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Filtering	Data	Streams	
•  Each	element	of	data	stream	is	a	tuple	
•  Given	a	list	of	keys	S	
•  Determine	which	tuples	of	stream	are	in	S	

•  Obvious	solu9on:	Hash	table	
– But	suppose	we	do	not	have	enough	memory	to	
store	all	of	S	in	a	hash	table	

•  E.g.,	we	might	be	processing	millions	of	filters		
on	the	same	stream	
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ApplicaQons	
•  Example:	Email	spam	filtering	

– We	know	1	billion	“good”	email	addresses	
–  If	an	email	comes	from	one	of	these,	it	is	NOT	spam	

•  Publish-subscribe	systems	
–  You	are	collecQng	lots	of	messages	(news	arQcles)	
–  People	express	interest	in	certain	sets	of	keywords	
–  Determine	whether	each	message	matches	user’s	interest	
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First	Cut	SoluQon	(1)	

•  Given	a	set	of	keys	S	that	we	want	to	filter	
•  Create	a	bit	array	B	of	n	bits,	iniQally	all	0s	
•  Choose	a	hash	func9on	h	with	range	[0,n)		
•  Hash	each	member	of	s∈	S	to	one	of		
n	buckets,	and	set	that	bit	to	1,	i.e.,	B[h(s)]=1	

•  Hash	each	element	a	of	the	stream	and	
output	only	those	that	hash	to	bit	that	was	set	
to	1	
– Output	a	if	B[h(a)]	==	1	
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First	Cut	SoluQon	(2)	

•  Creates	false	posi9ves	but	no	false	nega9ves	
–  If	the	item	is	in	S	we	surely	output	it,	if	not	we	may	
sQll	output	it	 6	

Filter	Item	

0010001011000 

Output the item since it may be in S. 
Item hashes to a bucket that at least  
one of the items in S hashed to. 

Hash		
func	h	

Drop the item. 
It hashes to a bucket set  
to 0 so it is surely not in S. 

Bit	array	B	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h;p://

www.mmds.org		



First	Cut	SoluQon	(3)	
¡  |S|	=	1	billion	email	addresses	
|B|=	1GB	=	8	billion	bits	

¡  If	the	email	address	is	in	S,	then	it	surely	hashes	
to	a	bucket	that	has	the	big	set	to	1,		
so	it	always	gets	through	(no	false	nega5ves)	

¡  Approximately	1/8	of	the	bits	are	set	to	1,	so	
about	1/8th	of	the	addresses	not	in	S	get	through	
to	the	output	(false	posi5ves)	
§  Actually,	less	than	1/8th,	because	more	than	one	
address	might	hash	to	the	same	bit	
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Analysis:	Throwing	Darts	(1)	
•  More	accurate	analysis	for	the	number	of	
false	posi9ves		

•  Consider:	If	we	throw	m	darts	into	n	equally	
likely	targets,	what	is	the	probability	that		
a	target	gets	at	least	one	dart?	

•  In	our	case:	
– Targets	=	bits	or	buckets	
– Darts	=	hash	values	of	items	
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Analysis:	Throwing	Darts	(2)	
•  We	have	m	darts,	n	targets	
•  What	is	the	probability	that	a	target	gets	at	
least	one	dart?	
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(1 – 1/n) 

Probability	some	
target	X	not	hit	

by	a	dart	

m 

1 - 

Probability	at	
least	one	dart	
hits	target	X	

n( / n) 

Equivalent	
Equals	1/e	
as	n	→∞ 

1 – e–m/n 

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h;p://

www.mmds.org		



Analysis:	Throwing	Darts	(3)	

•  Frac9on	of	1s	in	the	array	B	=	
=	probability	of	false	posi9ve	=	1	–	e-m/n	

•  Example:	109	darts,	8·109	targets	
– FracQon	of	1s	in	B	=	1	–	e-1/8	=	0.1175	

•  Compare	with	our	earlier	esQmate:	1/8	=	0.125	
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Bloom	Filter	
•  Consider:	|S|	=	m,	|B|	=	n	
•  Use	k	independent	hash	funcQons	h1	,…,	hk	
•  Ini9aliza9on:	

– Set	B	to	all	0s	
– Hash	each	element	s∈	S	using	each	hash	funcQon	hi,	
set	B[hi(s)]	=	1			(for	each	i	=	1,..,	k)	

•  Run-9me:	
– When	a	stream	element	with	key	x	arrives	

•  If	B[hi(x)]	=	1	for	all	i	=	1,...,	k	then	declare	that	x	is	in	S	
–  That	is,	x	hashes	to	a	bucket	set	to	1	for	every	hash	funcQon	hi(x)	

•  Otherwise	discard	the	element	x	
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(note: we have a  
single array B!) 



Bloom	Filter	--	Analysis	

•  What	frac9on	of	the	bit	vector	B	are	1s?	
– Throwing	k·m	darts	at	n	targets	
– So	fracQon	of	1s	is	(1	–	e-km/n)	

•  But	we	have	k	independent	hash	funcQons	
and	we	only	let	the	element	x	through	if	all	k	
hash	element	x	to	a	bucket	of	value	1	

•  So,	false	posi9ve	probability	=	(1	–	e-km/n)k	
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Bloom	filter	analysis	

m/n	

Prob.	Of	
false	posiQve	



Bloom	Filter	–	Analysis	(2)	
•  m	=	1	billion,	n	=	8	billion	

–  k	=	1:	(1	–	e-1/8)	=	0.1175	
–  k	=	2:	(1	–	e-1/4)2	=	0.0493	

•  What	happens	as	we		
keep	increasing	k?	

•  “OpQmal”	value	of	k:	n/m	ln(2)	
–  In	our	case:	OpQmal	k	=	8	ln(2)	=	5.54	≈	6	

•  Error	at	k	=	6:	(1	–	e-1/6)2	=	0.0235	
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Bloom	Filter:	Wrap-up	
•  Bloom	filters	guarantee	no	false	nega9ves,	
and	use	limited	memory	
– Great	for	pre-processing	before	more		
expensive	checks	

•  Suitable	for	hardware	implementa9on	
– Hash	funcQon	computaQons	can	be	parallelized	

•  Is	it	be;er	to	have	1	big	B	or	k	small	Bs?	
–  It	is	the	same:	(1	–	e-km/n)k		vs.	(1	–	e-m/(n/k))k	
– But	keeping	1	big	B	is	simpler	
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(2)	CounQng	DisQnct	Elements	



CounQng	DisQnct	Elements	
•  Problem:	

– Data	stream	consists	of	a	universe	of	elements	
chosen	from	a	set	of	size	N	

– Maintain	a	count	of	the	number	of	disQnct	
elements	seen	so	far	

•  Obvious	approach:		
Maintain	the	set	of	elements	seen	so	far	
– That	is,	keep	a	hash	table	of	all	the	disQnct	
elements	seen	so	far	
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ApplicaQons	
•  How	many	different	words	are	found	among	
the	Web	pages	being	crawled	at	a	site?	
– Unusually	low	or	high	numbers	could	indicate	
arQficial	pages	(spam?)	

•  How	many	different	Web	pages	does	each	
customer	request	in	a	week?	

•  How	many	dis9nct	products	have	we	sold	in	
the	last	week?	
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Using	Small	Storage	

•  Real	problem:	What	if	we	do	not	have	space		
to	maintain	the	set	of	elements	seen	so	far?	

•  Es9mate	the	count	in	an	unbiased	way	

•  Accept	that	the	count	may	have	a	liile	error,	
but	limit	the	probability	that	the	error	is	large	
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Flajolet-MarQn	Approach	
•  Pick	a	hash	funcQon	h	that	maps	each	of	the	N	
elements	to	at	least		log2	N		bits	

•  For	each	stream	element	a,	let	r(a)	be	the	
number	of	trailing	0s	in	h(a)	
–  r(a)	=	posiQon	of	first	1	counQng	from	the	right	

•  E.g.,	say	h(a)	=	12,	then	12	is	1100	in	binary,	so	r(a)	=	2	
•  Record	R	=	the	maximum	r(a)	seen	

–  R	=	maxa	r(a),		over	all	the	items	a	seen	so	far	

•  Es9mated	number	of	dis9nct	elements	=	2R	
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Why	It	Works:	IntuiQon	
•  Very	very	rough	and	heuris9c	intui9on	why		
Flajolet-Mar9n	works:	
– h(a)	hashes	a	with	equal	prob.	to	any	of	N	values	
– Then	h(a)	is	a	sequence	of	log2	N	bits,		
where	2-r	fracQon	of	all	as	have	a	tail	of	r	zeros		

•  About	50%	of	as	hash	to	***0	
•  About	25%	of	as	hash	to	**00	
•  So,	if	we	saw	the	longest	tail	of	r=2	(i.e.,	item	hash		
ending	*100)	then	we	have	probably	seen		
about	4	disQnct	items	so	far	

– So,	it	takes	to	hash	about	2r	items	before	we		
see	one	with	zero-suffix	of	length	r	
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Why	It	Works:	More	formally	

22	
J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h;p://

www.mmds.org		



Why	It	Works:	More	formally	

23	

Prob. that given h(a) ends 
in fewer than r zeros 

Prob. all end in  
fewer than r zeros. 
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Why	It	Works:	More	formally	
•  Note:		
•  Prob.	of	NOT	finding	a	tail	of	length	r	is:	

–  If	m	<<	2r,	then	prob.	tends	to	1	
•  																																																		as		m/2r→	0	
•  So,	the	probability	of	finding	a	tail	of	length	r	tends	to	0		

–  If	m	>>	2r,	then	prob.	tends	to	0		
•  																																																	as		m/2r	→	∞			
•  So,	the	probability	of	finding	a	tail	of	length	r	tends	to	1	

•  Thus,	2R		will	almost	always	be	around	m!	
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Why	It	Doesn’t	Work	
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(3)	CompuQng	Moments	



GeneralizaQon:	Moments	
•  Suppose	a	stream	has	elements	chosen		
from	a	set	A	of	N	values	

•  Let	mi	be	the	number	of	9mes	value	i	occurs	
in	the	stream	

•  The	kth	moment		is	

27	
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Special	Cases	

•  0thmoment	=	number	of	disQnct	elements	
– The	problem	just	considered	

•  1st	moment	=	count	of	the	numbers	of	
elements	=	length	of	the	stream	
– Easy	to	compute	

•  2nd	moment	=	surprise	number	S	=		
a	measure	of	how	uneven	the	distribuQon	is	
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Example:	Surprise	Number	

•  Stream	of	length	100	
•  11	dis9nct	values	

•  Item	counts:	10,	9,	9,	9,	9,	9,	9,	9,	9,	9,	9		
Surprise	S	=	910	

•  Item	counts:	90,	1,	1,	1,	1,	1,	1,	1	,1,	1,	1		
Surprise	S	=	8,110	
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AMS	method	
•  AMS	method	works	for	all	moments	
•  Gives	an	unbiased	esQmate.	
•  We	will	just	concentrate	on	the	2nd	moment	S.	
•  We	pick	and	keep	track	of	many	variables	X:	

– For	each	variable	X,	store	X.el	and	X.val	
•  X.el	corresponds	to	the	item	I	
•  X.val	corresponds	to	the	count	of	item	I	

– Note	this	requires	a	count	in	main	memory,	so	
number	of	Xs	is	limited		

•  Our	goal	is	to	compute	S	=	Σi	mi
2	



One	random	variable	(X)	

•  How	to	set	X.val	and	X.el	?		
–  Assume	stream	has	length	n	(we	relax	this	later)		
–  Pick	some	random	Qme	t	(t<n)	to	start,	so	that	any	Qme	is	
equally	likely		

–  	Let	at	Qme	t	the	stream	have	item	i.	We	set	X.el	=	i		
–  	Then	we	maintain	count	c	(X.val	=	c)	of	the	number	of	is	in	
the	stream	starQng	from	the	chosen	Qme	t		

•  Then		the	esQmate	of	the	2nd	moment	(	Σi	mi
2	)	is:		

S	=	f(X)	=	n	(2	c	-1)	
–  Note,	we	will	keep	track	of	mulQple	Xs,	(X1,	X2,...	Xk)	and	
our	final	esQmate	will	be:	

S	=	1/k	Σj	f(Xj)	



ExpectaQon	Analysis	
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Time	t	when	
the	last	i	is		
seen	(ct=1)	

Time	t	when	
the	penulQmate	
	i	is	seen	(ct=2)	

Time	t	when	
the	first	i	is		
seen	(ct=mi)	

Group	Qmes	
by	the	value	
seen	

a a a a 

1 3 2 ma 

b b b b 

Count: 

Stream: 

mi … total count of 
item i in the stream 

(we are assuming 
stream has length n) 

•  2nd	moment	is	S	=	Σi	mi
2		

•  Ct	-	number	of	Qmes	item	at	Qme	t	appears	
from	Qme	t	onwards	(c1=ma	,	c2=ma-1,	c3=mb)		

•  E[f(X)]	=	1/n	Σt=1n	n	(2ct	-	1)	
=	1/n	Σi	n	(1	+	3	+	5	+	…	+	2	mi	-	1)	



Higher-Order	Moments	
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•  For	esQmaQng	kth	moment	we	essenQally	use	
the	same	algorithm	but	change	the	esQmate:		
– For	k=2	we	used	n	(2·c	–	1)	
For	k=3	we	use:	n	(3·c2	–	3c	+	1)	(where	c=X.val)		

•  Why?		
– For	k=2:	Remember	we	had	(1+3+5+⋯+(2mi-1))	and	
we	showed	terms	2c-1	(for	c=1,...,m)	sum	to	m2		

– 2c	–	1	=	c2	–	(c-1)2	
– For	k=3:	c3	-	(c-1)3	=	3c2	-	3c	+	1		

•  Generally:	EsQmate	=	n	(ck	–	(c-1)k)	



Combining	Samples	
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Streams	Never	End:	Fixups	
•  (1)	The	variables	X	have	n	as	a	factor	–		

keep	n	separately;	just	hold	the	count	in	X	
•  (2)	Suppose	we	can	only	store	k	counts.			

We	must	throw	some	Xs	out	as	Qme	goes	on:	
– Objec9ve:	Each	starQng	Qme	t	is	selected	with	
probability	k/n		

–  Solu9on:	(fixed-size	sampling!)	
•  Choose	the	first	k	Qmes	for	k	variables	
•  When	the	nth	element	arrives	(n	>	k),	choose	it	with	
probability	k/n	

•  If	you	choose	it,	throw	one	of	the	previously	stored	variables	
X	out,	with	equal	probability	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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AMS	ALGORITHM	USING	SKETCHES	



GeneralizaQon	of	AMS	Algorithm	

•  Stream	of	pair	(i,c),	i	€	{1,…,U}	and	c	is	
posiQve	integer.	

•  x[i]	=	x[i]	+	c	for	each	update	
•  Join	size:	x.y	=	Σi=1U	(x[i]	y[i])	
•  Pth	Moment:	FP(x)	=	Σi=1U	x[i]2	

•  h	:	{1,…U}	è	{+1,-1}	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	

•  Var(Z2)	≤	2F2(x)2	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	



GeneralizaQon	of	AMS	Algorithm	



Join	size	esQmaQon	



Join	size	esQmaQon	


