CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

GENERALIZATION OF LSH

Locality Sensitive Hashing

[Indyk Motwani]

Hash family H is locality sensitive if

$$Pr[h(x) = h(y)]$$
 is high if x is close to y

$$Pr[h(x) = h(y)]$$
 is low if x is far from y

Not clear such functions exist for all distance functions

Locality sensitive hashing

- Originally defined in terms of a similarity function [C'02]
- Given universe U and a similarity $s: U \times U \to [0,1]$, does there exist a prob distribution over some hash family H such that

$$\Pr_{h \in H}[h(x) = h(y)] = s(x, y) \qquad s(x, y) = 1 \to x = y \\ s(x, y) = s(y, x)$$

Hamming distance

- ullet Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$

Hamming distance

Points are bit strings of length d

•
$$H(x,y) = |\{i, x_i \neq y_i\}|$$
 $S_H(x,y) = 1 - \frac{H(x,y)}{d}$
 $-x = 1011010001, y = 0111010101$
 $-H(x,y) = 3$ $S_H(x,y) = 1 - \frac{3}{10} = 0.7$

Hamming distance

- Points are bit strings of length d
- $H(x,y) = |\{i, x_i \neq y_i\}|$ $S_H(x,y) = 1 \frac{H(x,y)}{d}$
- Define a hash function h by sampling a set of positions

$$-x = 1011010001, y = 0111010101$$

$$-S = \{1,5,7\}$$

$$-h(x) = 100, h(y) = 100$$

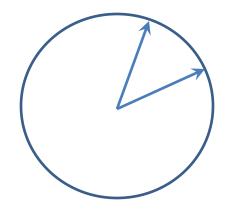
Existence of LSH

• The above hash family is locality sensitive, k = |S|

$$\Pr[h(x) = h(y)] = \left(1 - \frac{H(x, y)}{d}\right)^k$$

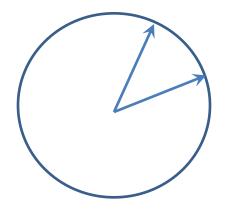
LSH for angle distance

- x, y are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$



LSH for angle distance

- x, y are unit norm vectors
- $d(x,y) = \cos^{-1}(x \cdot y) = \theta$
- $S(x,y) = 1 \theta/\pi$



- Choose direction v uniformly at random
 - $-h_v(x) = sign(v \cdot x)$
 - $-\Pr[h_v(x) = h_v(y)] = 1 \theta/\pi$

Aside: picking a direction u.a.r.

- How to sample a vector $x \in \mathbb{R}^d$, $|x|_2 = 1$ and the direction is uniform among all possible directions
- Generate $x = (x_1, ..., x_d), x_i \sim N(0, 1)$ iid
- Normalize $\frac{x}{|x|_2}$
 - By writing the pdf of the d-dimensional Gaussian in polar form, easy to see that this is uniform direction on unit sphere

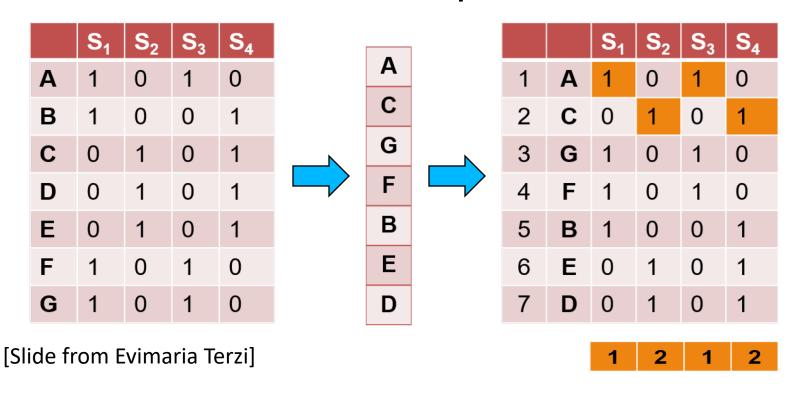
Jaccard distance: minhashing

- Pick a uniform permutation of the element universe U
- For any set S,

$$-h(S) = \min_{x \in S} h(x)$$

• Often easier to visualize if we think of the collection of sets as a $\{0,1\}$ matrix

Example



Example

	S_1	S ₂	S ₃	S ₄						S_1	S ₂	S ₃	S ₄
Α	1	0	1	0		D	3 A C F G	1	D	0	1	0	1
В	1	0	0	1		В		2	В	1	0	0	1
С	0	1	0	1		Α		3	Α	1	0	1	0
D	0	1	0	1		С		4	С	0	1	0	1
E	0	1	0	1		F		5	F	1	0	1	0
F	1	0	1	0		G		6	G	1	0	1	0
G	1	0	1	0		E		7	E	0	1	0	1
										2	1	3	1

Why is this LSH?

- For sets S and T,
 - The first row where one of the two has a 1 belong to $S \cup T$
 - We have equality h(S) = h(T), only if both the rows contain 1
 - This means that this row belongs to $S \cap T$
- Hence, the event h(S) = h(T) is same as the event that a row in S ∩
 T appears first among all rows in S ∪ T

$$\Pr[h(S) = h(T)] = \frac{|S \cap T|}{|S \cup T|}$$

Aside: How to choose random permutations

- Picking a uniform at random permutation is expensive
- In theory, need to choose from a family of min-wise independent permutations
- In practice, can use standard hash functions, hash all the values and then sort

Which similarities admit LSH?

- There are various similarities and distance that are used in scientific literature
 - Encyclopedia of distances DL'11
- Will there be an LSH for each one of them?
 - Similarity is LSHable if there exists an LSH for it

[slide courtesy R. Kumar]

LSHable similarities

<u>¶hm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

LSHable similarities

<u>¶hm</u>: S is LSHable \rightarrow 1 – S is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A,B) = [h(A) \neq h(B)]$$

LSHable similarities

<u>Thm</u>: S is LSHable $\rightarrow 1 - S$ is a metric

$$d(x,y) = 0 \rightarrow x = y$$
$$d(x,y) = d(y,x)$$
$$d(x,y) + d(y,z) \ge d(x,z)$$

Fix hash function $h \in H$ and define

$$\Delta_h(A, B) = [h(A) \neq h(B)]$$

$$1 - S(A, B) = \Pr_h[\Delta_h(A, B)]$$

Also

$$\Delta_h(A,B) + \Delta_h(B,C) \ge \Delta_h(A,C)$$

Example of non-LSHable similarities

- $\bullet \quad d(A,B) = 1 s(A,B)$
- Sorenson-Dice : $s(A,B) = \frac{2|A \cap B|}{|A| + |B|}$
 - $Ex: A = \{a\}, B = \{b\}, C = \{a, b\}$
 - s(A,B) = 0, s(B,C) = s(A,C) = 2/3

Example of non-LSHable similarities

- $\bullet \quad d(A,B) = 1 s(A,B)$
- Sorenson-Dice : $s(A,B) = \frac{2|A \cap B|}{|A| + |B|}$
 - $Ex: A = \{a\}, B = \{b\}, C = \{a, b\}$
 - $s(A, B) = 0, s(B, C) = s(A, C) = \frac{2}{3}$
- Overlap: $s(A, B) = \frac{|A \cap B|}{\min(|A|, |B|)}$
 - s(A, B) = 0, s(A, C) = 1 = s(B, C)

Example of non-LSHable similarities

- d(A,B) = 1 s(A,B)
- Sorenson-Dice : $s(A,B) = \frac{2|A \cap B|}{|A| + |B|}$
- Ex: $A = \{a\}, B = \{b\}, C = \{a, b\}_{\text{These similarities are not LSHable}$ s(A, B) = 0 s(P, C)

$$- s(A, B) = 0, s(B, C) = s(A, C) = \frac{2}{3}$$

- Overlap: $s(A, B) = \frac{|A \cap B|}{\min(|A|.|B|)}$
 - s(A, B) = 0, s(A, C) = 1 = s(B, C)

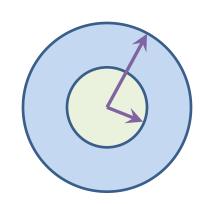
Gap Definition of LSH

IMRS'97, IM'98, GIM'99

• A family is (r, R, p, P) LSH if

$$\Pr_{h \in H}[h(x) = h(y)] \ge p \ if \ d(x, y) \le r$$

$$\Pr_{h \in H}[h(x) = h(y)] \le P \text{ if } d(x, y) \ge R$$



Gap LSH

All the previous constructions satisfy the gap definition

- Ex: for
$$JS(S,T) = \frac{|S \cap T|}{|S \cup T|}$$

$$JD(S,T) \le r \to JS(S,T) \ge 1 - r \to \Pr[h(S) = h(T)] = JS(S,T) \ge 1 - r$$

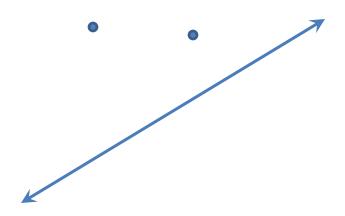
 $JD(S,T) \ge R \to JS(S,T) \le 1 - R \to \Pr[h(S) = h(T)] = JS(S,T) \le 1 - R$

Hence is a (r, R, 1 - r, 1 - R) LSH

L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$

•
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$



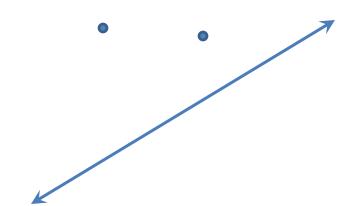
L2 norm

- $d(x,y) = \sqrt{(\sum_i (x_i y_i)^2)}$
- $u = \text{random unit norm vector}, w \in R \text{ parameter}, b \sim Unif[0, w]$

•
$$h(x) = \lfloor \frac{u \cdot x + b}{w} \rfloor$$

• If
$$|x - y|_2 < \frac{w}{2}$$
, $\Pr[h(x) = h(y)] \ge \frac{1}{3}$

• If
$$|x - y|_2 > 4w$$
, $\Pr[h(x) = h(y)] \le \frac{1}{4}$



Solving the near neighbour

- (r,c) -near neighbour problem
 - Given query point q, return all points p such that d(p,q) < r and none such that d(p,q) > cr
 - Solving this gives a subroutine to solve the "nearest neighbour", by building a data-structure for each r , in powers of $(1+\epsilon)$

How to actually use it?

Need to amplify the probability of collisions for "near" points

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $Pr[H(x) = H(y)] = \Pi_i Pr[h_i(x) = h_i(y)] = Pr[h_1(x) = h_1(y)]^k$

Band construction

- AND-ing of LSH
 - Define a composite function $H(x) = (h_1(x), ... h_k(x))$
 - $\Pr[H(x) = H(y)] = \prod_{i} \Pr[h_i(x) = h_i(y)] = \Pr[h_1(x) = h_1(y)]^k$
- OR-ing
 - Create L independent hash-tables for $H_1, H_2, ... H_L$
 - Given query q, search in $\cup_j H_j(q)$

Example

	S ₁	S ₂	S ₃	S ₄
Α	1	0	1	0
В	1	0	0	1
С	0	1	0	1
D	0	1	0	1
E	0	1	0	1
F	1	0	1	0
G	1	0	1	0

	S1	S2	S3	S3
h1	1	2	1	2
h2	2	1	3	1

	S1	S2	S3	S3
h3	3	1	2	1
h4	1	3	2	2

Why is this better?

- Consider q, y with Pr[h(q) = h(y)] = 1 d(x, y)
- Probability of not finding y as one of the candidates in $\bigcup_j H_j(q)$

$$1 - (1 - (1 - d)^k)^L$$

Creating an LSH

- If we have a (r, cr, p, q) LSH
- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 (1 p^k)^L$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \le q^k$
 - Expected number of such $z \leq Lq^k$

Creating an LSH

• If we have a (r, cr, p, q) LSH

 $\rho = \frac{\log(p)}{\log(q)} \quad L = n^{\rho} \quad k = \log(n) / \log\left(\frac{1}{q}\right)$

- For any y, with |q y| < r,
 - Prob of y as candidate in $\bigcup_j H_j(q) \ge 1 \left(1 p^k\right)^L \ge 1 \frac{1}{e}$
- For any z, |q z| > cr,
 - Prob of z as candidate in any fixed $H_i(q) \le q^k$
 - Expected number of such $z \le Lq^k \le L = n^{\rho}$

Runtime

- Space used = $n^{1+\rho}$
- Query time = n^{ρ}
- We can show that for Hamming, angle etc, $ho pprox rac{1}{c}$
 - Can get 2-approx near neighbors in $O(\sqrt{n})$ query time

LSH: theory vs practice

- In order to design LSH in practice, the theoretical parameter values are only a guidance
 - Typically need to search over the parameter space to find a good operating point
 - Data statistics can provide some guidance (will see in next class)

Summary

- Locality sensitive hashing is a powerful tool for near neighbour problems
- Trades off space with query time
- Practical for medium to large datasets with fairly large number of dimensions
 - However, doesn't really work very well for sparse, very very high dimensional datasets
- LSH and extensions are an area of active research and practice

References:

- Primary references for this lecture
 - Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
 - Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH