CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:

- K means clustering and applications
- Lloyd's algorithm, EM and Limitations.
- K means ++
- Scalable k means ++

Sourangshu Bhattacharya Computer Science and Engg.

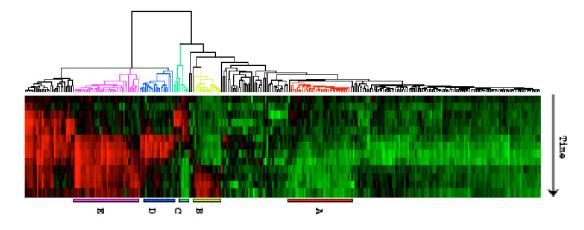
K – means clustering and applications

Sourangshu Bhattacharya Computer Science and Engg.

Clustering

- Unsupervised learning
 - When your data doesn't have labels
- Useful for
 - Detecting patterns e.g. in image data, customer shopping results, anomalies...
 - For optimizing, e.g. distributing data across various machines, cleaning up search results, facility allocation for city planning...
 - when you "don't know" what is it exactly that we are looking for

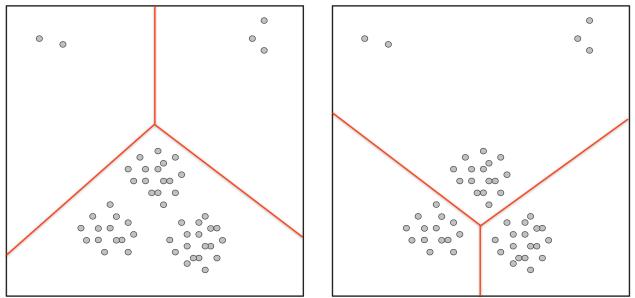
[Image segmentation via clustering, James Hayes]



Clustering: basic idea

- Grouping objects into small number of meaningful groups
 - How to define similarity / distance between objects?
 - What is meaningful?
 - How many groups?

Typically there is no supervision



Developing framework: object representation

- First develop a mathematical representation of points
 - Object representation: E.g. vectors, set, sequences...
 when we want to represent the objects in isolation
 - Ex: Document → set / vector, image → vector, DNA → sequences
 - Interaction representation : as networks, when we are representing only the interaction between objects
 - Ex. Social / road / network,

Clustering framework: distance function

- In the object representation we need an appropriate distance function
 - Lp norms for vectors
 - Jaccard distance for sets
 - Edit distance for sequences
 - Divergences for probability distributions...
- Typically, nice to have the metric properties
 - $d(x, x) = 0, d(x, y) \ge 0$
 - d(x, y) = d(y, x)
 - $d(x,y) + d(y,z) \ge d(x,z)$
- Also nice if it is easy to calculate "average"

$$\min_{x} \sum_{i} d(p_i, x)$$

Distance function: Ip norms

• L2 norm/Euclidean distance

$$D(x, y) = \sqrt[2]{\sum_{i=1}^{m} (x_i - y_i)^2}$$

- L1 norm
- L-infinity norm
- Easy to calculate averages.
- Also related is cosine distance

Objective function

- Specifying number of clusters — K-means / K-median
- Specifying cluster separation / quality

 e.g. radius of cluster, Dunn's index,..
- Graph based measures
- Working w/o an objective function
 - Hierarchical clustering schemes

K-means

• Distance function is typically L2

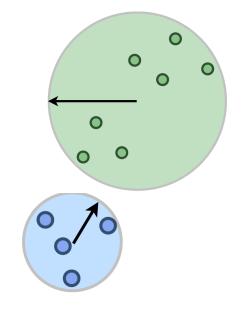
•
$$C = \{c_1, c_2, ..., c_k\}, cost(C) = \sum_x \min_{c_x} d(x, c_x)^2$$

- Find C to optimize the above cost
 - Leads to a natural partitioning of the data
- Large amount of work, both from theory & data mining community
 - Great example of divergence between theory and practice and how that prompted new research directions for both

k-means objective: alternate view

- Define "best" k-clustering of the data by
 - minimizing the "radius" of the each cluster

minimize $\sum_i radius(C_i)$



- minimizing the variance of each cluster
 - The mean $c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x$ is the "expected" location of a point
 - Hence variance of $C_i = \sum_{x \in C_i} ||x c_i||^2$

Lloyd's algorithm, EM and Limitations.

The canonical algorithm: Lloyd's algorithm

- Iterative algorithm
- Iterate
 - Find current centers of partitions
 - Assign points to nearest centers
 - Recalculate centers

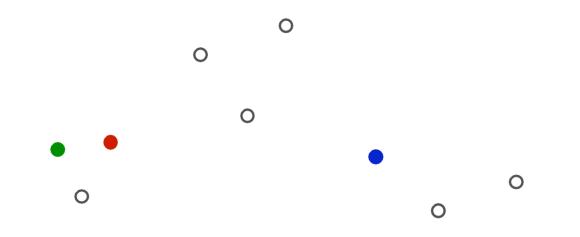
Lloyd's algorithm

- Iterative algorithm
- Iterate

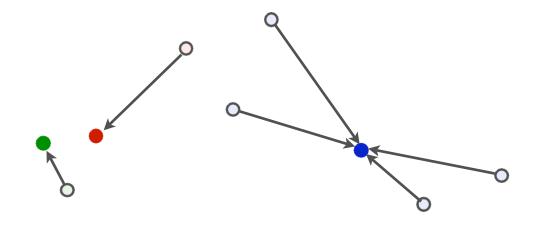
—

- Find current centers of partitions
- Assign points to nearest centers
- Recalculate centers
- Stopping criteria
 - when no (or small #) points change cluster
 - when cluster centers don't shift much

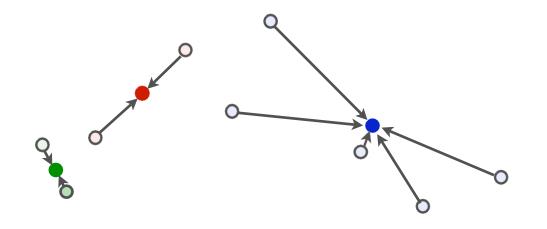
Initialize with random clusters



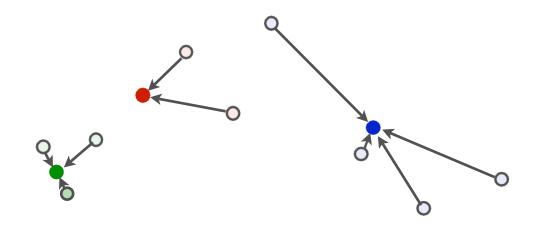
Assign each point to nearest center



Recompute optimum centers (means)

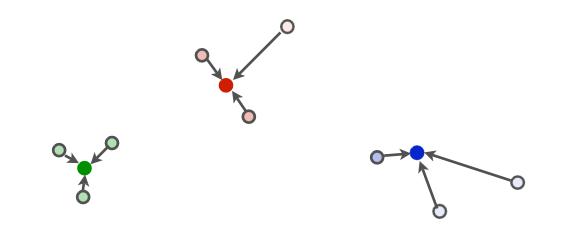


Repeat: Assign points to nearest center

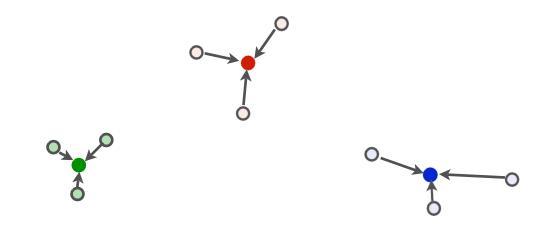


Repeat: Recompute centers

Repeat...



Repeat...Until clustering does not change



Lloyd's algorithm: analysis

- *k* centers, *N* points, *d* dimensions
- Time taken to calculate new cluster assignments : O(k N d)
- Time taken to calculate new centers : *O(Nd)*
- Number of iterations?

Lloyd's algorithm: convergence?

• For any current clustering, consider the objective function

$$\operatorname{cost}(\mathsf{C}) = \sum_{x} \min_{c_x} d(x, c_x)^2$$

Lloyd's algorithm: convergence?

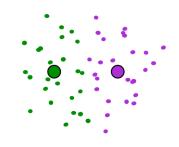
• For any current clustering, consider the objective function

$$\operatorname{cost}(C) = \sum_{x} \min_{c_x} d(x, c_x)^2$$

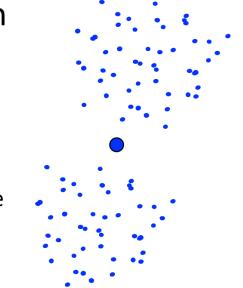
• At every step of the algorithm, this potentially decreases

Convergence

- It is known that in some datasets, Lloyd's algorithm can take exponential $(2^{\sqrt{n}})$ number of steps
 - These tend to be unrealistic
- Bigger problem is where it converges to--- depends on initialization



and two here

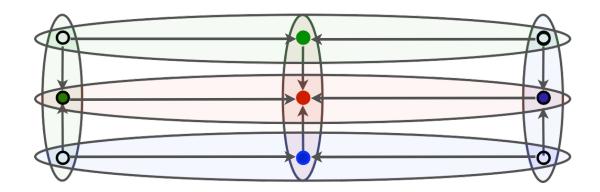


Should have put single cluster here

Convergence Analysis

Lloyd's Algorithm can be thought as a generalization of EM –algorithm for estimating mixtures of Gaussian distribution.

Finds a local optimum



That is potentially arbitrarily worse than optimal solution

K-means ++

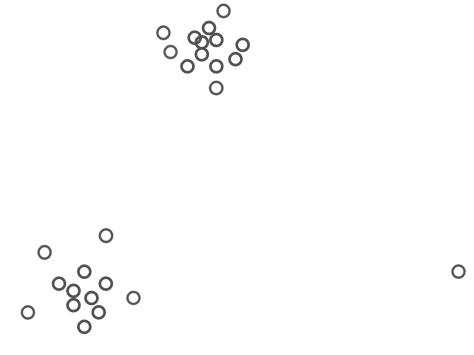
Sourangshu Bhattacharya Computer Science and Engg.

Develop an approximation algorithm for k-means clustering that is competitive with the k-means method in speed and solution quality.

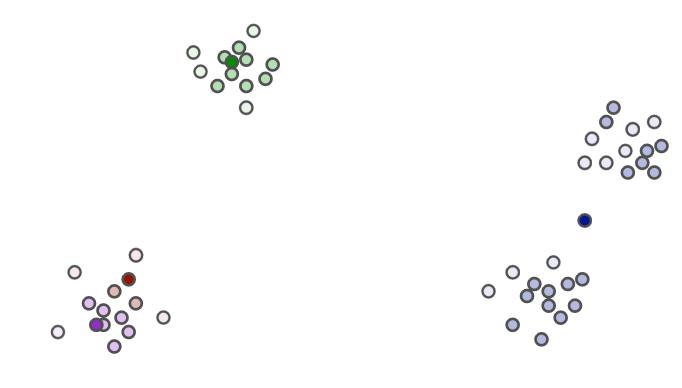
Easiest line of attack: focus on the initial center positions.

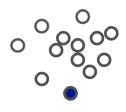
Classical k-means: pick k points at random.

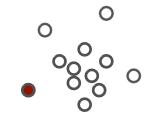
k-means on Gaussians

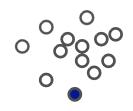


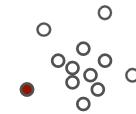
k-means on Gaussians

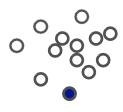


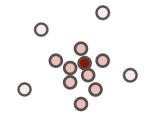


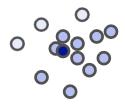










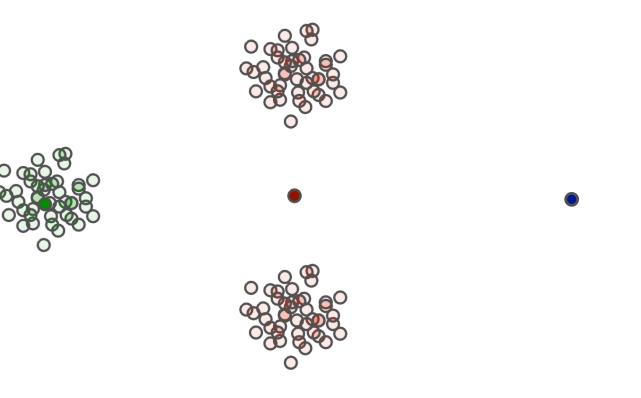


Sensitive to Outliers

Ο

Sensitive to Outliers

Sensitive to Outliers



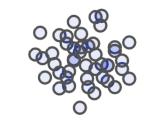
k-means++

Interpolate between the two methods:

Let D(x) be the distance between x and the nearest cluster center. Sample proportionally to $(D(x))^{\alpha} = D^{\alpha}(x)$

Original Lloyd's: $\alpha = 0$ Furthest $\alpha = \infty$ Point:k- $\alpha = 2$

means++: Contribution of **x** to the overall error

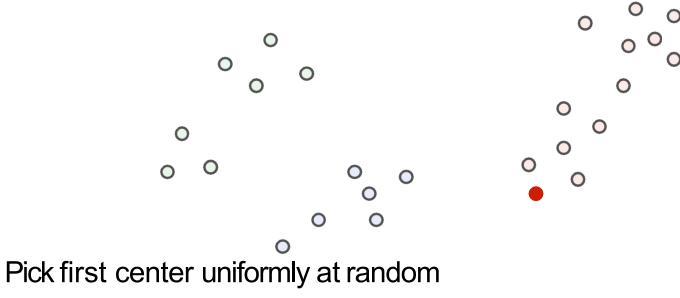


0

Theorem: k-means++ is $\Theta(\log k)$ approximate in expectation.

Proof - 1st cluster

Fix an optimal clustering C.



Bound the total error of that cluster.

Proof - 1st cluster

Let **A** be the cluster.

Each point $a_0 \in A$ equally likely to be the chosen center.

Expected Error:

$$E[\phi(A)] = \sum_{a_0 \in A} \frac{1}{|A|} \sum_{a \in A} ||a - a_0||^2$$
$$= 2 \sum_{a \in A} ||a - \bar{A}||^2 = 2\phi^*(A)$$

0

0

0

0 0

0

0

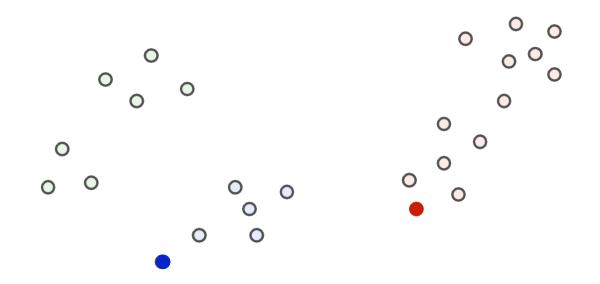
0

0

0

0

0



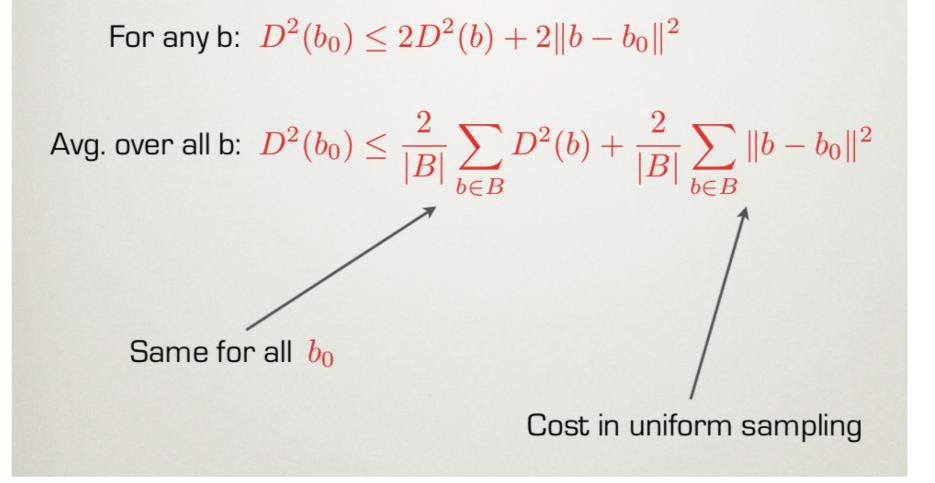
Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.

Let *B* be this cluster, and b_0 the point selected.

Then:





For any b: $D^2(b_0) \le 2D^2(b) + 2\|b - b_0\|^2$

Avg. over all b:
$$D^2(b_0) \le \frac{2}{|B|} \sum_{b \in B} D^2(b) + \frac{2}{|B|} \sum_{b \in B} \|b - b_0\|^2$$

Recall:

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \cdot \sum_{b \in B} \min(D(b), \|b - b_0\|)^2$$
$$\leq \frac{4}{|B|} \sum_{b_0 \in B} \sum_{b \in B} \|b - b_0\|^2 = 8\phi^*(B)$$

Lemma – sequential uncovering

K-MEANS

What's wrong with K-means++?

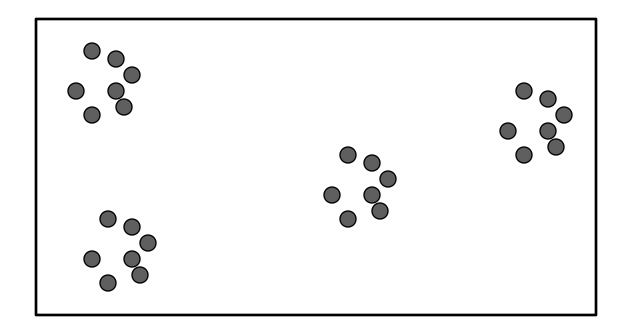
- Needs K passes over the data
- In large data applications, not only the data is massive, but also K is typically large (e.g., easily 1000).
- Does not scale!

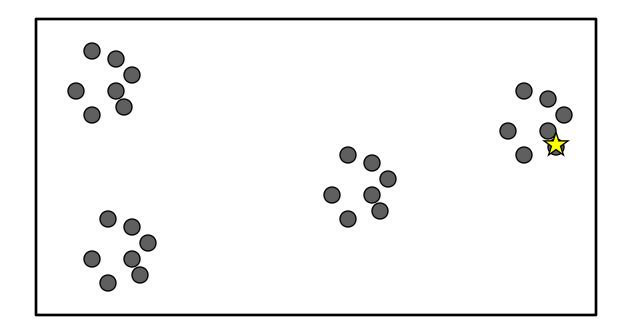
Intuition for a solution

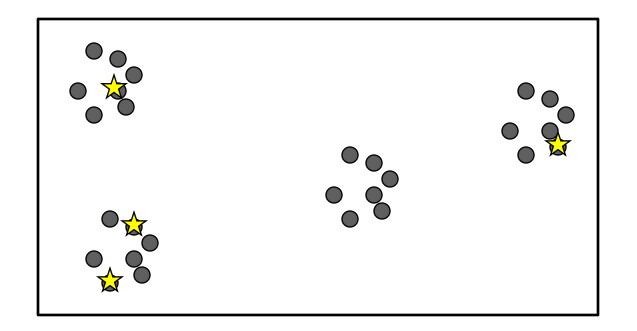
- K-means++ samples one point per iteration and updates its distribution
- What if we oversample by sampling each point independently with a larger probability?
- Intuitively equivalent to updating the distribution much less frequently
 - Coarser sampling
- Turns out to be sufficient: K-means ||

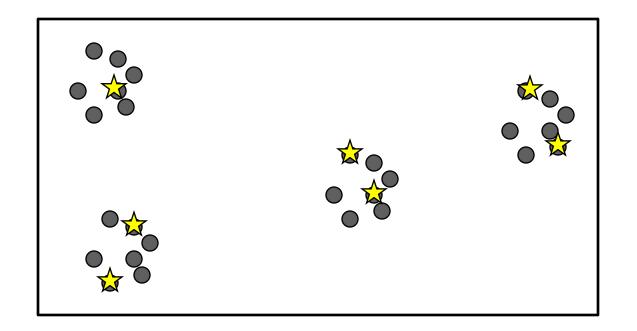
K-means | [Bahmani et al. '12]

- Choose <a>l>1 [Think <a>l=Θ(k)]
- Initialize C to an arbitrary set of points
- For R iterations do:
 - Sample each point x in X independently with probability $p_x = \frac{Id^2(x,C)}{\phi_x(C)}$.
 - Add all the sampled points to C
- Cluster the (weighted) points in C to find the final k centers

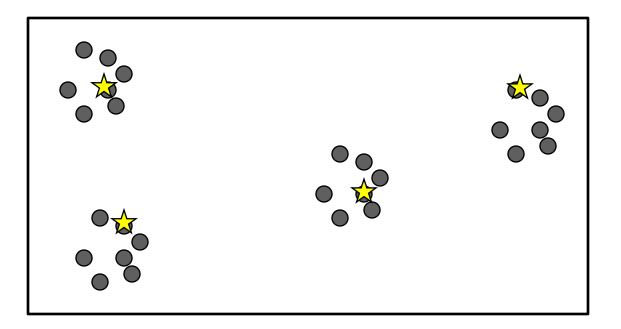








K=4, Oversampling factor =3



Cluster the intermediate centers

K-means | [Bahmani et al. '12]

- Choose I>1 [Think I=O(k)]
- Initialize C to an arbitrary set of points
- For R iterations do:
 - Sample each point x in X independently with probability $p_x = \frac{Id^2(x,C)}{\phi_x(C)}$.
 - Add all the sampled points to C
- Cluster the (weighted) points in C to find the final k centers

K-means | : Intuition

An interpolation between Lloyd and K-means++

Number of iterations (R)

R=k: Simulating K-means++ (I=1) → Strong guarantee

Small R: K-means | | → Can it possibly give any guarantees?

R=0: Lloyd \rightarrow No guarantees

Theorem

Theorem: If φ and φ' are the costs of the clustering at the beginning and end of an iteration, and OPT is the cost of the optimum clustering:

$$E[\varphi'] \le O(OPT) + \frac{k}{el}\varphi$$

- Corollary:
 - Let ψ = cost of initial clustering
 - K-means || produces a constant-factor approximation to OPT, using only $O(\log (\psi/OPT))$ iterations
 - Using K-means++ for clustering the intermediate centers, the overall approximation factor = O(log k)

Experimental Results: Quality

	Clustering Cost Right After Initialization	Clustering Cost After Lloyd Convergence
Random	NA	22,000
K-means++	430	65
K-means	16	14

GAUSSMIXTURE: 10,000 points in 15 dimensions K=50 Costs scaled down by 10⁴

 K-means || much harder than K-means++ to get confused with noisy outliers

Experimental Results: Convergence

 K-means || reduces number of Lloyd iterations even more than K-means++

	Number of Lloyd Iterations till Convergence		
Random	167		
K-means++	42		
K-means	28		

SPAM: 4,601 points in 58 dimensions K=50

Experimental Results

- K-means || needs a small number of intermediate centers
- Better than K-means++ as soon as ~K centers chosen

	Clustering Cost (Scaled down by 10 ¹⁰)	Number of intermediate centers	Tme (In Minutes)
Random	6.4 * 10 ⁷	NA	489
Partition	1.9	1.47 * 10 ⁶	1022
K-means	1.5	3604	87

KDDCUP1999: 4.8M points in 42 dimensions K=1000

Algorithmic Theme

- Quickly decrease the size of the data in a distributed fashion...
- ... while maintaining the important features of the data
- Solve the small instance on a single machine

Thank You!!

Faculty Name Department Name