CS60021: Scalable Data Mining

Streaming Algorithms

Count distinct

Handling velocity + volume

* Can we process data without explicitly storing
all of it in memory? E.g. in a network switch,

— which IPs have most packets passing through a switch
— has traffic pattern changed overnight?

 We have to give up on exact answer, and rely
on...

— approximation: return answer close to truth
— randomization: be correct only with high probability

Streaming model: sketches

e Datais assumed to come as a stream of values

— e.g. bytes seen when reading off a tape-drive
— destination IPs seen by a network switch

* Size of universe/stream is much large compared to
available memory

— typically assume memory is poly(log)
— Can make limited (possibly single) pass over data

— Will create a “sketch” : a summary data structure used to answer queries at the
end

Streaming problem: distinct count

 Universe is U, number of distinct elements =
n, stream size ism

— Example: U = all IP addresses
10.1.21.10, 10.93.28,1,.....,98.0.3.1,.....10.93.28.1.....

— |Ps can repeat
— Want to estimate the number of distinct elements in the stream

Other applications

* Universe = set of all k-grams, stream is
generated by document corpus

— need number of distinct k-grams seen in corpus

* Universe = telephone call records, stream
generated by tuples (caller, callee)

— need number of phones that made > 0 calls

Solutions

* Naive solution: O(|S|log(n)) space
— Store all elements, sort and count distinct
— Store a hashmap, insert if not present
e Bitarray: O(|n|) space:
— Bits initialized to 1 only if element seen in stream

 Can we do this in less space ?

Approximations

* (¢,8) —approximations
— Algorithm will use random hash functions
— Will return an answer 71 such that

(l1—-em<n<1+e)n

— This will happen with probability 1 — § over the randomness of the
algorithm

First effort

* Stream length: m, universe size: n

* Proposed algo: Given space S, sample S items
from the stream

— Find the number of distinct elements in this set: 1

~ m
— return 1 X <

First effort

e Stream length: m, distinct elements: n

* Proposed algo: Given space S, sample S items from the
stream

— Find the number of distinct elements in this set: 1

~, Mm
— return n X 5

* Not a constant factor approximation

- 1,1,1,1,...1,2,3,4,..,n-1

\ J
Y
m—n+1

Linear Counting

e Bit array B of size m, initialized to all zero
* Hash function h: [n] —» [m]

 When seeingitem x, set B[h(x)] =1

11

Linear Counting

Bit array B of size m, initialized to all zero
Hash function h: [n] - [m]

When seeing item x, set B[h(x)] =1
Zzy = fraction of zero entries

Return estimate —m log(%”)

12

Linear Counting Analysis

oy .. 1 n n
Pr[position remaining O] =(1 __) ~e m

Expected number of positions at zero = E[z,,] = me™™/™

Using tail inequalities we can show this is concentrated

Typically useful only form = ®(n), often useful in practice

Flajolet Martin Sketch

* Components
— “random” hash function h: U — 2% for some large ¢
— h(x) is a £ —length bit string
— initially assume it is completely random, can relax
« zero(v) = position of rightmost 1 in bit representation of v

= max{ i,2! divides v}

— zeros(10110) =1, 2zeros(110101000) = 3

Flajolet Martin Sketch

Initialize:

— Choose a “random” hash function h: U — 27
—z«<0

Process(x)

— if zeros(h(x)) > 7, 7 < zeros(h(x))

Estimate:

— return 2Z1+1/2

Example

0110101
1011010
1000100
1111010

16

Space usage

* Weneed ¥ = Clog(n) forsome C = 3, say
— by birthday paradox analysis, no collisions with high prob

* Sketch:z, needs to have only O(loglogn) bits !!!
* Total space usage = O(logn + loglogn)

17

Intuition

 Assume hash values are uniformly distributed

* The probability that a uniform bit-string
— is divisible by 2 is %5
— is divisible by 4 is 7
e .1
— is divisible by 2% Is %

« We don’t expect any of them to be divisible by 21082(1)+1

18

Formalizing intuition

S = set of elements that appeared in stream
Foranyr € [£],j € U, X,; = indicator of zeros(h(j)) =
Y, = number of j € U such that zeros(h(j)) = r

Yr —_ ZXT]

j€S

Let Z be final value of z after algo has seen all data

19

Proof of FM

e YV.,>0 & Z=1r ,equivalently, Y, =02 <r

Proof of FM

* Y.,>0 e Z>r1r ,equivalently, Y, =0 2<r

_ 1
° E[YT] — Z]ESE[XT']] er — {1 with pT’Ob Z_T

0 else

« ElY,.] = — var(Yy) = Xjes var(er) < ZJ'ESE[XEJ']

21

« var(Y,) < ZjESE[XTZj

Pr[Y,. >

Proof of FM

]S n/2"

0] = Pr[Y, > 1] <

22

Proof of FM

* var(Y,) < ZjESE[X,?j] < n/2"

PrlY, > 0] = Pr[Y, > 1] < = —

var(Y,.) - 27

E[Y,]? — n

Pr[¥, = 0] < Pr[|V, — E[Y,]| = E[Y,]] <

Upper bound

Returned estimate i = 2%%1/2

a = smallest integer with 2¢%1/2 > 4y

Prli 24n]|=Pr[Z>a]| = Pr|Y, > 0]

24

Lower bound

Returned estimate i = 2%%1/2

b = largest integer with 22%1/2 < n/4

Understanding the bound

By union bound, with prob 1 — g,

<n<4n

INE

Can get somewhat better constants

Need only 2-wise independent hash functions, since we
only used variances

Improving the probabilities

 To improve the probabilities, a common trick: median of estimates

* Create 71, Z5,...., Z; in parallel

— return median

2
* Expect at most % of them to exceed 4n

27

Improving the probabilities

To improve the probabilities, a common trick: median of estimates
Create 73, Z5,...., Zf, in parallel

— return median

2
Expect at most %k of them to exceed 4n

But if median exceeds 4n , then %of them does = using Chernoff
bound this prob is exp(—Q(k))

28

Improving the probabilities

To improve the probabilities, a common trick: median of estimates

Create 73, Z5,...., Z in parallel
— return median

Using Chernoff bound, can show that median will lie in E, 4n] with probability

1 —exp(—Q(k)).
Given error prob &, choose k = O(log (%))

29

Summary

e Streaming model— useful abstraction

— Estimating basic statistics also nontrivial

* Estimating number of distinct elements
— Linear counting

— Flajolet Martin

References:

* Primary reference for this lecture
* Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-
streams-lecnotes.pdf

http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf

