
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:
• Outline:
– Map-reduce programming in Java
– Map reduce programming in other languages
– Implementation details:

• Job and tasks
• Shuffle and sort

Sourangshu Bhattacharya
Computer Science and Engg.

Hadoop Map Reduce
q Provides:

q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.

Wordcount program
import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

Wordcount program - Main
public class WordCount {

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }

Wordcount program - Mapper
public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken()); context.write(word, one);
}

}
}

Wordcount program - Reducer
public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();

public void reduce(Text key, Iterable<IntWritable> values, Context
context)
throws IOException, InterruptedException {

int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}

Wordcount program - running
export JAVA_HOME=[Java home directory]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]

Wordcount in python
Mapper.py

Wordcount
in python

Reducer.py

Execution code
bin/hadoop dfs -ls

bin/hadoop dfs –copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file
wordcount-py.example/mapper.py -mapper wordcount-py.example/mapper.py
-file wordcount-py.example/reducer.py -reducer wordcount-
py.example/reducer.py -input example -output java-output

bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Map Reduce Data Flow

Hadoop MR Data Flow

Source: Hadoop: The Definitive Guide

Shuffle and sort

Source: Hadoop: The Definitive Guide

Data Flow

• Input and final output are stored on a distributed file system (FS):
– Scheduler tries to schedule map tasks “close” to physical storage location

of input data

• Intermediate results are stored on local FS
of Map workers.

• Output of Reduce workers are stored on a distributed file system.

• Output is often input to another
MapReduce task

17

Hadoop(v2)
MR job

Source: Hadoop: The Definitive Guide

Fault tolerance

qComes from scalability and cost effectiveness

qHDFS:
qReplication

qMap Reduce
qRestarting failed tasks: map and reduce
qWriting map output to FS
qMinimizes re-computation

Coordination: Master
• Master node takes care of coordination:
– Task status: (idle, in-progress, completed)

– Idle tasks get scheduled as workers become available

– When a map task completes, it sends the master the location and sizes of
its R intermediate files, one for each reducer

– Master pushes this info to reducers

• Master pings workers periodically to detect failures

20

Failures
qTask failure

qTask has failed – report error to node manager, appmaster, client.
qTask not responsive, JVM failure – Node manager restarts tasks.

qApplication Master failure
qApplication master sends heartbeats to resource manager.
qIf not received, the resource manager retrieves job history of the run tasks.

qNode manager failure

Dealing with Failures
• Map worker failure
– Map tasks completed or in-progress at

worker are reset to idle
– Reduce workers are notified when task is rescheduled on another worker

• Reduce worker failure
– Only in-progress tasks are reset to idle
– Reduce task is restarted

• Master failure
– MapReduce task is aborted and client is notified

22

How many Map and Reduce jobs?
• M map tasks, R reduce tasks
• Rule of a thumb:
–Make M much larger than the number of nodes in the

cluster
–One DFS chunk per map is common
– Improves dynamic load balancing and speeds up

recovery from worker failures

• Usually R is smaller than M
– Because output is spread across R files

23

Task Granularity & Pipelining
• Fine granularity tasks: map tasks >> machines
– Minimizes time for fault recovery
– Can do pipeline shuffling with map execution
– Better dynamic load balancing

24

Refinements: Backup Tasks
• Problem
– Slow workers significantly lengthen the job completion time:

• Other jobs on the machine
• Bad disks
• Weird things

• Solution
– Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Effect
– Dramatically shortens job completion time

25

Refinement: Combiners
• Often a Map task will produce many pairs of the form (k,v1), (k,v2),

… for the same key k
– E.g., popular words in the word count example

• Can save network time by
pre-aggregating values in
the mapper:
– combine(k, list(v1)) à v2
– Combiner is usually same

as the reduce function

• Works only if reduce
function is commutative and associative

26

Refinement: Combiners
• Back to our word counting example:
– Combiner combines the values of all keys of a single

mapper (single machine):

– Much less data needs to be copied and shuffled!

27

Refinement: Partition Function
• Want to control how keys get partitioned
– Inputs to map tasks are created by contiguous splits of input file
– Reduce needs to ensure that records with the same intermediate

key end up at the same worker

• System uses a default partition function:
– hash(key) mod R

• Sometimes useful to override the hash function:
– E.g., hash(hostname(URL)) mod R ensures URLs from a host end up

in the same output file

28

Example: Join By Map-Reduce
• Compute the natural join R(A,B) ⋈ S(B,C)
• R and S are each stored in files
• Tuples are pairs (a,b) or (b,c)

29

A B
a1 b1
a2 b1
a3 b2
a4 b3

B C
b2 c1
b2 c2
b3 c3

⋈
A C
a3 c1
a3 c2
a4 c3

=

R
S

Map-Reduce Join
• Use a hash function h from B-values to 1...k
• A Map process turns:
– Each input tuple R(a,b) into key-value pair (b,(a,R))
– Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with
key b to Reduce process h(b)
– Hadoop does this automatically; just tell it what k is.

• Each Reduce process matches all the pairs
(b,(a,R)) with all (b,(c,S)) and outputs (a,b,c).

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

30

Cost Measures for Algorithms

• In MapReduce we quantify the cost of an algorithm using
1. Communication cost = total I/O of all processes
2. Elapsed communication cost = max of I/O along any path
3. (Elapsed) computation cost analogous, but count only

running time of processes

Note that here the big-O notation is not the most useful
(adding more machines is always an option)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

31

Example: Cost Measures

• For a map-reduce algorithm:
– Communication cost = input file size + 2 ´ (sum of the sizes of all files

passed from Map processes to Reduce processes) + the sum of the
output sizes of the Reduce processes.

– Elapsed communication cost is the sum of the largest input + output
for any map process, plus the same for any reduce process

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

32

What Cost Measures Mean

• Either the I/O (communication) or processing (computation) cost dominates
– Ignore one or the other

• Total cost tells what you pay in rent from
your friendly neighborhood cloud

• Elapsed cost is wall-clock time using parallelism

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive
Datasets, http://www.mmds.org

33

Cost of Map-Reduce Join
• Total communication cost

= O(|R|+|S|+|R ⋈ S|)
• Elapsed communication cost = O(s)
– We’re going to pick k and the number of Map

processes so that the I/O limit s is respected
– We put a limit s on the amount of input or output that

any one process can have. s could be:
• What fits in main memory
• What fits on local disk

• With proper indexes, computation cost is linear in
the input + output size
– So computation cost is like comm. cost

34

Conclusion:

• We have seen:
• Map-reduce programming in Java
• Map reduce programming in other languages
• Implementation details:

• Job and tasks
• Shuffle and sort

References:
• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd edition. - Cambridge University

Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

