
CS60021: Scalable Data Mining

Sourangshu Bhattacharya

In this Lecture:
• Outline:

– What is Big Data?
– Issues with Big Data
– What is Hadoop ?
– What is Map Reduce ?
– Example Map Reduce program.

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB
• 1 computer reads 30-35 MB/sec from disk

– ~4 months to read the web
• ~1,000 hard drives to store the web
• Takes even more to do something useful

with the data!
• Today, a standard architecture for such problems is emerging:

– Cluster of commodity Linux nodes
– Commodity network (ethernet) to connect them

3

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

4

Large-scale Computing
• Large-scale computing for data mining

problems on commodity hardware
• Challenges:

– How do you distribute computation?
– How can we make it easy to write distributed programs?
– Machines fail:

• One server may stay up 3 years (1,000 days)
• If you have 1,000 servers, expect to loose 1/day
• People estimated Google had ~1M machines in 2011

– 1,000 machines fail every day!

5

Big Data Challenges
q Scalability: processing should scale with increase in data.
q Fault Tolerance: function in presence of hardware failure
q Cost Effective: should run on commodity hardware
q Ease of use: programs should be small
q Flexibility: able to process unstructured data

q Solution: Map Reduce !

Idea and Solution
• Issue: Copying data over a network takes time
• Idea:

– Bring computation close to the data
– Store files multiple times for reliability

• Map-reduce addresses these problems
– Elegant way to work with big data
– Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS
– Programming model

• Map-Reduce

7

Storage Infrastructure
• Problem:

– If nodes fail, how to store data persistently?
• Answer:

– Distributed File System:
• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
– Huge files (100s of GB to TB)
– Data is rarely updated in place
– Reads and appends are common

8

What is Hadoop ?
q A scalable fault-tolerant distributed system for data storage and processing.

q Core Hadoop:
q Hadoop Distributed File System (HDFS)
q Hadoop YARN: Job Scheduling and Cluster Resource Management
q Hadoop Map Reduce: Framework for distributed data processing.

q Open Source system with large community support.
https://hadoop.apache.org/

What is Map Reduce ?
q Method for distributing a task across multiple servers.

q Proposed by Dean and Ghemawat, 2004.

q Consists of two developer created phases:

q Map

q Reduce

q In between Map and Reduce is the Shuffle and Sort phase.

q User is responsible for casting the problem into map – reduce framework.

q Multiple map-reduce jobs can be “chained”.

Programming Model: MapReduce

Warm-up task:
• We have a huge text document

• Count the number of times each
distinct word appears in the file

• Sample application:
– Analyze web server logs to find popular URLs

11

Task: Word Count

Case 1:
– File too large for memory, but all <word, count> pairs fit in memory

Case 2:
• Count occurrences of words:

– words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

• Case 2 captures the essence of MapReduce
– Great thing is that it is naturally parallelizable

12

MapReduce: Overview

• Sequentially read a lot of data
• Map:

– Extract something you care about
• Group by key: Sort and Shuffle
• Reduce:

– Aggregate, summarize, filter or transform
• Write the result

Outline stays the same, Map and Reduce
change to fit the problem

13

MapReduce: The Map Step

vk

k v

k v
map

vk

vk

…

k v
map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

14

MapReduce: The Reduce Step

k v

…

k v

k v

k v

Intermediate
key-value pairs

Group
by key

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

More Specifically
• Input: a set of key-value pairs
• Programmer specifies two methods:

– Map(k, v) ® <k’, v’>*
• Takes a key-value pair and outputs a set of key-value pairs

– E.g., key is the filename, value is a single line in the file
• There is one Map call for every (k,v) pair

– Reduce(k’, <v’>*) ® <k’, v’’>*
• All values v’ with same key k’ are reduced together

and processed in v’ order
• There is one Reduce function call per unique key k’

MapReduce: Word Counting

The crew of the space
shuttle Endeavor recently
returned to Earth as
ambassadors, harbingers
of a new era of space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step
in a long-term space-
based man/mache
partnership. '"The work
we're doing now -- the
robotics we're doing -- is
what we're going to need
……………………..

Big document

(The, 1)
(crew, 1)

(of, 1)
(the, 1)

(space, 1)
(shuttle, 1)

(Endeavor, 1)
(recently, 1)

….

(crew, 1)
(crew, 1)
(space, 1)

(the, 1)
(the, 1)
(the, 1)

(shuttle, 1)
(recently, 1)

…

(crew, 2)
(space, 1)

(the, 3)
(shuttle, 1)
(recently, 1)

…

MAP:
Read input and

produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

Reduce:
Collect all values
belonging to the
key and output

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value)(key, value)

Se
qu

en
tia

lly
 re

ad
 th

e
da

ta
On

ly

se
qu

en
tia

l
 re

ad
s

Word Count Using MapReduce
map(key, value):
// key: document name; value: text of the document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)

Map Phase
q User writes the mapper method.
q Input is an unstructured record:

q E.g. A row of RDBMS table,
q A line of a text file, etc

q Output is a set of records of the form: <key, value>
q Both key and value can be anything, e.g. text, number, etc.
q E.g. for row of RDBMS table: <column id, value>
q Line of text file: <word, count>

Shuffle/Sort phase
q Shuffle phase ensures that all the mapper output records with the same key value, goes to the same reducer.
q Sort ensures that among the records received at each reducer, records with same key arrives together.

Reduce phase
q Reducer is a user defined function which processes mapper output records with some of the keys output by

mapper.
q Input is of the form <key, value>

q All records having same key arrive together.

q Output is a set of records of the form <key, value>
q Key is not important

Parallel picture

Example
Word Count: Count the total no. of occurrences of each word

Map Reduce - Example

What was the max/min temperature for the last century ?

Hadoop Map Reduce
q Provides:

q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.

26

References:
• Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2nd

edition. - Cambridge University Press. http://www.mmds.org/

• Tom White. Hadoop: The definitive Guide. Oreilly Press.

http://www.mmds.org/

