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In this Lecture:

« K—means clustering and applications

Lloyd’s algorithm, EM and Limitations.

e K—means ++

Scalable k — means ++



K — means clustering and applications



Clustering

* Unsupervised learning
— When your data doesn’t have labels

* Useful for -
— Detecting patterns e.g. in image data, customer “
shopping results, anomalies... [Image segmentation via clustering, James Hayes]

— For optimizing, e.g. distributing data across various
machines, cleaning up search results, facility allocation

for city planning... — _%
Mﬁﬁﬁﬁmﬁmﬂm hE e A e e o o

— when you “don’t know” what is it exactly that we are
looking for
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Clustering: basic idea

* Grouping objects into small number of
meaningful groups

— How to define similarity / distance between
objects?

— What is meaningful? ° o ° .
— How many groups?

— Typically there is no supervision

[Picture from Ackerman talk]



Developing framework: object representation

* First develop a mathematical representation of
points

— Object representation: E.g. vectors, set, sequences...
when we want to represent the objects in isolation

e Ex: Document -2 set / vector, image = vector, DNA -
sequences

— Interaction representation : as networks, when we are
representing only the interaction between objects

* Ex. Social / road / network,



Clustering framework: distance function

* Inthe object representation we need an appropriate distance function
— Lp norms for vectors
— Jaccard distance for sets
— Edit distance for sequences
— Divergences for probability distributions...

* Typically, nice to have the metric properties
— d(x,x)=0, d(x,y) =0
— d(x,y) =d(y,x)
— d(x,y)+d(y,z) = d(x,2)

* Also nice if it is easy to calculate “average”

minz d(p;, x)
X
i



Distance function: Ip norms

* L2 norm/Euclidean distance

DCoy) = | Y =2
i=1

L1 norm

* L-infinity norm

e Easy to calculate averages.

* Also related is cosine distance



Objective function

e Specifying number of clusters
— K-means / K-median

* Specifying cluster separation / quality
— e.g. radius of cluster, Dunn’s index,..

* Graph based measures

* Working w/o an objective function
— Hierarchical clustering schemes



K-means
e Distance function is typically L2

e C={cq,Cy, ..., C}, cost(C)= >, min d(x,c,)*
Cx

* Find C to optimize the above cost
— Leads to a natural partitioning of the data

e Large amount of work, both from theory & data
mining community
— Great example of divergence between theory and

practice and how that prompted new research
directions for both



k-means objective: alternate view

e Define “best” k-clustering of the data by b
(@) ° o

—

— minimizing the “radius” of the each cluster © .
(@)

minimize );; radius(C;) o /o
o

o)

— minimizing the variance of each cluster
1

* The mean ¢; = i
i

Y.xec; X is the “expected” location of a point

2
* Hence variance of C; = erCi ||x _Ci||

[slide from Sergei V. & Suresh V.]



Lloyd’s algorithm, EM and Limitations.



The canonical algorithm: Lloyd’s algorithm
* |terative algorithm

* |terate

— Find current centers of partitions
— Assign points to nearest centers

— Recalculate centers



Llioyd’s algorithm

* |terative algorithm

* |terate
— Find current centers of partitions
— Assign points to nearest centers
— Recalculate centers

* Stopping criteria
— when no (or small #) points change cluster
— when cluster centers don’t shift much



Lloyd’s Method: k-means

Initialize with random clusters



Lloyd’s Method: k-means

Assign each point to nearest center

A



Lloyd’s Method: k-means

Recompute optimum centers (means)

\




Lloyd’s Method: k-means

Repeat: Assign points to nearest center



Lloyd’s Method: k-means

Repeat: Recompute centers



Lloyd’s Method: k-means

Repeat...



Lloyd’s Method: k-means

Repeat...Until clustering does not change



Lloyd’s algorithm: analysis

* k centers, N points, d dimensions
 Time taken to calculate new cluster assignments : O( k N d )
 Time taken to calculate new centers : O(Nd)

e Number of iterations?



Lloyd’s algorithm: convergence?

* For any current clustering, consider the objective function

cost(C)= )., rrgin d(x,cy)?



Lloyd’s algorithm: convergence?

* For any current clustering, consider the objective function

cost(C)= )., rréin d(x,cy)?

* At every step of the algorithm, this potentially decreases



Convergence

* |tis known that in some datasets, Lloyd’s algorithm can take
exponential (2\/") number of steps

— These tend to be unrealistic
* Bigger problem is where it converges to--- depends on TR

initialization v e

andtwo here .

Should have put single cluster here

[Example from Sontag]



Convergence Analysis

Lloyd’s Algorithm can be thought as a generalization of EM —algorithm
for estimating mixtures of Gaussian distribution.

Finds a local optimum

O )

That is potentially arbitrarily worse than optimal solution



K-means ++

27



Challenge

Develop an approximation algorithm for k-means
clustering that is competitive with the k-means method
iIn speed and solution quality.

Easiest line of attack: focus on the initial center positions.

Classical k-means: pick k points at random.



k-means on Gaussians
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k-means on Gaussians
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Easy Fix

Select centers using a furthest point algorithm (2-
approximation to k-Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-
approximation to k-Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-
approximation to k-Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-
approximation to k-Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-
approximation to k-Center clustering).
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Sensitive to Outliers




Sensitive to Oultliers




Sensitive to Oultliers




k-means++

Interpolate between the two methods:

Let D(x) be the distance between x and the nearest
cluster center. Sample proportionally to (D(x))® = D% x)

Original Lloyd's: a =0
Furthest a
Point: k- ol

means++:
Contribution of x to the overall error

= OO



k-Means++




k-Means++

Theorem: k-means++ is O(log k) approximate in
expectation.



Proof - 1st cluster

Fixan optimal clustering C.

Pick first center uniformly at random

Bound the total error of that cluster.



Proof - 1st cluster

Let A be the cluster.

Each point ap € A equally
likely to be the chosen
center.

Expected Error:
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Proof - Other Clusters
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Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.



Proof - Other Clusters

Let B be this cluster, and bo the pointselected.
Then:




Proof - Other Clusters

For any b: D?*(by) < 2D?*(b) + 2||b — bg||”

2
Avg. over all b: D?#(by) < — |B| Z 16 — bo||?
be B

Same for all by /

Cost in uniform sampling



Proof - Other Clusters

For any b: D?(bo) < 2D°(b) + 2/|b — bol|*

2
Avg. over all b: D?(by) < el Z Z |b — bol|?
| |b€B bEB
Recall:
E[¢(B FZZ Zm b), [Ib — bol|)?
boEB bEB beB

QIZZMMF 86"(B)

boeB beB



Lemma — sequential uncovering



K-MEANS | |



What’s wrong with K-means++?

* Needs K passes over the data

* |n large data applications, not only the data is massive, but also
Cis typically large (e.g., easily 1000).

e Does not scale!



Intuition for a solution

K-means++ samples one point per iteration and updates its
distribution

What if we oversample by sampling each point independently
with a larger probability?

Intuitively equivalent to updating the distribution much less
frequently

— Coarser sampling

Turns out to be sufficient: K-means| |



K-means| | [Bahmani et al. '12]

Choose I>1 [Think |=0(k)]
Initialize C to an arbitrary set of points

For R iterations do:

— Sample each point x in X independently with probability P, =
Idz(X,C)/(PX(C)
— Add all the sampled points to C

Cluster the (weighted) points in C to find the final k centers



K-means| | Initialization

K=4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3
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K-means| | Initialization

K=4,
Oversampling factor =3

o “,
o .07%'

Cluster the intermediate
centers

57



K-means| | [Bahmani et al. '12]

Choose I>1 [Think |=0(k)]
Initialize C to an arbitrary set of points

For R iterations do:

— Sample each point x in X independently with probability P, =
Idz(X,C)/(PX(C)
— Add all the sampled points to C

Cluster the (weighted) points in C to find the final k centers



K-means| |: Intuition

* An interpolation between Lloyd and K-means++

Number of

iterations (R) |
R=k: Simulating K-means++ (I=1) - Strong
guarantee

=== Small R: K-means|| = Can it possibly give any guarantees?

:|: R=0: Lloyd = No guarantees



Theorem

* Theorem: If (© and @’ are the costs of the clustering at the
beginning and end of an iteration, and OPT is the cost of the

optimum clustering: K

Elg']l= O(OPT) + Y4

* Corollary:
— Let W= cost of initial clustering

— K-means| | produces a constant-factor approximation to OPT, using only
O(log (L/OPT)) iterations

— Using K-means++ for clustering the intermediate centers, the overall
approximation factor = O(log k)



Experimental Results: Quality

Clustering Cost Right Clustering Cost After
After Initialization Lloyd Convergence

Random NA 22,000
K-means++ 430 65
K-means| | 16 14

GAUSSMIXTURE: 10,000 points in 15 dimensions
K=50
Costs scaled down by 104

* K-means|| much harder than K-means++ to get confused with
noisy outliers
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Experimental Results: Convergence

 K-means| | reduces number of Lloyd iterations even more than
K-means++

_ Number of Lloyd Iterations till Convergence

Random 167
K-means++ 42
K-means| | 28

SPAM: 4,601 points in 58 dimensions
K=50
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Experimental Results

 K-means|| needs a small number of intermediate centers
e Better than K-means++ as soon as ~K centers chosen

Clustering Cost Number of Tme (In Minutes)
(Scaled down by 101%) |intermediate

centers

NA 489

Random 6.4 * 107
Partition 1.9 1.47 * 10° 1022
K-means| | 1.5 3604 87

KDDCUP1999: 4.8M points in 42 dimensions
K=1000



Algorithmic Theme

* Quickly decrease the size of the data in a distributed fashion...
* ... while maintaining the important features of the data
* Solve the small instance on a single machine



Thank You!!



