CS60021: Scalable Data Mining

Stream Mining

Sourangshu Bhattacharya

Filtering Data Streams

Filtering Data Streams

Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream arein $

Obvious solution: Hash table

— But suppose we do not have enough memory to
store all of S in a hash table

* E.g., we might be processing millions of filters
on the same stream

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Applications

 Example: Email spam filtering
— We know 1 billion “good” email addresses
— If an email comes from one of these, it is NOT spam

* Publish-subscribe systems
— You are collecting lots of messages (news articles)
— People express interest in certain sets of keywords
— Determine whether each message matches user’s interest

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

First Cut Solution (1)

Given a set of keys S that we want to filter
Create a bit array B of n bits, initially all Os
Choose a hash function h with range [0,n)

Hash each member of s& S to one of
n buckets, and set that bitto 1, i.e., B[h(s)]=1

Hash each element a of the stream and
output only those that hash to bit that was set
to1l

— Output a if B[h(a)] ==

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 5
www.mmds.org

First Cut Solution (2)
\ Output the item since it may be in S.

ltem hashes to a bucket that at least

one of the items in S hashed to.

ltem Filter

Hash
func h

N
0010001011000 Bit array B

Drop the item.
It hashes to a bucket set
to 0 so it is surely not in S.

* Creates false positives but no false negatives

— If the item is in S we surely output it, if not we may
Sti ” Output it J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http:// 6
www.mmds.org

First Cut Solution (3)

® |S| =1 billion email addresses
|B|= 1GB = 8 billion bits

® |f the email address isin S, then it surely hashes
to a bucket that has the big set to 1,
so it always gets through (no false negatives)

m Approximately 1/8 of the bits are set to 1, so
about 1/8t of the addresses not in S get through
to the output (false positives)

= Actually, less than 1/8t", because more than one
address might hash to the same bit

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Analysis: Throwing Darts (1)

 More accurate analysis for the number of
false positives

* Consider: If we throw m darts into n equally
likely targets, what is the probability that
a target gets at least one dart?

* In our case:
— Targets = bits or buckets
— Darts = hash values of items

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Analysis: Throwing Darts (2)

 We have m darts, n targets

 What is the probability that a target gets at

least one dart?
Equals 1/e

35 N —>00 Eﬂuivalent
~a %
n(m/n)
1-1(1-=1/n
(7 X) \ 1 - e_mln

Probability some \

target X not hit Probability at

by a dart least one dart
J. Leskovec, A.Iﬂja]:aﬁata{rggblxwan:

Mining of Massive Datasets, http://
www.mmds.org

Analysis: Throwing Darts (3)

* Fraction of 1s in the array B =
= probability of false positive =1 — e™/n

* Example: 10° darts, 8-10° targets
— Fractionof1sinB=1-e18=0.1175

e Compare with our earlier estimate: 1/8 = 0.125

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

10

Bloom Filter

Consider: |S| =m, |B| =n
Use k independent hash functions h,,..., h,
Initialization:

— Set B to all Os

— Hash each element s&S using each hash function h,,
set B[h(s)] =1 (foreachi=1,.., k) (note: we have a

Run-time' single array B!)

— When a stream element with key x arrives
* If Blh(x)] =1foralli=1,..., kthen declare that xisin §

— That is, x hashes to a bucket set to 1 for every hash function h,(x)
* Otherwise discard the element x

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 11
www.mmds.org

Bloom Filter -- Analysis

 What fraction of the bit vector B are 1s?
— Throwing k-m darts at n targets
— So fraction of 1s is (1 — e*km/n)

* But we have k independent hash functions
and we only let the element x through if all k
hash element x to a bucket of value 1

¢ So, false positive probability = (1 — e*m/n)k

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

12

Bloom filter analysis

1.0

Pl i ol
nmmmn

= N

0.84 —

Prob. Of 0.6 1
false positive

0.4 -

0.2 A

0.0 A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Bloom Filter — Analysis (2)

02—

* m =1 billion, n = 8 billion
—k=1:(1-e18)=0.1175 s
—k=2:(1-e%42=0.0493 2 |

é" o

* What happens as we S el

keep increasing k? & ool
L ol

° ”Optimal” value Of k n/m |I1(2) Number of hash functions, k
— In our case: Optimal k=81n(2) =5.54=6
* Erroratk=6:(1—e1/%)2=0.0235

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 14
www.mmds.org

Bloom Filter: Wrap-up
* Bloom filters guarantee no false negatives,
and use limited memory

— Great for pre-processing before more
expensive checks

e Suitable for hardware implementation
— Hash function computations can be parallelized

* |sit better to have 1 big B or k small Bs?
— It is the same: (1 — e*m/n)k ys_ (1 — e™/(n/k))k
— But keeping 1 big B is simpler

Mining of Massive Datasets, http://
www.mmds.org

15

(2) Counting Distinct Elements

Counting Distinct Elements

* Problem:

— Data stream consists of a universe of elements
chosen from a set of size N

— Maintain a count of the number of distinct
elements seen so far

* Obvious approach:
Maintain the set of elements seen so far

— That is, keep a hash table of all the distinct
elements seen so far

Applications

 How many different words are found among
the Web pages being crawled at a site?

— Unusually low or high numbers could indicate
artificial pages (spam?)

* How many different Web pages does each
customer request in a week?

* How many distinct products have we sold in
the last week?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

18

Using Small Storage

* Real problem: What if we do not have space
to maintain the set of elements seen so far?

e Estimate the count in an unbiased way

* Accept that the count may have a little error,
but limit the probability that the error is large

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 19
www.mmds.org

Flajolet-Martin Approach

Pick a hash function h that maps each of the N
elements to at least log, N bits

For each stream element a, let r(a) be the
number of trailing Os in h(a)

— r(a) = position of first 1 counting from the right
e E.g.,say h(a) =12, then 12is 1100 in binary, so r(a) = 2

Record R = the maximum r(a) seen
— R =max, r(a), over all the items a seen so far

Estimated number of distinct elements = 2~

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 20
www.mmds.org

Why It Works: Intuition

* Very very rough and heuristic intuition why
Flajolet-Martin works:

— h(a) hashes a with equal prob. to any of N values

— Then h(a) is a sequence of log, N bits,
where 27 fraction of all as have a tail of r zeros
e About 50% of as hash to ***0
e About 25% of as hash to **00

* So, if we saw the longest tail of r=2 (i.e., item hash
ending ¥*100) then we have probably seen
about 4 distinct items so far

— So, it takes to hash about 2" items before we
see one with zero-suffix of length r

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 21
www.mmds.org

Why It Works: More formally

* Now we show why Flajolet-Martin works

* Formally, we will show that probability of
finding a tail of r zeros:
— Goes to 1if m>21r
— Goes to 0 if m«<2Tr
where m is the number of distinct elements
seen so far in the stream

* Thus, 2% will almost always be around m!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 22
www.mmds.org

Why It Works: More formally

 What is the probability that a given h(a) ends
in at least r zeros is 27

— h(a) hashes elements uniformly at random

— Probability that a random number ends in
at least r zeros is 27

* Then, the probability of NOT seeing a tail
of length r among m elements:
f

1-2T—7r)Tm
I

Prob. all end in Prob. that given h(a) ends
fewer than r zeros. in fewer than r zeros

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 23
www.mmds.org

Why It Works: More formally

e Note: (1-27)" =(1-27")" ") =™
* Prob. of NOT finding a tail of length r is:
— If m << 2", then prob. tends to 1
c(1-27")'=e™ =1 asm/2—0
* So, the probability of finding a tail of length r tends to 0

— If m>> 2", then prob. tendsto 0
*(1-27)"=e™ =0 asm/2—>w
* So, the probability of finding a tail of length r tends to 1

* Thus, 2f will almost always be around m!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 24
www.mmds.org

Why It Doesn’t Work

* E[2R] is actually infinite
— Probability halves when R — R+1, but value doubles

 Workaround involves using many hash
functions h;and getting many samples of R,

* How are samples R; combined?
— Average? What if one very large value 2TRIZ ?
— Median? All estimates are a power of 2

— Solution:
* Partition your samples into small groups
* Take the median of groups
* Then take the average of the medians

eskovec Rajaraman, J. Ul
Mining of Massive Datasets, http:// 25
www.mmds.org

(3) Computing Moments

Generalization: Moments

* Suppose a stream has elements chosen
from a set A of N values

* Let m; be the number of times value i occurs
in the stream

e The ktr moment is

D e m)'

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

27

Special Cases

D ea(m)’

* 0'"moment = number of distinct elements
— The problem just considered

e 1s* moment = count of the numbers of
elements = length of the stream

— Easy to compute

* 2"d moment = surprise number S =
a measure of how uneven the distribution is

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

28

Example: Surprise Number

Stream of length 100
11 distinct values

ltem counts: 10,9,9,9,9,9,9,9,9,9,9
Surprise $ =910

ltem counts: 90,1,1,1,1,1,1,1,1,1,1
Surprise $ = 8,110

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

29

AMS method

AMS method works for all moments
Gives an unbiased estimate.

We will just concentrate on the 2" moment S.
We pick and keep track of many variables X:

— For each variable X, store X.el and X.val
» X.el corresponds to the item |
e X.val corresponds to the count of item |

— Note this requires a count in main memory, so
number of Xs is limited

Our goal is to compute S =2. m?

One random variable (X)

e How to set X.val and X.el ?
— Assume stream has length n (we relax this later)

— Pick some random time t (t<n) to start, so that any time is
equally likely

— Let at time t the stream have itemi. We set X.el =i

— Then we maintain count ¢ (X.val = c) of the number of is in
the stream starting from the chosen time t

* Then the estimate of the 2" moment (2, m?) is:
S=f(X)=n(2c-1)

— Note, we will keep track of multiple Xs, (X, X,,... X,) and
our final estimate will be:

5 = 1/k 5, f(X)

Expectation Analysis

Count: 1T 2 3 m,
—_— — — — = - o >
Stream: a a b b b a b a

* 2nd momentisS=Z m?

* C, - number of times item at time t appears
from time t onwards (c,=m_, ¢,=m_-1, c;=m,)

o E[f(X)]=1/n%,._"n (2c,- 1) et

item i in the stream

=1/nz'n(1 +3+5+ "'+2mi-1) (we are assuming

stream has length n)

/ \ Time t when Time t when

Group times Time twhen the penultimate the firstiis

the lastiis : . _ —
by the value (c - iis seen (c,=2) seen (c,=m,)
seen Seen Ctj.{lskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 32

www.mmds.org

Higher-Order Moments

* For estimating kth moment we essentially use
the same algorithm but change the estimate:
— For k=2 we used n (2:c-1)
For k=3 we use: n (3:¢2 - 3c + 1) (where c=X.val)
e Why?
— For k=2: Remember we had (1+3+5+-+(2m.-1)) and
we showed terms 2c-1 (for c=1,...,m) sum to m?
—2c-1=c%*-(c-1)?
— Fork=3:¢3-(c-1)?=3c?-3c + 1
* Generally: Estimate = n (c*— (c-1)%)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 33
www.mmds.org

Combining Samples

* In practice:
— Compute f(X) =n(2 c- 1) for
as many variables X as you can fit in memory
— Average them in groups

— Take median of averages

* Problem: Streams never end

— We assumed there was a number n,
the number of positions in the stream

— But real streams go on forever, son is
a variable — the number of inputs seen so far

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

34

Streams Never End: Fixups

(1) The variables X have n as a factor —
keep n separately; just hold the count in X

(2) Suppose we can only store k counts.
We must throw some Xs out as time goes on:
— Objective: Each starting time t is selected with
probability k/n
— Solution: (fixed-size sampling!)
* Choose the first k times for k variables

* When the nth element arrives (n > k), choose it with
probability k/n

* If you choose it, throw one of the previously stored variables
X out, with equal-prebability

AMS ALGORITHM USING SKETCHES

Generalization of AMS Algorithm

Stream of pair (i,c), i €{1,---,U}and cis
positive integer.

x[i] = x[i] + ¢ for each update
Join size: x.y = £;_,Y (x[i] y[i])
Pth Moment: Fp(x) = Z._,Y x[i]?

lx — yll2 =+ F2(x — y).

h:{1,---U} = {+1,-1}

Generalization of AMS Algorithm

UPDATE(i, c, 2) ESTIMATEJS(x, y)
Input: item i, count c, sketch z Input: sketch x, sketch y

1: for j =1to w do Output: estimate of x - y

2: fork=1toddo 1: for j=1tow do

3: Z[jllkl+=hjk@) *c 2: avg[jl1=0;

3: fork=1toddo

ESTIMATE F>(z) 4 avgljl+=x[j1k] x y[jl[k]/w;
Input: sketch z 5: Return(median(avg))

1: Return ESTIMATEJS(z, 2)

Fig. 1 AMS algorithm for estimating join and self-join size

Generalization of AMS Algorithm

Lemma 1 E(Z?) = F,(x)

(Zh(z)x[z]))

U
— (Z (z)zx[z]z)-f—E Z 2h(@)h(j)x[i]x[j]
i=l1

I<i<j<U

Proof

U
> _xli +0=F(x).
i=1

Generalization of AMS Algorithm

* Var(Z2) s 2F,(x)?

E(z*) —E(2%)’

(o))- (o)

Var(Z?)

Generalization of AMS Algorithm

U
=E((Zh(i)4x[i]4+ Y. 6h)’h()x[iTx[jT

i=1 I<i<j<U

+ Y 12hG)*h()h()x[iTx[j1x[K]
LiFjF#k
+) 4R (h()x[iPxLj]

I<i#j<U

+ Y 12G)R()HAEADx[i]x]]]x[k]x[l])

I<i<j<k<I<U

(Zx[z] + Y 2x[i] x[;])

I<i<j<U

Generalization of AMS Algorithm

U
= xlil*+) 6x[ilx[j]?
i=1

I<i<j<U

U
—(Zx[i]4+ > 2x[i]2x[j]2)
i=1

l<i<j<U

=4) x[i]zx[j]2>§2F22.

1<i<j<U

Generalization of AMS Algorithm

Fact 1 (Variance Reduction) Let X; be independent and identically distributed ran-
dom variables. Then

Var(z %) = %Var(Xl).

i=1

Fact 2 (The Chebyshev Inequality) Given a random variable X,

Var(X)

Pr|X — E(X)| >k] < o

Generalization of AMS Algorithm

Theorem 1 An (e, 8)-approximation of F,, the self-join size, can be computed in
space O(EL2 log 1/8) machine words in the streaming model. Each update takes time

O (5 log1/8).

Proof Applying the Chebyshev inequality to the average of w = :—g copies of the

estimate Z generates a new estimate Y such that

Var(Y) Var(Z) 2F; 1
€2F? ce2F} (16/e2)e?F} 8

Pr{lY — B2l <eR] <

Generalization of AMS Algorithm

Fact 3 (Application of Chernoff Bounds) Let R be a range of values R =

[Rmin..Rmax], and let Y; be d = 4log1/8 independent and identically distributed
random variable such that Pr[Y; ¢ R] < %. Then

Pr[(medianf!=1 Y;) ¢ R] <$,

that is, if there is constant probability that each Y; falls within the desired range R,

then taking the median of O(log1/8) copies of Y; reduces the failure probability
to 8.

Hence, applying the Chernoff bound result from Fact 3 to the median of 4log1/4
copies of the average Y gives the probability of the results being outside the range
of e F, from F, as §. The space required is that to maintain O(e% log 1/8) copies
of the original estimate. Each of these requires a counter and a 4-wise independent
hash function, both of which can be represented with a constant number of machine
words under the standard RAM model. [

Join size estimation

Lemma 3 Let Z, be an entry of a sketch computed for the vector x, and let Z, be
an entry of a sketch computer for y using the same hash function. The estimate is
correct in expectation, i.e.,E(Zy x Zy) =x - y.

Proof

U
E(Zx*Zy)=E(Zh(i>2x[i]y[i]+ 3 h(i)h(j)x[i]y[j])
i=l1

I<i#j<U

U
=Y x[ilyli]+0=x-y.
i=l1

Join size estimation

Var(Zx x Zy) < F2(x)F2(y).

Theorem 2 Using space ()(el2 log 1/8) space we can output an estimate of x - y so
that

Prl|(x - y) —est| < e/ 2(x) Fa(y)] > 1 — 6.

