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In this Lecture:
• K – means clustering and applications

• Lloyd’s algorithm, EM and Limitations.

• K – means ++

• Scalable k – means ++
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K – means clustering and applications



Clustering
• Unsupervised learning

– When your data doesn’t have labels

• Useful for
– Detecting patterns e.g. in image data, customer 

shopping results, anomalies…

– For optimizing, e.g. distributing data across various 
machines, cleaning up search results, facility allocation 
for city planning…

– when you “don’t know” what is it exactly that we are 
looking for

[Image segmentation via clustering, James Hayes]



Clustering: basic idea
• Grouping objects into small number of 

meaningful groups

– How to define similarity / distance between 
objects?

– What is meaningful?
– How many groups?

– Typically there is no supervision

[Picture from Ackerman talk]



Developing framework: object representation
• First develop a mathematical representation of 

points
– Object representation: E.g. vectors, set, sequences... 

when we want to represent the objects in isolation
• Ex: Document  à set / vector,  image à vector , DNA à

sequences

– Interaction representation : as networks, when we are 
representing only the interaction between objects
• Ex. Social / road / network,



Clustering framework: distance function



Distance function: lp norms



Objective function
• Specifying number of clusters
– K-means / K-median

• Specifying cluster separation / quality
– e.g. radius of cluster, Dunn’s index,..

• Graph based measures

• Working w/o an objective function
– Hierarchical clustering schemes 



K-means



k-means objective: alternate view

[slide from Sergei V. & Suresh V.]



Lloyd’s algorithm, EM and Limitations.



The canonical algorithm: Lloyd’s algorithm
• Iterative algorithm

• Iterate

– Find current centers of partitions

– Assign points to nearest centers

– Recalculate centers



Lloyd’s algorithm
• Iterative algorithm
• Iterate
– Find current centers of partitions
– Assign points to nearest centers
– Recalculate centers

• Stopping criteria
– when no (or small #) points change  cluster
– when cluster centers don’t shift much
– …. 



Lloyd’s Method: k-means

Initialize with random clusters



Assign each point to nearest center

Lloyd’s Method: k-means



Recompute optimum centers (means)

Lloyd’s Method: k-means



Repeat: Assign points to nearest center

Lloyd’s Method: k-means



Repeat: Recompute centers

Lloyd’s Method: k-means



Repeat...

Lloyd’s Method: k-means



Repeat...Until clustering does not change

Lloyd’s Method: k-means



Lloyd’s algorithm: analysis

• k centers, N points, d dimensions

• Time taken to calculate new cluster assignments : O( k N d )

• Time taken to calculate new centers : O(Nd)

• Number of iterations?



Lloyd’s algorithm: convergence?



Lloyd’s algorithm: convergence?



Convergence

[Example from Sontag]

Should have put single cluster here

and two here



Lloyd’s Algorithm can be thought as a generalization of EM –algorithm 
for estimating mixtures of Gaussian distribution.

Finds a local optimum

That is potentially arbitrarily worse than optimal solution

Convergence Analysis
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K-means ++



Challenge

Develop an approximation algorithm for k-means 
clustering  that is competitive with the k-means method 
in speed and  solution quality.

Easiest line of attack: focus on the initial center positions.

Classical k-means: pick k points at random.



k-means on Gaussians



k-means on Gaussians



Easy Fix
Select centers using a furthest point algorithm (2-
approximation  to k-Center clustering).
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Easy Fix
Select centers using a furthest point algorithm (2-
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Easy Fix
Select centers using a furthest point algorithm (2-
approximation  to k-Center clustering).



Sensitive to Outliers



Sensitive to Outliers



Sensitive to Outliers



k-means++
Interpolate between the two methods:

Let D(x) be the distance between x and the nearest  
cluster center. Sample proportionally to (D(x))α = Dα(x)

Original Lloyd’s: α =0

Contribution of x to the overall error

α =2

Furthest 

Point:  k-
means++:



k-Means++



k-Means++

Theorem: k-means++ is Θ(log k) approximate in 
expectation.



Proof - 1st cluster

Fix an optimal clustering C.

Pick first center uniformly at random

Bound the total error of that cluster.



Proof - 1st cluster

Let A be the cluster.

Each point a0 ∈ A equally 
likely  to be the chosen 
center.

Expected Error:



Proof - Other Clusters

Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.



Let B be this cluster, and b0 the pointselected.

Then:

Key step:

Proof - Other Clusters



Proof - Other Clusters



Proof - Other Clusters



Lemma – sequential uncovering



K-MEANS ||



What’s wrong with K-means++?
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• Needs K passes over the data
• In large data applications, not only the data is massive, but also 

K is typically large (e.g., easily 1000).
• Does not scale!



Intuition for a solution
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• K-means++ samples one point per iteration and updates its 
distribution

• What if we oversample by sampling each point independently 
with a larger probability?

• Intuitively equivalent to updating the distribution much less 
frequently
– Coarser sampling

• Turns out to be sufficient: K-means||



K-means|| [Bahmani et al. ’12]
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• Choose l>1 [Think l=Θ(k)]

• Initialize C to an arbitrary set of points

• For R iterations do:

– Sample each point x in X independently with probability         px = 

ld2(x,C)/φX(C).

– Add all the sampled points to C

• Cluster the (weighted) points in C to find the final k centers



K-means|| Initialization
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K=4, 
Oversampling factor =3



K-means|| Initialization
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K=4, 
Oversampling factor =3



K-means|| Initialization
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K=4, 
Oversampling factor =3



K-means|| Initialization
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K=4, 
Oversampling factor =3



K-means|| Initialization
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K=4, 
Oversampling factor =3

Cluster the intermediate 
centers



K-means|| [Bahmani et al. ’12]
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• Choose l>1 [Think l=Θ(k)]

• Initialize C to an arbitrary set of points

• For R iterations do:
– Sample each point x in X independently with probability         px = 

ld2(x,C)/φX(C).

– Add all the sampled points to C

• Cluster the (weighted) points in C to find the final k centers



K-means||: Intuition
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• An interpolation between Lloyd and K-means++
Number of 
iterations (R)

R=0: Lloyd à No guarantees

R=k: Simulating K-means++ (l=1) à Strong 
guarantee

Small R: K-means|| à Can it possibly give any guarantees?



Theorem
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• Theorem: If φ and φ’ are the costs of the clustering at the 
beginning and end of an iteration, and OPT is the cost of the 
optimum clustering:

• Corollary:
– Let ψ= cost of initial clustering
– K-means|| produces a constant-factor approximation to OPT, using only 

O(log (ψ/OPT)) iterations
– Using K-means++ for clustering the intermediate centers, the overall 

approximation factor = O(log k)



Experimental Results: Quality
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• K-means|| much harder than K-means++ to get confused with 
noisy outliers

Clustering Cost Right 
After Initialization

Clustering Cost After 
Lloyd Convergence

Random NA 22,000

K-means++ 430 65

K-means|| 16 14

GAUSSMIXTURE: 10,000 points in 15 dimensions
K=50

Costs scaled down by 104



Experimental Results: Convergence
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• K-means|| reduces number of Lloyd iterations even more than 
K-means++

Number of Lloyd Iterations till Convergence
Random 167

K-means++ 42

K-means|| 28

SPAM: 4,601 points in 58 dimensions
K=50



Experimental Results
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• K-means|| needs a small number of intermediate centers
• Better than K-means++ as soon as ~K centers chosen

Clustering Cost
(Scaled down by 1010)

Number of 
intermediate 
centers

Tme (In Minutes)

Random 6.4 * 107 NA 489

Partition 1.9 1.47 * 106 1022

K-means|| 1.5 3604 87

KDDCUP1999: 4.8M points in 42 dimensions
K=1000



Algorithmic Theme
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• Quickly decrease the size of the data in a distributed fashion…
• … while maintaining the important features of the data
• Solve the small instance on a single machine
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