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Filtering Data Streams



Filtering Data Streams

Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream arein $

Obvious solution: Hash table

— But suppose we do not have enough memory to
store all of S in a hash table

* E.g., we might be processing millions of filters
on the same stream
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Applications

 Example: Email spam filtering
— We know 1 billion “good” email addresses
— If an email comes from one of these, it is NOT spam

* Publish-subscribe systems
— You are collecting lots of messages (news articles)
— People express interest in certain sets of keywords
— Determine whether each message matches user’s interest
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First Cut Solution (1)

Given a set of keys S that we want to filter
Create a bit array B of n bits, initially all Os
Choose a hash function h with range [0,n)

Hash each member of s& S to one of
n buckets, and set that bitto 1, i.e., B[h(s)]=1

Hash each element a of the stream and
output only those that hash to bit that was set
to1l

— Output a if B[h(a)] ==
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First Cut Solution (2)
\ Output the item since it may be in S.

ltem hashes to a bucket that at least

one of the items in S hashed to.

ltem Filter

Hash
func h

N
0010001011000 Bit array B

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

* Creates false positives but no false negatives

— If the item is in S we surely output it, if not we may
Sti ” Output it J. Leskovec, A. Rajaraman, J. Ullman:
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First Cut Solution (3)

® |S| =1 billion email addresses
|B|= 1GB = 8 billion bits

® |f the email address isin S, then it surely hashes
to a bucket that has the big set to 1,
so it always gets through (no false negatives)

m Approximately 1/8 of the bits are set to 1, so
about 1/8t of the addresses not in S get through
to the output (false positives)

= Actually, less than 1/8t", because more than one
address might hash to the same bit
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Analysis: Throwing Darts (1)

 More accurate analysis for the number of
false positives

* Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

* In our case:
— Targets = bits or buckets
— Darts = hash values of items

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



Analysis: Throwing Darts (2)

 We have m darts, n targets

 What is the probability that a target gets at

least one dart?
Equals 1/e

35 N —>00 Eﬂuivalent
~a %
n(m/n)
1-1(1-=1/n
(7 X ) \ 1 - e_mln

Probability some \

target X not hit Probability at

by a dart least one dart
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Analysis: Throwing Darts (3)

* Fraction of 1s in the array B =
= probability of false positive =1 — e™/n

* Example: 10° darts, 8-10° targets
— Fractionof1sinB=1-e18=0.1175

e Compare with our earlier estimate: 1/8 = 0.125
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Bloom Filter

Consider: |S| =m, |B| =n
Use k independent hash functions h,,..., h,
Initialization:

— Set B to all Os

— Hash each element s&S using each hash function h,,
set B[h(s)] =1 (foreachi=1,.., k) (note: we have a

Run-time' single array B!)

— When a stream element with key x arrives
* If Blh(x)] =1foralli=1,..., kthen declare that xisin §

— That is, x hashes to a bucket set to 1 for every hash function h,(x)
* Otherwise discard the element x
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Bloom Filter -- Analysis

 What fraction of the bit vector B are 1s?
— Throwing k-m darts at n targets
— So fraction of 1s is (1 — e*km/n)

* But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

¢ So, false positive probability = (1 — e*m/n)k
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Bloom filter analysis
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Bloom Filter — Analysis (2)

02—

* m =1 billion, n = 8 billion
—k=1:(1-e18)=0.1175 s
—k=2:(1-e%42=0.0493 2 |

é" o

* What happens as we S el

keep increasing k? & ool
L ol

° ”Optimal” value Of k n/m |I1(2) Number of hash functions, k
— In our case: Optimal k=81n(2) =5.54=6
* Erroratk=6:(1—e1/%)2=0.0235

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 14
www.mmds.org



Bloom Filter: Wrap-up
* Bloom filters guarantee no false negatives,
and use limited memory

— Great for pre-processing before more
expensive checks

e Suitable for hardware implementation
— Hash function computations can be parallelized

* |sit better to have 1 big B or k small Bs?
— It is the same: (1 — e*m/n)k ys_ (1 — e™/(n/k))k
— But keeping 1 big B is simpler
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(2) Counting Distinct Elements



Counting Distinct Elements

* Problem:

— Data stream consists of a universe of elements
chosen from a set of size N

— Maintain a count of the number of distinct
elements seen so far

* Obvious approach:
Maintain the set of elements seen so far

— That is, keep a hash table of all the distinct
elements seen so far



Applications

 How many different words are found among
the Web pages being crawled at a site?

— Unusually low or high numbers could indicate
artificial pages (spam?)

* How many different Web pages does each
customer request in a week?

* How many distinct products have we sold in
the last week?
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Using Small Storage

* Real problem: What if we do not have space
to maintain the set of elements seen so far?

e Estimate the count in an unbiased way

* Accept that the count may have a little error,
but limit the probability that the error is large
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Flajolet-Martin Approach

Pick a hash function h that maps each of the N
elements to at least log, N bits

For each stream element a, let r(a) be the
number of trailing Os in h(a)

— r(a) = position of first 1 counting from the right
e E.g.,say h(a) =12, then 12is 1100 in binary, so r(a) = 2

Record R = the maximum r(a) seen
— R =max, r(a), over all the items a seen so far

Estimated number of distinct elements = 2~
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Why It Works: Intuition

* Very very rough and heuristic intuition why
Flajolet-Martin works:

— h(a) hashes a with equal prob. to any of N values

— Then h(a) is a sequence of log, N bits,
where 27 fraction of all as have a tail of r zeros
e About 50% of as hash to ***0
e About 25% of as hash to **00

* So, if we saw the longest tail of r=2 (i.e., item hash
ending ¥*100) then we have probably seen
about 4 distinct items so far

— So, it takes to hash about 2" items before we
see one with zero-suffix of length r
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Why It Works: More formally

* Now we show why Flajolet-Martin works

* Formally, we will show that probability of
finding a tail of r zeros:
— Goes to 1if m>21r
— Goes to 0 if m«<2Tr
where m is the number of distinct elements
seen so far in the stream

* Thus, 2% will almost always be around m!
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Why It Works: More formally

 What is the probability that a given h(a) ends
in at least r zeros is 27

— h(a) hashes elements uniformly at random

— Probability that a random number ends in
at least r zeros is 27

* Then, the probability of NOT seeing a tail
of length r among m elements:
f

1-2T—7r)Tm
I

Prob. all end in Prob. that given h(a) ends
fewer than r zeros. in fewer than r zeros
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Why It Works: More formally

e Note: (1-27)" =(1-27")" ") =™
* Prob. of NOT finding a tail of length r is:
— If m << 2", then prob. tends to 1
c(1-27")'=e™ =1 asm/2—0
* So, the probability of finding a tail of length r tends to 0

— If m>> 2", then prob. tendsto 0
*(1-27)"=e™ =0 asm/2—>w
* So, the probability of finding a tail of length r tends to 1

* Thus, 2f will almost always be around m!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 24
www.mmds.org



Why It Doesn’t Work

* E[2R] is actually infinite
— Probability halves when R — R+1, but value doubles

 Workaround involves using many hash
functions h;and getting many samples of R,

* How are samples R; combined?
— Average? What if one very large value 2TRIZ ?
— Median? All estimates are a power of 2

— Solution:
* Partition your samples into small groups
* Take the median of groups
* Then take the average of the medians
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(3) Computing Moments



Generalization: Moments

* Suppose a stream has elements chosen
from a set A of N values

* Let m; be the number of times value i occurs
in the stream

e The ktr moment is

D e m)'
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Special Cases

D ea(m)’

* 0'"moment = number of distinct elements
— The problem just considered

e 1s* moment = count of the numbers of
elements = length of the stream

— Easy to compute

* 2"d moment = surprise number S =
a measure of how uneven the distribution is
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Example: Surprise Number

Stream of length 100
11 distinct values

ltem counts: 10,9,9,9,9,9,9,9,9,9,9
Surprise $ =910

ltem counts: 90,1,1,1,1,1,1,1,1,1,1
Surprise $ = 8,110
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AMS method

AMS method works for all moments
Gives an unbiased estimate.

We will just concentrate on the 2" moment S.
We pick and keep track of many variables X:

— For each variable X, store X.el and X.val
» X.el corresponds to the item |
e X.val corresponds to the count of item |

— Note this requires a count in main memory, so
number of Xs is limited

Our goal is to compute S =2. m?



One random variable (X)

e How to set X.val and X.el ?
— Assume stream has length n (we relax this later)

— Pick some random time t (t<n) to start, so that any time is
equally likely

— Let at time t the stream have itemi. We set X.el =i

— Then we maintain count ¢ (X.val = c) of the number of is in
the stream starting from the chosen time t

* Then the estimate of the 2" moment ( 2, m?) is:
S=f(X)=n(2c-1)

— Note, we will keep track of multiple Xs, (X, X,,... X,) and
our final estimate will be:

5 = 1/k 5, f(X)



Expectation Analysis

Count: 1T 2 3 m,
—_— — — — = - o >
Stream: a a b b b a b a

* 2nd momentisS=Z m?

* C, - number of times item at time t appears
from time t onwards (c,=m_, ¢,=m_-1, c;=m,)

o E[f(X)]=1/n%,._"n (2c,- 1) et

item i in the stream

=1/nz'n(1 +3+5+ "'+2mi-1) (we are assuming

stream has length n)

/ \ Time t when Time t when

Group times Time twhen the penultimate the firstiis

the lastiis : . _ —
by the value (c - iis seen (c,=2) seen (c,=m,)
seen Seen Ctj.{lskovec, A. Rajaraman, J. Ullman:
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Higher-Order Moments

* For estimating kth moment we essentially use
the same algorithm but change the estimate:
— For k=2 we used n (2:c-1)
For k=3 we use: n (3:¢2 - 3c + 1) (where c=X.val)
e Why?
— For k=2: Remember we had (1+3+5+-+(2m.-1)) and
we showed terms 2c-1 (for c=1,...,m) sum to m?
—2c-1=c%*-(c-1)?
— Fork=3:¢3-(c-1)?=3c?-3c + 1
* Generally: Estimate = n (c*— (c-1)%)
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Combining Samples

* In practice:
— Compute f(X) =n(2 c- 1) for
as many variables X as you can fit in memory
— Average them in groups

— Take median of averages

* Problem: Streams never end

— We assumed there was a number n,
the number of positions in the stream

— But real streams go on forever, son is
a variable — the number of inputs seen so far
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Streams Never End: Fixups

(1) The variables X have n as a factor —
keep n separately; just hold the count in X

(2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:
— Objective: Each starting time t is selected with
probability k/n
— Solution: (fixed-size sampling!)
* Choose the first k times for k variables

* When the nth element arrives (n > k), choose it with
probability k/n

* If you choose it, throw one of the previously stored variables
X out, with equal-prebability



AMS ALGORITHM USING SKETCHES



Generalization of AMS Algorithm

Stream of pair (i,c), i €{1,---,U}and cis
positive integer.

x[i] = x[i] + ¢ for each update
Join size: x.y = £;_,Y (x[i] y[i])
Pth Moment: Fp(x) = Z._,Y x[i]?

lx — yll2 =+ F2(x — y).

h:{1,---U} = {+1,-1}



Generalization of AMS Algorithm

UPDATE(i, c, 2) ESTIMATEJS(x, y)
Input: item i, count c, sketch z Input: sketch x, sketch y

1: for j =1to w do Output: estimate of x - y

2: fork=1toddo 1: for j=1tow do

3: Z[jllkl+=hjk@) *c 2: avg[jl1=0;

3: fork=1toddo

ESTIMATE F>(z) 4 avgljl+=x[j1k] x y[jl[k]/w;
Input: sketch z 5: Return(median(avg))

1: Return ESTIMATEJS(z, 2)

Fig. 1 AMS algorithm for estimating join and self-join size



Generalization of AMS Algorithm

Lemma 1 E(Z?) = F,(x)

(Zh(z)x[z]) )

U
— (Z (z)zx[z]z)-f—E Z 2h(@)h(j)x[i]x[j]
i=l1

I<i<j<U

Proof

U
> _xli +0=F(x).
i=1



Generalization of AMS Algorithm

* Var(Z2) s 2F,(x)?

E(z*) —E(2%)’

(o) )- (o)

Var(Z?)



Generalization of AMS Algorithm

U
=E((Zh(i)4x[i]4+ Y. 6h)’h()x[iTx[jT

i=1 I<i<j<U

+ Y 12hG)*h()h()x[iTx[j1x[K]
LiFjF#k
+ ) 4R (h()x[iPxLj]

I<i#j<U

+ Y 12G)R()HAEADx[i]x]] ]x[k]x[l])

I<i<j<k<I<U

(Zx[z] + Y 2x[i] x[;])

I<i<j<U



Generalization of AMS Algorithm

U
= xlil*+ ) 6x[ilx[j]?
i=1

I<i<j<U

U
—(Zx[i]4+ > 2x[i]2x[j]2)
i=1

l<i<j<U

=4 ) x[i]zx[j]2>§2F22.

1<i<j<U



Generalization of AMS Algorithm

Fact 1 (Variance Reduction) Let X; be independent and identically distributed ran-
dom variables. Then

Var(z %) = %Var(Xl).

i=1

Fact 2 (The Chebyshev Inequality) Given a random variable X,

Var(X)

Pr|X — E(X)| >k] < o




Generalization of AMS Algorithm

Theorem 1 An (e, 8)-approximation of F,, the self-join size, can be computed in
space O(EL2 log 1/8) machine words in the streaming model. Each update takes time

O (5 log1/8).

Proof Applying the Chebyshev inequality to the average of w = :—g copies of the

estimate Z generates a new estimate Y such that

Var(Y) Var(Z)  2F; 1
€2F?  ce2F}  (16/e2)e?F} 8

Pr{lY — B2l <eR] <



Generalization of AMS Algorithm

Fact 3 (Application of Chernoff Bounds) Let R be a range of values R =

[Rmin..Rmax], and let Y; be d = 4log1/8 independent and identically distributed
random variable such that Pr[Y; ¢ R] < %. Then

Pr[(medianf!=1 Y;) ¢ R] <$,

that is, if there is constant probability that each Y; falls within the desired range R,

then taking the median of O(log1/8) copies of Y; reduces the failure probability
to 8.

Hence, applying the Chernoff bound result from Fact 3 to the median of 4log1/4
copies of the average Y gives the probability of the results being outside the range
of e F, from F, as §. The space required is that to maintain O( e% log 1/8) copies
of the original estimate. Each of these requires a counter and a 4-wise independent
hash function, both of which can be represented with a constant number of machine
words under the standard RAM model. [



Join size estimation

Lemma 3 Let Z, be an entry of a sketch computed for the vector x, and let Z, be
an entry of a sketch computer for y using the same hash function. The estimate is
correct in expectation, i.e.,E(Zy x Zy) =x - y.

Proof

U
E(Zx*Zy)=E(Zh(i>2x[i]y[i]+ 3 h(i)h(j)x[i]y[j])
i=l1

I<i#j<U

U
=Y x[ilyli]+0=x-y.
i=l1



Join size estimation

Var(Zx x Zy) < F2(x)F2(y).

Theorem 2 Using space ()(el2 log 1/8) space we can output an estimate of x - y so
that

Prl|(x - y) —est| < e/ 2(x) Fa(y)] > 1 — 6.



