CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Frequent count

Streaming model revisited

Data is seen as incoming sequence

can be just element-ids, or ids +frequency updates

• Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Frequency Estimation

- Given the input stream, answer queries about item frequencies at the end
 - Useful in many practical applications e.g. finding most popular pages from website logs, detecting DoS attacks, database optimization

- Also used as subroutine in many problems
 - Entropy estimation, itemset mining etc

Frequency estimation

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries accurately?

Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries accurately?

— No

Q2. Can we create a sketch to estimate frequencies of the "most frequent" elements exactly?

Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?

– No

Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?

– No

Q3. Sketch to estimate frequencies of "most frequent" elements approximately?

Frequency estimation in one pass

Q1. Can we create a data structure, sketch, sublinear in the data size to answer all frequency queries exactly?

— No

Q2. Can we create a sketch to answer frequencies of the "most frequent" elements exactly?

– No

Q3. Sketch to estimate frequencies of "most frequent" elements approximately?

- YES!

Approximate Heavy Hitters

 Given an update stream of length *m*, find out all elements that occur "frequently"

- e.g. at least 1% of the time

- cannot be done in sublinear space, one pass
- Find out elements that occur at least ϕm times, and none that appears $<(\phi \epsilon)m$ times
 - Error ϵ
 - Related question: estimate each frequency with error $\pm\epsilon m$

Starting with a puzzle

[J. Algorithms, 1981] Suppose we have a list of N numbers, representing votes of N processors on result of some computation. We wish to decide if there is a majority vote and what that vote is.

- By J.S. Moore
- Did not talk about streaming solution, but proposed solution is
- Strict majority: >N/2

Majority Algorithm

- Arrivals only model
- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter

Majority Algorithm

- Start with a counter set to zero
- For each item
 - if counter = 0, pick new item and increment counter
 - else if new item is same as item in hand, increment counter
 - else decrement counter
- If there is a majority item, it is in hand at the end
- Proof: Since majority occurs > N/2 times, not all occurrences can be cancelled out

Frequent [Misra-Gries]

- Keep k counters and items in hand
- Initialize:
 - Set all counters to 0
- Process(x)
 - if x is same as any item in hand, increment its counter
 - else if number of items < k, store x with counter = 1
 - else drop x and decrement all counters

Query(q)

- If q is in hand return its counter, else 0

Frequent

- f_x be the true frequency of element x
- At the end, some set of elements is stored with counter values
- If query y in hand, $\widehat{f_y} = \text{counter value, else}$ $\widehat{f_y} = 0$

Theoretical Bound

<u>Claim</u>: No element with frequency > m/k is missed at the end

Theoretical Bound

<u>Claim</u>: No element with frequency > m/k is missed at the end

Intuition: Each decrement (including drop) is charged with k arrivals. Therefore, will have some copy of an item with frequency > m/k

Stronger Claim

Choose $k = \frac{1}{\epsilon}$. For every item x, with frequency f_x the algo can return an estimate \hat{f}_x such that

$$f_x - \epsilon m \le \widehat{f_x} \le f_x$$

Stronger Claim

Choose $k = \frac{1}{\epsilon}$. For every item x, with frequency f_x the algo can return an estimate \hat{f}_x such that

$$f_x - \epsilon m \le \widehat{f}_x \le f_x$$

Same intuition, whenever we drop a copy of item x, we also drop k - 1 copies of other items

Summary

- Simple deterministic algorithm to estimate heavy hitters
 - Works only in the arrival model
- Proposed in 1982, rediscovered multiple times with modifications
- Also basis of matrix low rank approximation
- Our next lecture will discuss other algorithms

Space Saving Algorithm

• Keep k counters and items in hand

Initialize:

Set all counters to 0

Process(x)

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else replace item with smallest counter by x, increment counter

Query(q)

- If q is in hand return its counter, else 0

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

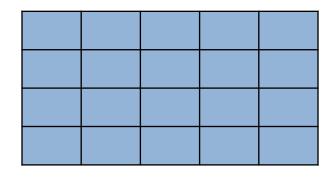
- Smallest counter value, min, is at most ϵm
 - Counters sum to *m*, by induction
 - $1/\epsilon$ counters, so average is ϵm , hence smallest is less
- True count of an uncounted item is between 0 and *min*
 - Proof by induction, true initially, *min* increases monotonically
 - Consider last time the item was dropped

Counter based vs "sketch" based

- Counter based methods
 - Misra-Gries, Space-Saving,
 - Work for arrival only streams
 - In practice somewhat more efficient: space, and especially update time
- Sketch based methods
 - "Sketch" is informally defined as a "compact" data structure that allows both inserts and deletes
 - Use hash functions to compute a linear transform of the input
 - Work naturally for arrivals + departure

Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$



Count Min Sketch

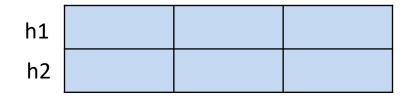
<u>Initialize</u>

- Choose $h_1, \dots, h_w, A[w, d] \leftarrow 0$ <u>Process(x, c)</u>:

- For each $i \in [w]$, $A[i, h_i(x)] += c$ <u>Query(q)</u>:

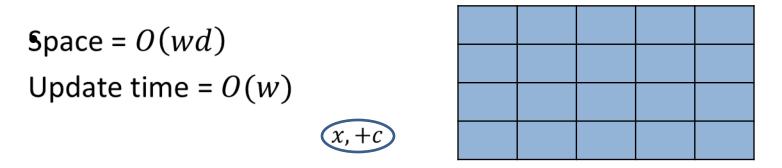
- Return $\min_i A[i, h_i(x)]$

Example



	h1	h2
	2	1
•	1	2
	1	3
•	3	2

Guarantees



Each item is mapped to one bucket per row

Guarantees

• d =
$$\frac{2}{\epsilon}$$
 w = log $\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the *w* estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{χ} always satisfies $\widehat{f}_{\chi} \ge f_{\chi}$

•
$$d = \frac{2}{\epsilon}$$
 $w = log(\frac{1}{\delta})$

 $Y_1 \dots Y_w$ be the *w* estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_x always satisfies $\widehat{f}_x \ge f_x$

$$E[Y_i] = \sum_{y:h_i(y) = h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

Guarantees

• d =
$$\frac{2}{\epsilon}$$
 w = log $\left(\frac{1}{\delta}\right)$

 $Y_1 \dots Y_w$ be the *w* estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_x always satisfies $\widehat{f}_x \ge f_x$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

Applying Markov's inequality,

$$\Pr[Y_i - f_x > \epsilon m] \le \frac{\epsilon(m - f_x)}{2\epsilon m} \le \frac{1}{2}$$

Ś	۲,

Guarantee

• Since we are taking minimum of $log\left(\frac{1}{\delta}\right)$ such random variables,

 $\Pr\left[\widehat{f}_{x} > f_{x} + \epsilon m\right] \le 2^{-\log\left(\frac{1}{\delta}\right)} \le \delta$

Guarantee

• Since we are taking minimum of $log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr\left[\widehat{f}_{x} > f_{x} + \epsilon m\right] \le 2^{-\log\left(\frac{1}{\delta}\right)} \le \delta$$

• Hence, with probability $1 - \delta$, for any query x

$$f_x \le \widehat{f}_x \le f_x + \epsilon m$$

Summary

- Two algorithms for frequency estimation
 - Counter based: Space Saving
 - Sketch based: Count-Min
- Guiding principle: use error bounds as design parameters of the data structure
- More to come...

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode <u>http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf</u>
 - Lecture notes by Amit Chakrabarti: <u>http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf</u>
 - Sketch techniques for approximate query processing, Graham Cormode. <u>http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf</u>