CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:

e Qutline:
— HDFS — Motivation
— HDFS — User commands
— HDFS — System architecture
— HDFS — Implementation details

Hadoop Map Reduce

O Provides:
O Automatic parallelization and Distribution
Fault Tolerance
Methods for interfacing with HDFS for colocation of computation and storage of output.
Status and Monitoring tools
APl in Java
Ability to define the mapper and reducer in many languages through Hadoop streaming.

(N Ry iy Wy

What is Hadoop ?

J A scalable fault-tolerant distributed system for data storage and processing.

(1 Core Hadoop:

1 Hadoop Distributed File System (HDFS)
(1 Hadoop YARN: Job Scheduling and Cluster Resource Management
(J Hadoop Map Reduce: Framework for distributed data processing.

[Open Source system with large community support.
https://hadoop.apache.org/

HDFS

What's HDFS

 HDFS is a distributed file system that is fault tolerant, scalable
and extremely easy to expand.

 HDFS is the primary distributed storage for Hadoop
applications.

 HDFS provides interfaces for applications to move themselves
closer to data.

 HDFS is designed to ‘just work’, however a working knowledge
helps in diagnostics and improvements.

HDFS

J Design Assumptions
O Hardware failure is the norm.
O Streaming data access.
1 Write once, read many times.
O High throughput, not low latency.
 Large datasets.

[Characteristics:
O Performs best with modest number of large files

O Optimized for streaming reads
 Layer on top of native file system.

HDFS

 Data is organized into file and directories.
[Files are divided into blocks and distributed to nodes.

[Block placement is known at the time of read
O Computation moved to same node.

1 Replication is used for:
U Speed

1 Fault tolerance
O Self healing.

Components of HDFS

There are two (and a half) types of machines in a HDFS cluster

* NameNode :—is the heart of an HDFS filesystem, it maintains
and manages the file system metadata. E.g; what blocks make
up a file, and on which datanodes those blocks are stored.

e DataNode :- where HDFS stores the actual data, there are
usually quite a few of these.

HDFS Architecture

/ fsimage

Metadata (name, replicas, block_id)
/users/pkothuri/data/partlo, r:3,{1,3,5}
Jusers/pkothuri/data/part}1, r:2, {2,4}

Name Node <

Secondary
Name Node

v

HDFS Client

F 3
\ 4

namespace backup

N

Data Node Data Node Data Node Data Node Data Node

A A A y

local disks local disks local disks local disks local disks

HDFS - User Commands (dfs)

List directory contents

hdfs dfs -1s
hdfs dfs -1s /
hdfs dfs -1s -R /var

Display the disk space used by files

hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS - User Commands (dfs)
Copy data to HDFS

hdfs dfs -mkdir tdata

hdfs dfs -1s

hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -1s -R

Copy the file back to local filesystem

cd tutorials/data/
hdfs dfs —-copyToLocal tdata/geneva.csv geneva.csv.hdfs
mdbsum geneva.csv geneva.csv.hdfs

HDFS - User Commands (acls)
List acl for a file

hdfs dfs -getfacl tdata/geneva.csv

List the file statistics — (%r — replication factor)

hdfs dfs -stat "%r" tdata/geneva.csv

Write to hdfs reading from stdin

echo "blah blah blah"™ | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -1s —-R
hdfs dfs -cat tdataset/tfile.txt

Goals of HDFS

Very Large Distributed File System

— 10K nodes, 100 million files, 10 PB

Assumes Commodity Hardware

— Files are replicated to handle hardware failure
— Detect failures and recovers from them
Optimized for Batch Processing

— Data locations exposed so that computations can move to where data
resides

— Provides very high aggregate bandwidth
User Space, runs on heterogeneous OS

Distributed File System
« Single Namespace for entire cluster
« Data Coherency
— Write-once-read-many access model
— Client can only append to existing files
* Files are broken up into blocks
— Typically 128 MB block size
— Each block replicated on multiple DataNodes
* Intelligent Client
— Client can find location of blocks
— Client accesses data directly from DataNode

NameNode Metadata

Meta-data in Memory

— The entire metadata is in main memory

— No demand paging of meta-data

Types of Metadata

— List of files

— List of Blocks for each file

— List of DataNodes for each block

— File attributes, e.g creation time, replication factor
A Transaction Log

— Records file creations, file deletions. etc

DataNode

A Block Server

— Stores data in the local file system (e.g. ext3)

— Stores meta-data of a block (e.g. CRC)

— Serves data and meta-data to Clients
 Block Report

— Periodically sends a report of all existing blocks to the NameNode
« Facilitates Pipelining of Data

— Forwards data to other specified DataNodes

HDFS Architecture

Metadata (Name, replicas, ...):

/homeffoo/data, 3, ...
Metadata ops Namenode
Blockops
Read Datanodes Datanodes
- | | 1 =
- " - Replication - -
“IBlocks
P
- ' \/ Y
Rack 1 vt Rack 2

HDFS read client

; Distributed 1
FileSystem
dient :

client node

) FSData
: InputStream
client JVM :

2: get block locations

NameNode

DataNode DataNode

datanode datanode

Source: Hadoop: The Definitive Guide

HDFS write Client

) FSData
: OutputStream
client JUM :

A

: Distributed -+
_ FileSystem 1
dient : 1

dient node

4: write packet 5: ack packet

v

Pipeline of DataNode
datanodes

2: create

NameNode

DataNode DataNode
datanode datanode datanode
4

Source: Hadoop: The Definitive Guide

Block Placement

Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed

Clients read from nearest replica

Would like to make this policy pluggable

NameNode Failure

« A single point of failure

 Transaction Log stored in multiple directories

— A directory on the local file system
— A directory on a remote file system (NFS/CIFS)

 Need to develop a real HA solution

Data Pipelining

Client retrieves a list of DataNodes on which to place replicas of a block

Client writes block to the first DataNode

The first DataNode forwards the data to the next DataNode in the Pipeline

When all replicas are written, the Client moves on to write the next block in
file

Conclusion:

e We have seen:
e The structure of HDFS.
e The shell commands.

 The architecture of HDFS system.

* Internal functioning of HDFS.

24

References:

» Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2" edition. - Cambridge University
Press. http://www.mmds.org/

e Tom White. Hadoop: The definitive Guide. Oreilly Press.

25

http://www.mmds.org/

