http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf</u>
 - Lecture notes by Amit Chakrabarti: <u>http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf</u>
 - Sketch techniques for approximate query processing, Graham Cormode. <u>http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf</u>