
CS60021: Scalable Data Mining

Sourangshu Bhattacharya



In this Lecture:
• Outline:
– HDFS – Motivation
– HDFS – User commands
– HDFS – System architecture
– HDFS – Implementation details

Sourangshu Bhattacharya
Computer Science and Engg.



Hadoop Map Reduce
q Provides:

q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.



What is Hadoop  ?

q A scalable fault-tolerant distributed system for data storage and processing.

q Core Hadoop:
q Hadoop Distributed File System (HDFS)
q Hadoop YARN: Job Scheduling and Cluster Resource Management
q Hadoop Map Reduce: Framework for distributed data processing.

q Open Source system with large community support.
https://hadoop.apache.org/  



HDFS



What’s HDFS
• HDFS is a distributed file system that is fault tolerant, scalable 

and extremely easy to expand.
• HDFS is the primary distributed storage for Hadoop 

applications.
• HDFS provides interfaces for applications to move themselves 

closer to data.
• HDFS is designed to ‘just work’, however a working knowledge 

helps in diagnostics and improvements.

6



HDFS
q Design Assumptions

q Hardware failure is the norm.
q Streaming data access.
q Write once, read many times.
q High throughput, not low latency.
q Large datasets.

q Characteristics:
q Performs best with modest number of large files
q Optimized for streaming reads
q Layer on top of native file system.



HDFS
q Data is organized into file and directories.
q Files are divided into blocks and distributed to nodes.
q Block placement is known at the time of read

q Computation moved to same node.

q Replication is used for:
q Speed
q Fault tolerance
q Self healing.



Components of HDFS

There are two (and a half) types of machines in a HDFS cluster

• NameNode :– is the heart of an HDFS filesystem,  it maintains 
and manages the file system metadata. E.g; what blocks make 
up a file, and on which datanodes those blocks are stored.

• DataNode :- where HDFS stores the actual data, there are 
usually quite a few of these.



HDFS Architecture



HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files

hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/



HDFS – User Commands (dfs)
Copy data to HDFS

Copy the file back to local filesystem

hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs



HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt



Goals of HDFS
• Very Large Distributed File System

– 10K nodes, 100 million files, 10 PB
• Assumes Commodity Hardware

– Files are replicated to handle hardware failure
– Detect failures and recovers from them

• Optimized for Batch Processing
– Data locations exposed so that computations can move to where data 
resides
– Provides very high aggregate bandwidth

• User Space, runs on heterogeneous OS 



Distributed File System
• Single Namespace for entire cluster
• Data Coherency

– Write-once-read-many access model
– Client can only append to existing files 

• Files are broken up into blocks
– Typically 128 MB block size
– Each block replicated on multiple DataNodes

• Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode



NameNode Metadata
• Meta-data in Memory

– The entire metadata is in main memory
– No demand paging of meta-data

• Types of Metadata
– List of files
– List of Blocks for each file
– List of DataNodes for each block
– File attributes, e.g creation time, replication factor

• A Transaction Log
– Records file creations, file deletions. etc



DataNode
• A Block Server

– Stores data in the local file system (e.g. ext3)
– Stores meta-data of a block (e.g. CRC)
– Serves data and meta-data to Clients

• Block Report
– Periodically sends a report of all existing blocks to the NameNode

• Facilitates Pipelining of Data
– Forwards data to other specified DataNodes





HDFS read client

Source: Hadoop: The Definitive Guide



HDFS write Client

Source: Hadoop: The Definitive Guide



Block Placement
• Current Strategy

-- One replica on local node
-- Second replica on a remote rack
-- Third replica on same remote rack
-- Additional replicas are randomly placed

• Clients read from nearest replica

• Would like to make this policy pluggable



NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system
– A directory on a remote file system (NFS/CIFS)

• Need to develop a real HA solution



Data Pipelining

• Client retrieves a list of DataNodes on which to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the next DataNode in the Pipeline

• When all replicas are written, the Client moves on to write the next block in 
file



24

Sourangshu Bhattacharya
Computer Science and Engg.

Conclusion:

• We have seen:
• The structure of HDFS.
• The shell commands.
• The architecture of HDFS system.
• Internal functioning of HDFS.



25

Sourangshu Bhattacharya
Computer Science and Engg.

References:
• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd edition.  - Cambridge University 

Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

