
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:
• Outline:
– Scala

• Var and Val
• Classes and objects
• Functions and higher order functions
• Lists

SCALA

Scala
• Scala is both functional and object-oriented

– every value is an object
– every function is a value--including methods

• Scala is interoperable with java.
• Scala is statically typed

– includes a local type inference system:

Var and Val
q Use var to declare variables:

q var x = 3;
q x += 4;

q Use val to declare values (final vars)
q val y = 3;
q y += 4; // error

q Notice no types, but it is statically typed
q var x = 3;
q x = “hello world”; // error

q Type annotations:
q var x : Int = 3;

Class definition
class Point(val xc: Int, val yc: Int) {

var x: Int = xc
var y: Int = yc

def move(dx: Int, dy: Int) {
x = x + dx
y = y + dy
println ("Point x location : " + x);
println ("Point y location : " + y);

�
�

Scala
qClass instances

qval c = new IntCounter[String];

qAccessing members
qprintln(c.size); // same as c.size()

qDefining functions:
q def foo(x : Int) { println(x == 42); }
q def bar(y : Int): Int = y + 42; // no braces //

needed!
q def return42 = 42; // No parameters either!

Functions are first-class objects
• Functions are values (like integers, etc.) and can be assigned to variables, passed to

and returned from functions, and so on
• Wherever you see the => symbol, it’s a literal function
• Example (assigning a literal function to the variable foo):

– scala> val foo =
(x: Int) => if (x % 2 == 0) x / 2 else 3 * x + 1

foo: (Int) => Int = <function1>

scala> foo(7)
res28: Int = 22

• The basic syntax of a function literal is
parameter_list => function_body

• In this example, foreach is a function that takes a function as a parameter:
– myList.foreach(i => println(2 * i))

Functions as parameters
• To have a function parameter, you must know how to write its type:

– (type1, type2, ..., typeN) => return_type
– type => return_type // if only one parameter
– () => return_type // if no parameters

• Example:
– scala> def doTwice(f: Int => Int, n: Int) = f(f(n))
doTwice: (f: (Int) => Int,n: Int)Int

scala> def collatz(n: Int) = if (n % 2 == 0) n / 2 else 3 * n + 1
collatz: (n: Int)Int

scala> doTwice(collatz, 7)
res2: Int = 11

scala> doTwice(a => 101 * a, 3)
res4: Int = 30603

Scala

qDefining lambdas – nameless functions (types sometimes needed)
q val f = x :Int => x + 42;

qClosures (context sensitive functions)
q var y = 3;
q val g = {x : Int => y += 1; x+y; }

qMaps (and a cool way to do some functions)
q List(1,2,3).map(_+10).foreach(println)

qFiltering (and ranges!)
q 1 to 100 filter (_ % 7 == 3) foreach (println)

Lists
• Scala’s Lists are more useful, and used more often, than Arrays

– val list1 = List(3, 1, 4, 1, 6)
– val list2 = List[Int]() // An empty list must have an explicit
type

• By default, Lists, like Strings, are immutable
– Operations on an immutable List return a new List

• Basic operations:
– list.head (or list head) returns the first element in the list
– list.tail (or list tail) returns a list with the first element removed
– list(i) returns the ith element (starting from 0) of the list
– list(i) = value is illegal (immutable, remember?)

• There are over 150 built-in operations on Lists—use the API!

Higher-order methods on Lists
• map applies a one-parameter function to every element of a List, returning a new List

– scala> def double(n: Int) = 2 * n

double: (n: Int)Int

– scala> val ll = List(2, 3, 5, 7, 11)

ll: List[Int] = List(2, 3, 5, 7, 11)

– scala> ll map double

res5: List[Int] = List(4, 6, 10, 14, 22)

– scala> ll map (n => 3 * n)

res6: List[Int] = List(6, 9, 15, 21, 33)

• filter applies a one-parameter test to every element of a List, returning a List of those
elements that pass the test
– scala> ll filter(n => n < 5)

res10: List[Int] = List(2, 3)

– scala> ll filter (_ < 5) // abbreviated function where parameter is used once
res11: List[Int] = List(2, 3)

More higher-order methods
• def filterNot(p: (A) => Boolean): List[A]

– Selects all elements of this list which do not satisfy a predicate

• def count(p: (A) => Boolean): Int
– Counts the number of elements in the list which satisfy a predicate

• def forall(p: (A) => Boolean): Boolean
– Tests whether a predicate holds for every element of this list

• def exists(p: (A) => Boolean): Boolean
– Tests whether a predicate holds for at least one of the elements of this list

• def find(p: (A) => Boolean): Option[A]
– Finds the first element of the list satisfying a predicate, if any

• def sortWith(lt: (A, A) => Boolean): List[A]
– Sorts this list according to a comparison function

SPARK

Spark
Spark is an In-Memory Cluster Computing platform for Iterative

and Interactive Applications.

http://spark.apache.org

Spark
qStarted in AMPLab at UC Berkeley.
qResilient Distributed Datasets.
qData and/or Computation Intensive.
qScalable – fault tolerant.
q Integrated with SCALA.
qStraggler handling.
qData locality.
qEasy to use.

Background
• Commodity clusters have become an important computing platform for a

variety of applications
– In industry: search, machine translation, ad targeting, …
– In research: bioinformatics, NLP, climate simulation, …

• High-level cluster programming models like MapReduce power many of
these apps

• Theme of this work: provide similarly powerful abstractions for a broader
class of applications

Motivation
Current popular programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

Motivation

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide
where to run tasks and can automatically

recover from failures

• Current popular programming models for clusters
transform data flowing from stable storage to stable
storage

• E.g., MapReduce:

Motivation

• Acyclic data flow is a powerful abstraction, but is not efficient for applications that
repeatedly reuse a working set of data:
– Iterative algorithms (many in machine learning)
– Interactive data mining tools (R, Excel, Python)

• Spark makes working sets a first-class concept to efficiently support these apps

Spark Goal

• Provide distributed memory abstractions for clusters to
support apps with working sets

• Retain the attractive properties of MapReduce:
– Fault tolerance (for crashes & stragglers)
– Data locality
– Scalability

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

Spark
Spark is an In-Memory Cluster Computing platform for Iterative

and Interactive Applications.

http://spark.apache.org

Spark
qStarted in AMPLab at UC Berkeley.
qResilient Distributed Datasets.
qData and/or Computation Intensive.
qScalable – fault tolerant.
q Integrated with SCALA.
qStraggler handling.
qData locality.
qEasy to use.

Background
• Commodity clusters have become an important computing platform for a

variety of applications
– In industry: search, machine translation, ad targeting, …
– In research: bioinformatics, NLP, climate simulation, …

• High-level cluster programming models like MapReduce power many of
these apps

• Theme of this work: provide similarly powerful abstractions for a broader
class of applications

Motivation
Current popular programming models for clusters transform data
flowing from stable storage to stable storage

E.g., MapReduce:

Map

Map

Map

Reduce

Reduce

Input Output

Motivation

Map

Map

Map

Reduce

Reduce

Input Output

Benefits of data flow: runtime can decide
where to run tasks and can automatically

recover from failures

• Current popular programming models for clusters
transform data flowing from stable storage to stable
storage

• E.g., MapReduce:

Motivation

• Acyclic data flow is a powerful abstraction, but is not efficient for applications that
repeatedly reuse a working set of data:
– Iterative algorithms (many in machine learning)
– Interactive data mining tools (R, Excel, Python)

• Spark makes working sets a first-class concept to efficiently support these apps

Spark Goal

• Provide distributed memory abstractions for clusters to
support apps with working sets

• Retain the attractive properties of MapReduce:
– Fault tolerance (for crashes & stragglers)
– Data locality
– Scalability

Solution: augment data flow model with
“resilient distributed datasets” (RDDs)

Resilient Distributed Datasets
q Immutable distributed SCALA collections.

qArray, List, Map, Set, etc.

q Transformations on RDDs create new RDDs.

qMap, ReducebyKey, Filter, Join, etc.

q Actions on RDD return values.

q Reduce, collect, count, take, etc.

q Seamlessly integrated into a SCALA program.

q RDDs are materialized when needed.

q RDDs are cached to disk – graceful degradation.

q Spark framework re-computes lost splits of RDDs.

29

RDDs in More Detail

qAn RDD is an immutable, partitioned, logical collection of records
qNeed not be materialized, but rather contains information to rebuild a dataset

from stable storage
qPartitioning can be based on a key in each record (using hash or range

partitioning)
qBuilt using bulk transformations on other RDDs
qCan be cached for future reuse

RDD Operations

Transformations
(define a new RDD)

map
filter
sample
union
groupByKey
reduceByKey
join
cache
…

Actions
(return a result to driver)

reduce
collect
count
save
lookupKey
…

RDD Fault Tolerance
• RDDs maintain lineage information that can be used to

reconstruct lost partitions

• Ex: cachedMsgs = textFile(...).filter(_.contains(“error”))
.map(_.split(‘\t’)(2))
.cache()

HdfsRDD
path: hdfs://…

FilteredRDD
func: contains(...)

MappedRDD
func: split(…)

CachedRDD

Spark Architecture

Example: MapReduce
• MapReduce data flow can be expressed using RDD transformations

res = data.flatMap(rec => myMapFunc(rec))
.groupByKey()
.map((key, vals) => myReduceFunc(key, vals))

Or with combiners:

res = data.flatMap(rec => myMapFunc(rec))
.reduceByKey(myCombiner)
.map((key, val) => myReduceFunc(key, val))

Word Count in Spark
val lines = spark.textFile(“hdfs://...”)

val counts = lines.flatMap(_.split(“\\s”))
.reduceByKey(_ + _)

counts.save(“hdfs://...”)

Example: Matrix Multiplication

Matrix Multiplication
uRepresentation of Matrix:

u List <Row index, Col index, Value>

u Size of matrices: First matrix (A): m*k, Second matrix (B): k*n

u Scheme:

u For each input record: If input record

uMapper key: <row_index_matrix_1, Column_index_matrix_2>

uMapper value: < column_index_1 / row_index_2, value>

uGroupByKey: List(Mapper Values)

uCollect all (two) records with the same first field multiply them and add to the sum.

Example: Logistic Regression

Logistic Regression
• Binary Classification. y ε {+1, -1}
• Probability of classes given by linear model:

• Regularized ML estimate of w given dataset (xi, yi) is obtained
by minimizing:

40

p(y | x,w) = 1
1+ e(−yw

T x)

l(w) = log(1+ exp(−yiw
T xi))+

λ
2
wTw

i
∑

Logistic Regression
• Gradient of the objective is given by:

• Gradient Descent updates are:

∇l(w) = (1−σ (yiw
T xi))yixi −λw

i
∑

wt+1 = wt − s∇l(wt)

Spark Implementation

val x = loadData(file) //creates RDD
var w = 0
do {
//creates RDD
val g = x.map(a => grad(w,a)).reduce(_+_)
s = linesearch(x,w,g)
w = w – s * g
}while(norm(g) > e)

Scaleup with Cores

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7

Ti
m

e
in

 s
ec

on
ds

Number of Cores

Epsilon (Pascal Challenge)

Spark-GD
Spark-CGLiblinear-C++

Scaleup with Nodes

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Ti
m

e
in

 s
ec

on
ds

Number of nodes

Epsilon (Pascal Challenge)

Spark-GD
Spark-CG

996.24 s
Liblinear-C++

Example: PageRank

Basic Idea
• Give pages ranks (scores) based on links to them

– Links from many pages
è high rank

– Link from a high-rank page
è high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Algorithm

1.0 1.0

1.0

1.0

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

Algorithm
1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

Algorithm
1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

0.58 1.0

1.85

0.58

Algorithm
1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

Algorithm

0.39 1.72

1.31

0.58

. . .

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

Algorithm

0.46 1.37

1.44

0.73

Final state:

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 � contribs

Spark Implementation

val links = // RDD of (url, neighbors) pairs

var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {

val contribs = links.join(ranks).flatMap {

(url, (nhb, rank)) =>

nhb(dest => (dest, rank/nhb.size))

}

ranks = contribs.reduceByKey(_ + _)

.mapValues(0.15 + 0.85 * _)

}

ranks.saveAsTextFile(...)

Spark Pi
val slices = if (args.length > 0) args(0).toInt else 2

val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid
overflow

val count = spark.sparkContext.parallelize(1 until n,
slices).map { i =>

val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y <= 1) 1 else 0

}.reduce(_ + _)

println(s"Pi is roughly ${4.0 * count / (n - 1)}")

Example: Alternating Least squares

Collaborative filtering

Matrix Factorization

Alternating Least Squares

Naïve Spark ALS

Efficient Spark ALS

Example: Log Mining
Load error messages from a log into memory, then
interactively search for various patterns
lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in <1 sec (vs
20 sec for on-disk data)

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Spark Scheduler
Dryad-like DAGs
Pipelines functions
within a stage
Cache-aware work
reuse & locality
Partitioning-aware
to avoid shuffles join

union

groupBy

map

Stage 3

Stage 1

Stage 2

A: B:

C: D:

E:

F:

G:

= cached data partition

Physical Execution Plan
q User code defines a DAG (directed acyclic graph) of RDDs

qOperations on RDDs create new RDDs that refer back to their parents,
thereby creating a graph.

q Actions force translation of the DAG to an execution plan
qWhen you call an action on an RDD, it’s parents must be computed.

That job will have one or more stages, with tasks for each partition.
Each stage will correspond to one or more RDDs in the DAG.
A single stage can correspond to multiple RDDs due to pipelining.

q Tasks are scheduled and executed on a cluster
q Stages are processed in order, with individual tasks launching to

compute segments of the RDD. Once the final stage is finished in a
job, the action is complete.

Tasks
• Each task internally performs the following steps:

q Fetching its input, either from data storage (if the RDD is an input
RDD), an existing RDD (if the stage is based on already cached
data), or shuffle outputs.

q Performing the operation necessary to compute RDD(s) that it
represents. For instance, executing filter() or map() functions on
the input data, or performing grouping or reduction.

qWriting output to a shuffle, to external storage, or back to the
driver (if it is the final RDD of an action such as count()).

User Log Mining
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...").persist()

def processNewLogs(logFileName: String) {

val events = sc.sequenceFile[UserID, LinkInfo](logFileName)

val joined = userData.join(events) // RDD of (UserID, (UserInfo,
LinkInfo)) pairs

val offTopicVisits = joined.filter {
case (userId, (userInfo, linkInfo)) => // Expand the tuple into its
components userInfo.topics.contains(linkInfo.topic)
}.count()

println("Number of visits to non-subscribed topics: " + offTopicVisits)
}

User Log Mining

User Log Mining
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...")
.partitionBy(new HashPartitioner(100)) // Create 100 partitions
.persist()

def processNewLogs(logFileName: String) {

val events = sc.sequenceFile[UserID, LinkInfo](logFileName)

val joined = userData.join(events) // RDD of (UserID, (UserInfo, LinkInfo)) pairs

val offTopicVisits = joined.filter {
case (userId, (userInfo, linkInfo)) =>
// Expand the tuple into its components

userInfo.topics.contains(linkInfo.topic)
}.count()
println("Number of visits to non-subscribed topics: " + offTopicVisits)
}

User Log Mining

Partitioning
q Operations benefitting from partitioning:

cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter Join(), groupByKey(), reduceByKey(),
combineByKey(), and lookup().

q Operations affecting partitioning:

cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter Join(), groupByKey(), reduceByKey(),
combineByKey(), partitionBy(), sort()

mapValues() (if the parent RDD has a partitioner),
flatMapValues() (if parent has a partitioner)
filter() (if parent has a partitioner).

Page Rank (Revisited)
val links = sc.objectFile[(String, Seq[String])]("links") .
partitionBy(new HashPartitioner(100)).persist()

var ranks = links.mapValues(v => 1.0)

for(i<-0 until 10) {
val contributions = links.join(ranks).flatMap {
case (pageId, (nbh, rank)) => nbh.map(dest => (dest, rank / nbh.size))
}
ranks = contributions.reduceByKey((x, y) => x + y).
mapValues(v => 0.15 + 0.85*v)
}

ranks.saveAsTextFile("ranks")

Accumulators
val sc = new SparkContext(...) val file = sc.textFile("file.txt")

val blankLines = sc.accumulator(0)
// Create an Accumulator[Int] initialized to 0
val callSigns = file.flatMap(
line => { if (line == "") {
blankLines += 1 // Add to the accumulator
}
line.split(" ") })

callSigns.saveAsTextFile("output.txt”)

println("Blank lines: " + blankLines.value)

Conclusion:

• We have seen:
• Spark: Programming examples:

• Alternating least squares
• User log mining

• Partitioning
• Accumulators
• Scheduling of tasks

73

Conclusion:

• We have seen:
• Spark

• Motivation
• RDD
• Actions and transformations
• Examples:

• Matrix multiplication
• Logistic regression
• Pagerank

74

References:
• Learning Spark: Lightning-Fast Big Data Analysis. Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia. O

Reilly Press 2015.

• Any book on scala and spark.

75

Conclusion:

• We have seen:
• Scala

• Var and Val
• Classes and objects
• Functions and higher order functions
• Lists

76

Sourangshu Bhattacharya
Computer Science and Engg.

References:
• Any book on scala.

References:
• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd edition. - Cambridge University

Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

