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Streaming model revisited

• Data is seen as incoming sequence
– can be just element-ids, or ids +frequency updates

• Arrival only streams

• Arrival + departure
– Negative updates to frequencies possible
– Can represent fluctuating quantities, e.g. 
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Frequency Estimation

• Given the input stream, answer queries about 
item frequencies at the end
– Useful in many practical applications e.g. finding most popular pages 

from website logs, detecting DoS attacks, database optimization

• Also used as subroutine in many problems
– Entropy estimation, itemset mining etc
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Frequency estimation
Q1. Can we create a data structure, sketch, sublinear in the data size to 
answer all frequency queries accurately?
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Frequency estimation in one pass
Q1. Can we create a data structure, sketch, sublinear in the data size to 
answer all frequency queries accurately?

– No
Q2. Can we create a sketch to estimate frequencies of the “most frequent” 
elements exactly? 
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Frequency estimation in one pass
Q1. Can we create a data structure, sketch, sublinear in the data size to 
answer all frequency queries exactly?

– No
Q2. Can we create a sketch to answer frequencies of the “most frequent” 
elements exactly? 

– No
Q3. Sketch to estimate frequencies of “most frequent” elements 
approximately?

– YES!
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Approximate Heavy Hitters
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Starting with a puzzle

• By J.S. Moore
• Did not talk about streaming solution, but 

proposed solution is 
• Strict majority: >N/2 
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[J. Algorithms, 1981] Suppose we have a list of 
N numbers, representing votes of N processors 
on result of some computation. We wish to decide
if there is a majority vote and what that vote is.



Majority Algorithm
• Arrivals only model
• Start with a counter set to zero
• For each item

– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter
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Majority Algorithm

• Start with a counter set to zero
• For each item

– if counter = 0, pick new item and increment counter
– else if new item is same as item in hand, increment counter
– else decrement counter

• If there is a majority item, it is in hand at the end
• Proof: Since majority occurs > N/2 times, not all occurrences can be 

cancelled out
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Frequent [Misra-Gries]
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Frequent
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Theoretical Bound
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Theoretical Bound
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Stronger Claim
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Stronger Claim
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Summary

• Simple deterministic algorithm to estimate heavy 
hitters
– Works only in the arrival model

• Proposed in 1982, rediscovered multiple times with 
modifications

• Also basis of matrix low rank approximation
• Our next lecture will discuss other algorithms 
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Space Saving Algorithm
•
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Analysis
•
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Analysis

•
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Counter based vs “sketch” based
• Counter based methods

– Misra-Gries, Space-Saving, ….
– Work for arrival only streams
– In practice somewhat more efficient: space, and especially update time

• Sketch based methods
– “Sketch” is informally defined as a “compact” data structure that allows both inserts 

and deletes
– Use hash functions to compute a linear transform of the input
– Work naturally for arrivals + departure
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Count-min sketch
•
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Count Min Sketch

•
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Example
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Guarantees

•
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Guarantees

•
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Guarantee
•
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Guarantee
•
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Summary

• Two algorithms for frequency estimation
– Counter based: Space Saving
– Sketch based: Count-Min

• Guiding principle: use error bounds as design parameters of 
the data structure

• More to come…
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