CS60021: Scalable Data Mining

Streaming Algorithms



Frequent count



Streaming model revisited

* Data is seen as incoming sequence

— can be just element-ids, or ids +frequency updates

* Arrival only streams

* Arrival + departure

— Negative updates to frequencies possible
— Can represent fluctuating quantities, e.g.



Frequency Estimation

* Given the input stream, answer queries about
item frequencies at the end

— Useful in many practical applications e.g. finding most popular pages
from website logs, detecting DoS attacks, database optimization
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e Also used as subroutine in many problems

— Entropy estimation, itemset mining etc



Frequency estimation

Q1. Can we create a data structure, sketch, sublinear in the data size to
answer all frequency queries accurately?
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Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to
answer all frequency queries exactly?

— No

Q2. Can we create a sketch to answer frequencies of the “most frequent”
elements exactly?

— No

Q3. Sketch to estimate frequencies of “most frequent” elements
approximately?

— YES!



Approximate Heavy Hitters

e Given an update stream of length m, find out all
elements that occur “frequently”

— e.g. at least 1% of the time
— cannot be done in sublinear space, one pass
* Find out elements that occur at least ¢pm times, and
none that appears < (¢p —€e)mtimes
— Error e

— Related question: estimate each frequency with error tem



Starting with a puzzle

[J. Algorithms, 1981] Suppose we have a list of

N numbers, representing votes of N processors

on result of some computation. We wish to decide
if there is a majority vote and what that vote is.

* By J.S. Moore

* Did not talk about streaming solution, but
proposed solution is

 Strict majority: >N/2




Majority Algorithm

* Arrivals only model
e Start with a counter set to zero
e For each item

— if counter =0, pick new item and increment counter
— else if new item is same as item in hand, increment counter
— else decrement counter
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Majority Algorithm

Start with a counter set to zero
For each item

— if counter =0, pick new item and increment counter
— else if new item is same as item in hand, increment counter
— else decrement counter

If there is @ majority item, it is in hand at the end

Proof: Since majority occurs > N/2 times, not all occurrences can be
cancelled out
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Frequent [Misra-Gries]

* Keep k counters and items in hand
Initialize:

— Set all countersto 0

Process(x)

— if x is same as any item in hand, increment its counter
— else if number of items < k, store x with counter = 1
— else drop x and decrement all counters

Query(q)
— If g is in hand return its counter, else 0

13



Frequent

* f, be the true frequency of element x

At the end, some set of elements is stored
with counter values

* If query y in hand, f;, = counter value, else
fy =0



Theoretical Bound

Claim: No element with frequency > m/k is
missed at the end




Theoretical Bound

Claim: No element with frequency > m/k is
missed at the end

Intuition: Each decrement (including drop) is
charged with k arrivals. Therefore, will have
some copy of an item with frequency > m/k



Stronger Claim

Choose k = % . For every item x, with frequency

f. the algo can return an estimate f, such that
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Stronger Claim

Choose k = i . For every item x, with frequency

f. the algo can return an estimate f, such that

fx_Eme;chx

Same intuition, whenever we drop a copy of
item x, we also drop k — 1 copies of other items



Summary

Simple deterministic algorithm to estimate heavy
hitters

— Works only in the arrival model

Proposed in 1982, rediscovered multiple times with
modifications

Also basis of matrix low rank approximation
Our next lecture will discuss other algorithms



Space Saving Algorithm

s Keep k countersand itemsin hand
Initialize:

— Set all countersto 0
Process(x)

— if x is same as any item in hand, increment its counter
— else if number of items < k, store x with counter=1
— else replace item with smallest counter by x, increment counter

Query(q)
— If g isin hand return its counter, else 0
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Analysis

elaim 1: All items with true count > em are present in hand at the end
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Analysis

€laim 1: All items with true count > em are present in hand at the end

* Smallest counter value, min, is at most em
— Counters sum to m, by induction
— 1/€ counters, so average is em, hence smallest is less

* True count of an uncounted item is between 0 and min
— Proof by induction, true initially, min increases monotonically
— Consider last time the item was dropped



Counter based vs “sketch” based

* Counter based methods
— Misra-Gries, Space-Saving, ....
— Work for arrival only streams
— In practice somewhat more efficient: space, and especially update time

 Sketch based methods

— “Sketch” is informally defined as a “compact” data structure that allows both inserts
and deletes

— Use hash functions to compute a linear transform of the input
— Work naturally for arrivals + departure



Count-min sketch

* Model input stream as a vector over U
— f, is the entry for dimension x
e Creates a small summaryw X d
* Use w hash functions, each maps U — [1,d]
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Count Min Sketch

pnitialize

— Choose hq,..,h,,, Alw,d] « 0
Process(x, c):

— Foreachi € [w], Ali,h;(x)] += ¢
Query(q):

— Return miinA[i, hi(x)]
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Guarantees

Space = 0(wd)
Update time = 0 (w)

@O

Each item is mapped to one bucket per row
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Guarantees

t 4 =2 w=log(%)

€

Y; ....Y,, bethe w estimates, i.e. Y; = A[i, h;(x)], f. = min Y;

l

Each estimatef;c always satisfiesf;c > fy
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Guarantees
4=t w-tog(3)

Y; ....Y,, bethe w estimates,i.e. ¥; = A[i, h;(x)], f. = min Y;

l

Each estimate f, always satisfies f, = f;

ElYi] = 2ynor=hi fy = fx te(m = f)/2
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Guarantees

R

Y; ....Y,, be the w estimates, i.e. Y; = A[i, h;(x)], f. = min Y;

Each estimate f; always satisfiesf,} > fx

ElY] =
y:hi (¥)=hi(x)
Applying Markov’s inequality,
Pr[Y; — f, > em

1

fy =k +e(m —fy)/2

< e(m — fy)
— 2em

]

1
S_
2
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Guarantee

: : - 1 :
¢ Since we are taking minimum of log (5) such random variables,

Pr| f. > f, +tem| <27 og(5) <é
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Guarantee

: : - 1 :
¢ Since we are taking minimum of log (5) such random variables,

1
Pr| £, > f, +em]| < 2_1°g(3) <é

* Hence, with probability 1 — §, for any query x

—_—

fx S fx= fx tem
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Summary

Two algorithms for frequency estimation
— Counter based: Space Saving
— Sketch based: Count-Min

Guiding principle: use error bounds as design parameters of
the data structure

More to come...
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streams-lecnotes.pdf
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http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
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