
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

ML AND TENSORFLOW

Slides taken from:
Ali Ghodsi and Ion Stoica, UC Berkeley

What is TensorFlow?

• Open source library for numerical computation using data flow graphs

• Developed by Google Brain Team to conduct machine learning research
– Based on DisBelief used internally at Google since 2011

• “TensorFlow is an interface for expressing machine learning algorithms,
and an implementation for executing such algorithms”

What is TensorFlow

• Key idea: express a numeric computation as a graph

• Graph nodes are operations with any number of inputs and
outputs

• Graph edges are tensors which flow between nodes

Programming model

Variables are stateful nodes which
output their current value. State is
retained across multiple executions of a graph

(mostly parameters)

Programming model

Programming model

Placeholders are nodes
whose value is fed in at
execution time

(inputs, labels, …)

Programming model

Mathematical operations:
MatMul: Multiply two matrices
Add: Add elementwise
ReLU: Activate with elementwise
rectified linear function

ReLu(x) =
0, x <= 0

x, x > 0

Code
import tensorflow as tf

b = tf.Variable(tf.zeros((100,)))
W = tf.Variable(tf.random_uniform((784, 100), -1, 1))

x = tf.placeholder(tf.float32, (1, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

Running the graph

Deploy graph with a session: a
binding to a particular execution
context (e.g. CPU, GPU) CPU

GPU

End-to-end

• So far:
– Built a graph using variables and placeholders
– Deploy the graph onto a session, i.e., execution environment

• Next: train model
– Define loss function
– Compute gradients

Defining loss

• Use placeholder for labels

• Build loss node using labels and prediction

prediction = tf.nn.softmax(...) #Output of neural network
label = tf.placeholder(tf.float32, [100, 10])

cross_entropy = -tf.reduce_sum(label * tf.log(prediction), axis=1)

Gradient computation: Backpropagation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy)
adds optimization operation to computation graph

TensorFlow graph nodes have attached gradient operations
Gradient with respect to parameters computed with
backpropagation … automatically

Design Principles
• Dataflow graphs of primitive operators

• Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/ placeholders
2. Executes optimized version of program on set of available devices

• Common abstraction for heterogeneous accelerators
1. Issue a kernel for execution
2. Allocate memory for inputs and outputs
3. Transfer buffers to and from host memory

Dynamic Flow Control

• Problem: support ML algos that contain conditional and
iterative control flow, e.g.
– Recurrent Neural Networks (RNNs)
– Long-Short Term Memory (LSTM)

• Solution: Add conditional (if statement) and iterative (while
loop) programming constructs

TensorFlow architecture
• Core in C++

– Very low overhead

• Different front ends for specifying/driving the computation
– Python and C++ today, easy to add more

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

Sample Program

Sample Program

Sample Program

DEEP LEARNING FRAMEWORKS

Slides taken from:
Fei-Fei Li & Justin Johnson & Serena Yeung, Stanford University

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Problems:
- Can’t run on GPU
- Have to compute

our own gradients

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

TensorFlow

Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Create forward
computational graph

Lecture 8 -3030

April 27, 2017

Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Ask TensorFlow to
compute gradients

Lecture 8 -3131

Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Tell
TensorFlow
to run on CPU

Lecture 8 -3232

Computational Graphs
x y z

*

a
+

b

Σ

c

TensorFlow

Tell
TensorFlow
to run on GPU

Lecture 8 -3333

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Lecture 8 -3434

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Define Variables to
start building a computational
graph

Lecture 8 -3535

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Forward pass
looks just like numpy

Lecture 8 -3636

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Calling c.backward()
computes all gradients

Lecture 8 -3737

Computational Graphs
x y z

*

a
+

b

Σ

c

PyTorch

Run on GPU by
casting to .cuda()

Lecture 8 -3838

PyTorchTensorFlowNumpy

TensorFlow (more detail)

Lecture 8 -4040

TensorFlow:
Neural Net

Lecture 8 -4141

Running example: Train
a two-layer ReLU
network on random data
with L2 loss

TensorFlow:
Neural Net

(Assume imports at the
top of each snipppet)

Lecture 8 -4242

TensorFlow:
Neural Net

First define
computational graph

Then run the graph
many times

Lecture 8 -4343

TensorFlow:
Neural Net

Create placeholders for
input x, weights w1 and
w2, and targets y

Lecture 8 -4444

TensorFlow:
Neural Net

Forward pass: compute
prediction for y and loss
(L2 distance between y
and y_pred)

No computation
happens here - just
building the graph!

Lecture 8 -4545

TensorFlow:
Neural Net

Tell TensorFlow to
compute loss of gradient
with respect to w1 and
w2.

Again no computation
here - just building the
graph

Lecture 8 -4646

TensorFlow:
Neural Net

Now done building our
graph, so we enter a
session so we can
actually run the graph

Lecture 8 -4747

TensorFlow:
Neural Net

Create numpy arrays
that will fill in the
placeholders above

Lecture 8 -4848

TensorFlow:
Neural Net

Run the graph: feed in
the numpy arrays for x,
y, w1, and w2; get
numpy arrays for loss,
grad_w1, and grad_w2

Lecture 8 -4949

TensorFlow:
Neural Net

Train the network: Run
the graph over and over,
use gradient to update
weights

Lecture 8 -5050

TensorFlow:
Neural Net

Train the network: Run
the graph over and over,
use gradient to update
weights

Problem: copying
weights between CPU /
GPU each step

Lecture 8 -5151

TensorFlow:
Neural Net

Change w1 and w2 from
placeholder (fed on
each call) to Variable
(persists in the graph
between calls)

Lecture 8 -5252

TensorFlow:
Neural Net

Add assign operations
to update w1 and w2 as
part of the graph!

Lecture 8 -5353

TensorFlow:
Neural Net

Run graph once to
initialize w1 and w2

Run many times to train

Lecture 8 -5454

TensorFlow:
Neural Net

Problem: loss not going
down! Assign calls not
actually being executed!

Lecture 8 -5555

TensorFlow:
Neural Net

Add dummy graph node
that depends on updates

Tell graph to compute
dummy node

Lecture 8 -5656

TensorFlow:
Optimizer

Can use an optimizer to
compute gradients and
update weights

Remember to execute the
output of the optimizer!

Lecture 8 -5757

TensorFlow:
Loss

Use predefined
common lossees

Lecture 8 -5858

