
CS60021: Scalable Data Mining

Sourangshu Bhattacharya



In this Lecture:
• Outline:

– What is Big Data?
– Issues with Big Data
– What is Hadoop ?
– What is Map Reduce ?
– Example Map Reduce program.



Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB
• 1 computer reads 30-35 MB/sec from disk

– ~4 months to read the web
• ~1,000 hard drives to store the web
• Takes even more to do something useful 

with the data!
• Today, a standard architecture for such problems is emerging:

– Cluster of commodity Linux nodes
– Commodity network (ethernet) to connect them
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Cluster Architecture
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Large-scale Computing
• Large-scale computing for data mining 

problems on commodity hardware
• Challenges:

– How do you distribute computation?
– How can we make it easy to write distributed programs?
– Machines fail:

• One server may stay up 3 years (1,000 days)
• If you have 1,000 servers, expect to loose 1/day
• People estimated Google had ~1M machines in 2011

– 1,000 machines fail every day!
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Big Data Challenges
q Scalability: processing should scale with increase in data.
q Fault Tolerance: function in presence of hardware failure
q Cost Effective: should run on commodity hardware
q Ease of use: programs should be small
q Flexibility: able to process unstructured data

q Solution: Map Reduce !



Idea and Solution
• Issue: Copying data over a network takes time
• Idea:

– Bring computation close to the data
– Store files multiple times for reliability

• Map-reduce addresses these problems
– Elegant way to work with big data
– Storage Infrastructure – File system

• Google: GFS. Hadoop: HDFS
– Programming model

• Map-Reduce
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Storage Infrastructure
• Problem:

– If nodes fail, how to store data persistently? 
• Answer:

– Distributed File System:
• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
– Huge files (100s of GB to TB)
– Data is rarely updated in place
– Reads and appends are common
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What is Hadoop  ?
q A scalable fault-tolerant distributed system for data storage and processing.

q Core Hadoop:
q Hadoop Distributed File System (HDFS)
q Hadoop YARN: Job Scheduling and Cluster Resource Management
q Hadoop Map Reduce: Framework for distributed data processing.

q Open Source system with large community support.
https://hadoop.apache.org/  



What is Map Reduce ?
q Method for distributing a task across multiple servers.

q Proposed by Dean and Ghemawat,  2004.

q Consists of two developer created phases:

q Map

q Reduce

q In between Map and Reduce is the Shuffle and Sort phase.

q User is responsible for casting the problem into map – reduce framework.

q Multiple map-reduce jobs can be “chained”.



Programming Model: MapReduce

Warm-up task:
• We have a huge text document

• Count the number of times each 
distinct word appears in the file

• Sample application: 
– Analyze web server logs to find popular URLs
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Task: Word Count

Case 1:
– File too large for memory, but all <word, count> pairs fit in memory

Case 2:
• Count occurrences of words:

– words(doc.txt) | sort | uniq -c
• where words takes a file and outputs the words in it, one per a line

• Case 2 captures the essence of MapReduce
– Great thing is that it is naturally parallelizable
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MapReduce: Overview

• Sequentially read a lot of data
• Map:

– Extract something you care about
• Group by key: Sort and Shuffle
• Reduce:

– Aggregate, summarize, filter or transform
• Write the result

Outline stays the same, Map and Reduce 
change to fit the problem
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MapReduce: The Map Step
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MapReduce: The Reduce Step
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More Specifically
• Input: a set of key-value pairs
• Programmer specifies two methods:

– Map(k, v) ® <k’, v’>*
• Takes a key-value pair and outputs a set of key-value pairs

– E.g., key is the filename, value is a single line in the file
• There is one Map call for every (k,v) pair

– Reduce(k’, <v’>*) ® <k’, v’’>*
• All values v’ with same key k’ are reduced together 

and processed in v’ order
• There is one Reduce function call per unique key k’



MapReduce: Word Counting
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Word Count Using MapReduce
map(key, value):
// key: document name; value: text of the document

for each word w in value:
emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts

result = 0
for each count v in values:

result += v
emit(key, result)



Map Phase
q User writes the mapper method.
q Input is an unstructured record:

q E.g. A row of RDBMS table,
q A line of a text file, etc

q Output is a set of records of the form: <key, value>
q Both key and value can be anything, e.g. text, number, etc.
q E.g. for row of RDBMS table: <column id, value>
q Line of text file: <word, count>



Shuffle/Sort phase
q Shuffle phase ensures that all the mapper output records with the same key value, goes to the same reducer.
q Sort ensures that among the records received at each reducer, records with same key arrives together.



Reduce phase
q Reducer is a user defined function which processes mapper output records with some of the keys output by 

mapper.
q Input is of the form <key, value>

q All records having same key arrive together.

q Output is a set of records of the form <key, value>
q Key is not important



Parallel picture



Example
Word Count: Count the total no. of occurrences of each word



Map Reduce - Example

What was the max/min temperature for the last  century ?



Hadoop Map Reduce
q Provides:

q Automatic parallelization and Distribution
q Fault Tolerance
q Methods for interfacing with HDFS for colocation of computation and storage of output.
q Status and Monitoring tools
q API in Java
q Ability to define the mapper and reducer in many languages through Hadoop streaming.
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