
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

Hadoop Map Reduce

q Provides:
q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.

HDFS

• Outline:
– HDFS – Motivation
– HDFS – User commands
– HDFS – System architecture
– HDFS – Implementation details

What’s HDFS
• HDFS is a distributed file system that is fault tolerant, scalable

and extremely easy to expand.
• HDFS is the primary distributed storage for Hadoop

applications.
• HDFS provides interfaces for applications to move themselves

closer to data.
• HDFS is designed to ‘just work’, however a working knowledge

helps in diagnostics and improvements.

HDFS
q Design Assumptions

q Hardware failure is the norm.
q Streaming data access.
q Write once, read many times.
q High throughput, not low latency.
q Large datasets.

q Characteristics:
q Performs best with modest number of large files
q Optimized for streaming reads
q Layer on top of native file system.

HDFS
q Data is organized into file and directories.
q Files are divided into blocks and distributed to nodes.
q Block placement is known at the time of read

q Computation moved to same node.

q Replication is used for:
q Speed
q Fault tolerance
q Self healing.

Components of HDFS
There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem, it maintains
and manages the file system metadata. E.g; what blocks make
up a file, and on which datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are
usually quite a few of these.

HDFS Architecture

HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files

hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS – User Commands (dfs)
Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs

HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt

Goals of HDFS
• Very Large Distributed File System

– 10K nodes, 100 million files, 10 PB
• Assumes Commodity Hardware

– Files are replicated to handle hardware failure
– Detect failures and recovers from them

• Optimized for Batch Processing
– Data locations exposed so that computations can move to where data
resides
– Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS

Distributed File System
• Single Namespace for entire cluster
• Data Coherency

– Write-once-read-many access model
– Client can only append to existing files

• Files are broken up into blocks
– Typically 128 MB block size
– Each block replicated on multiple DataNodes

• Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode

NameNode Metadata
• Meta-data in Memory

– The entire metadata is in main memory
– No demand paging of meta-data

• Types of Metadata
– List of files
– List of Blocks for each file
– List of DataNodes for each block
– File attributes, e.g creation time, replication factor

• A Transaction Log
– Records file creations, file deletions. etc

DataNode
• A Block Server

– Stores data in the local file system (e.g. ext3)
– Stores meta-data of a block (e.g. CRC)
– Serves data and meta-data to Clients

• Block Report
– Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data
– Forwards data to other specified DataNodes

HDFS read client

HDFS write Client

Block Placement
• Current Strategy

-- One replica on local node
-- Second replica on a remote rack
-- Third replica on same remote rack
-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable

NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system
– A directory on a remote file system (NFS/CIFS)

Data Pipelining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• Usually, when all replicas are written, the Client moves on to write the next
block in file

23

Conclusion:

• We have seen:
• The structure of HDFS.
• The shell commands.
• The architecture of HDFS system.
• Internal functioning of HDFS.

MAPREDUCE INTERNALS

Wordcount program
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

Wordcount program - Main
public class WordCount {

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

Wordcount program - Mapper
public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken()); context.write(word, one);
}

}
}

Wordcount program - Reducer
public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context
context)
throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}

Wordcount program - running
export JAVA_HOME=[Java home directory]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]

Wordcount in python
Mapper.py

Wordcount
in python

Reducer.py

Execution code
bin/hadoop dfs -ls

bin/hadoop dfs –copyFromLocal example example

bin/mapred streaming -input example -output java-output -mapper
mapper.py -reducer reducer.py -file mapper.py -file reducer.py

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Map Reduce Data Flow

Hadoop MR Data Flow

Source: Hadoop: The Definitive Guide

Shuffle and sort

Source: Hadoop: The Definitive Guide

Data Flow
• Input and final output are stored on a distributed file system (FS):

– Scheduler tries to schedule map tasks “close” to physical storage location
of input data

• Intermediate results are stored on local FS
of Map workers.

• Output of Reduce workers are stored on a distributed file system.

• Output is often input to another
MapReduce task

38

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Fault tolerance
qComes from scalability and cost effectiveness

qHDFS:
qReplication

qMap Reduce
qRestarting failed tasks: map and reduce
qWriting map output to FS
qMinimizes re-computation

Coordination: Master
• Master node takes care of coordination:

– Task status: (idle, in-progress, completed)

– Idle tasks get scheduled as workers become available

– When a map task completes, it sends the master the location and sizes of
its R intermediate files, one for each reducer

– Master pushes this info to reducers

• Master pings workers periodically to detect failures

41

Failures
qTask failure

qTask has failed – report error to node manager, appmaster, client.
qTask not responsive, JVM failure – Node manager restarts tasks.

qApplication Master failure
qApplication master sends heartbeats to resource manager.
qIf not received, the resource manager retrieves job history of the run tasks.

qNode manager failure

Dealing with Failures
• Map worker failure

– Map tasks completed or in-progress at
worker are reset to idle

– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle
– Reduce task is restarted

• Master failure
– MapReduce task is aborted and client is notified

43

How many Map and Reduce jobs?
• M map tasks, R reduce tasks
• Rule of a thumb:

– Make M much larger than the number of nodes in the
cluster

– One DFS chunk per map is common
– Improves dynamic load balancing and speeds up

recovery from worker failures

• Usually R is smaller than M
– Because output is spread across R files

44

Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines

– Minimizes time for fault recovery
– Can do pipeline shuffling with map execution
– Better dynamic load balancing

45

Refinements: Backup Tasks
• Problem

– Slow workers significantly lengthen the job completion time:
• Other jobs on the machine
• Bad disks
• Weird things

• Solution
– Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
– Dramatically shortens job completion time

46

Refinement: Combiners
• Often a Map task will produce many pairs of the form (k,v1), (k,v2),

… for the same key k
– E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:
– combine(k, list(v1)) à v2
– Combiner is usually same

as the reduce function

• Works only if reduce
function is commutative and associative

47

Refinement: Combiners
• Back to our word counting example:

– Combiner combines the values of all keys of a single
mapper (single machine):

– Much less data needs to be copied and shuffled!

48

Refinement: Partition Function
• Want to control how keys get partitioned

– Inputs to map tasks are created by contiguous splits of input file
– Reduce needs to ensure that records with the same intermediate

key end up at the same worker

• System uses a default partition function:
– hash(key) mod R

• Sometimes useful to override the hash function:
– E.g., hash(hostname(URL)) mod R ensures URLs from a host end up

in the same output file

49

Example: Join By Map-Reduce
• Compute the natural join R(A,B) ⋈ S(B,C)
• R and S are each stored in files
• Tuples are pairs (a,b) or (b,c)

50

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈
A C
a3 c1

a3 c2

a4 c3

=

R
S

Map-Reduce Join
• Use a hash function h from B-values to 1...k
• A Map process turns:

– Each input tuple R(a,b) into key-value pair (b,(a,R))
– Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with
key b to Reduce process h(b)
– Hadoop does this automatically; just tell it what k is.

• Each Reduce process matches all the pairs
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

51

Cost Measures for Algorithms

• In MapReduce we quantify the cost of an algorithm using
1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along any path
3. (Elapsed) computation cost analogous, but count only

running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

52

Example: Cost Measures

• For a map-reduce algorithm:
– Communication cost = input file size + 2 ´ (sum of the sizes of all files

passed from Map processes to Reduce processes) + the sum of the
output sizes of the Reduce processes.

– Elapsed communication cost is the sum of the largest input + output
for any map process, plus the same for any reduce process

53

What Cost Measures Mean

• Either the I/O (communication) or processing (computation) cost dominates
– Ignore one or the other

• Total cost tells what you pay in rent from
your friendly neighborhood cloud

• Elapsed cost is wall-clock time using parallelism

54

Cost of Map-Reduce Join
• Total communication cost

= O(|R|+|S|+|R ⋈ S|)
• Elapsed communication cost = O(s)

– We’re going to pick k and the number of Map
processes so that the I/O limit s is respected

– We put a limit s on the amount of input or output that
any one process can have. s could be:

• What fits in main memory
• What fits on local disk

• With proper indexes, computation cost is linear in
the input + output size
– So computation cost is like comm. cost

55

56

References:
• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd

edition. - Cambridge University Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

