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Hadoop Map Reduce

q Provides:
q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.



HDFS



• Outline:
– HDFS – Motivation
– HDFS – User commands
– HDFS – System architecture
– HDFS – Implementation details



What’s HDFS
• HDFS is a distributed file system that is fault tolerant, scalable 

and extremely easy to expand.
• HDFS is the primary distributed storage for Hadoop 

applications.
• HDFS provides interfaces for applications to move themselves 

closer to data.
• HDFS is designed to ‘just work’, however a working knowledge 

helps in diagnostics and improvements.



HDFS
q Design Assumptions

q Hardware failure is the norm.
q Streaming data access.
q Write once, read many times.
q High throughput, not low latency.
q Large datasets.

q Characteristics:
q Performs best with modest number of large files
q Optimized for streaming reads
q Layer on top of native file system.



HDFS
q Data is organized into file and directories.
q Files are divided into blocks and distributed to nodes.
q Block placement is known at the time of read

q Computation moved to same node.

q Replication is used for:
q Speed
q Fault tolerance
q Self healing.



Components of HDFS
There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem,  it maintains 
and manages the file system metadata. E.g; what blocks make 
up a file, and on which datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are 
usually quite a few of these.



HDFS Architecture



HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files

hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/



HDFS – User Commands (dfs)
Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs



HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt



Goals of HDFS
• Very Large Distributed File System

– 10K nodes, 100 million files, 10 PB
• Assumes Commodity Hardware

– Files are replicated to handle hardware failure
– Detect failures and recovers from them

• Optimized for Batch Processing
– Data locations exposed so that computations can move to where data 
resides
– Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS 



Distributed File System
• Single Namespace for entire cluster
• Data Coherency

– Write-once-read-many access model
– Client can only append to existing files 

• Files are broken up into blocks
– Typically 128 MB block size
– Each block replicated on multiple DataNodes

• Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode



NameNode Metadata
• Meta-data in Memory

– The entire metadata is in main memory
– No demand paging of meta-data

• Types of Metadata
– List of files
– List of Blocks for each file
– List of DataNodes for each block
– File attributes, e.g creation time, replication factor

• A Transaction Log
– Records file creations, file deletions. etc



DataNode
• A Block Server

– Stores data in the local file system (e.g. ext3)
– Stores meta-data of a block (e.g. CRC)
– Serves data and meta-data to Clients

• Block Report
– Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data
– Forwards data to other specified DataNodes





HDFS read client



HDFS write Client



Block Placement
• Current Strategy

-- One replica on local node
-- Second replica on a remote rack
-- Third replica on same remote rack
-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable



NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system
– A directory on a remote file system (NFS/CIFS)



Data Pipelining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• Usually, when all replicas are written, the Client moves on to write the next 
block in file
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Conclusion:

• We have seen:
• The structure of HDFS.
• The shell commands.
• The architecture of HDFS system.
• Internal functioning of HDFS.



MAPREDUCE INTERNALS



Wordcount program
import java.io.IOException; 
import java.util.StringTokenizer; 

import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.Mapper; 
import org.apache.hadoop.mapreduce.Reducer; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; 



Wordcount program - Main
public class WordCount { 

public static void main(String[] args) throws Exception { 
Configuration conf = new Configuration(); 
Job job = Job.getInstance(conf, "word count"); 
job.setJarByClass(WordCount.class); 
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class); 
job.setReducerClass(IntSumReducer.class); 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(IntWritable.class); 
FileInputFormat.addInputPath(job, new Path(args[0])); 
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1); 
} }



Wordcount program - Mapper
public static class TokenizerMapper extends Mapper<Object, Text, Text, 
IntWritable>{ 
private final static IntWritable one = new IntWritable(1); 
private Text word = new Text(); 

public void map(Object key, Text value, Context context ) 
throws IOException, InterruptedException { 

StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) { 

word.set(itr.nextToken()); context.write(word, one); 
} 

} 
}



Wordcount program - Reducer
public static class IntSumReducer extends 
Reducer<Text,IntWritable,Text,IntWritable> { 
private IntWritable result = new IntWritable(); 

public void reduce(Text key, Iterable<IntWritable> values, Context 
context ) 
throws IOException, InterruptedException { 

int sum = 0; 
for (IntWritable val : values) { 

sum += val.get(); 
} 
result.set(sum); 
context.write(key, result); 

} 
}



Wordcount program - running
export JAVA_HOME=[ Java home directory ]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]



Wordcount in python
Mapper.py



Wordcount 
in python

Reducer.py



Execution code
bin/hadoop dfs -ls 

bin/hadoop dfs –copyFromLocal example example

bin/mapred streaming -input example   -output java-output  -mapper 
mapper.py -reducer reducer.py -file mapper.py -file reducer.py

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local



Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide



Map Reduce Data Flow





Hadoop MR Data Flow

Source: Hadoop: The Definitive Guide



Shuffle and sort

Source: Hadoop: The Definitive Guide



Data Flow
• Input and final output are stored on a distributed file system (FS):

– Scheduler tries to schedule map tasks “close” to physical storage location 
of input data

• Intermediate results are stored on local FS
of Map workers.

• Output of Reduce workers are stored on a distributed file system.

• Output is often input to another 
MapReduce task
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Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide



Fault tolerance
qComes from scalability and cost effectiveness

qHDFS:
qReplication

qMap Reduce
qRestarting failed tasks: map and reduce
qWriting map output to FS
qMinimizes re-computation



Coordination: Master
• Master node takes care of coordination:

– Task status: (idle, in-progress, completed)

– Idle tasks get scheduled as workers become available

– When a map task completes, it sends the master the location and sizes of 
its R intermediate files, one for each reducer

– Master pushes this info to reducers

• Master pings workers periodically to detect failures
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Failures
qTask failure

qTask has failed – report error to node manager, appmaster, client.
qTask not responsive, JVM failure – Node manager restarts tasks.

qApplication Master failure
qApplication master sends heartbeats to resource manager.
qIf not received, the resource manager retrieves job history of the run tasks.

qNode manager failure



Dealing with Failures
• Map worker failure

– Map tasks completed or in-progress at 
worker are reset to idle

– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle 
– Reduce task is restarted

• Master failure
– MapReduce task is aborted and client is notified
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How many Map and Reduce jobs?
• M map tasks, R reduce tasks
• Rule of a thumb:

– Make M much larger than the number of nodes in the 
cluster

– One DFS chunk per map is common
– Improves dynamic load balancing and speeds up 

recovery from worker failures

• Usually R is smaller than M
– Because output is spread across R files
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Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines

– Minimizes time for fault recovery
– Can do pipeline shuffling with map execution
– Better dynamic load balancing 
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Refinements: Backup Tasks
• Problem

– Slow workers significantly lengthen the job completion time:
• Other jobs on the machine
• Bad disks
• Weird things

• Solution
– Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
– Dramatically shortens job completion time
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Refinement: Combiners
• Often a Map task will produce many pairs of the form (k,v1), (k,v2), 

… for the same key k
– E.g., popular words in the word count example

• Can save network time by 
pre-aggregating values in 
the mapper:
– combine(k, list(v1)) à v2
– Combiner is usually same 

as the reduce function

• Works only if reduce 
function is commutative and associative
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Refinement: Combiners
• Back to our word counting example:

– Combiner combines the values of all keys of a single 
mapper (single machine):

– Much less data needs to be copied and shuffled!

48



Refinement: Partition Function
• Want to control how keys get partitioned

– Inputs to map tasks are created by contiguous splits of input file
– Reduce needs to ensure that records with the same intermediate 

key end up at the same worker

• System uses a default partition function:
– hash(key) mod R

• Sometimes useful to override the hash function:
– E.g., hash(hostname(URL)) mod R ensures URLs from a host end up 

in the same output file
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Example: Join By Map-Reduce
• Compute the natural join R(A,B) ⋈ S(B,C)
• R and S are each stored in files
• Tuples are pairs (a,b) or (b,c)
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A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S



Map-Reduce Join
• Use a hash function h from B-values to 1...k
• A Map process turns:

– Each input tuple R(a,b) into key-value pair (b,(a,R))
– Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with 
key b to Reduce process h(b)
– Hadoop does this automatically; just tell it what k is.

• Each Reduce process matches all the pairs 
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Cost Measures for Algorithms

• In MapReduce we quantify the cost of an algorithm using 
1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along any path
3. (Elapsed) computation cost analogous, but count only 

running time of processes

Note that here the big-O notation is not the most useful 
(adding more machines is always an option)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive 
Datasets, http://www.mmds.org
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Example: Cost Measures

• For a map-reduce algorithm:
– Communication cost = input file size + 2 ´ (sum of the sizes of all files 

passed from Map processes to Reduce processes) + the sum of the 
output sizes of the Reduce processes.

– Elapsed communication cost is the sum of the largest input + output 
for any map process, plus the same for any reduce process
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What Cost Measures Mean

• Either the I/O (communication) or processing (computation) cost dominates
– Ignore one or the other

• Total cost tells what you pay in rent from 
your friendly neighborhood cloud

• Elapsed cost is wall-clock time using parallelism
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Cost of Map-Reduce Join
• Total communication cost

= O(|R|+|S|+|R ⋈ S|)
• Elapsed communication cost = O(s)

– We’re going to pick k and the number of Map 
processes so that the I/O limit s is respected

– We put a limit s on the amount of input or output that 
any one process can have. s could be:

• What fits in main memory
• What fits on local disk

• With proper indexes, computation cost is linear in 
the input + output size
– So computation cost is like comm. cost
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