CS60021: Scalable Data Mining

Stream Mining

Sourangshu Bhattacharya

Data Streams

* In many data mining situations, we do not know
the entire data set in advance

e Stream Management is important when the
input rate is controlled externally:
— Google queries
— Twitter or Facebook status updates

 We can think of the data as infinite and
non-stationary (the distribution changes
over time)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

The Stream Model

* Input elements enter at a rapid rate,
at one or more input ports (i.e., streams)

— We call elements of the stream tuples

* The system cannot store the entire stream
accessibly

* Q: How do you make critical calculations about the
stream using a limited amount of (secondary)
memory?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

General Stream Processing Model

Ad-Hoc
QuTries
...1,5,2,7,0,9,3 — Standing
Queries
. anvtyhb —— » Output
Processor
...0,0,1,0,1,1,0 —
time /N

Streams Entering.
Each is stream is

composed of N
elements/tuples Limited
N~
Working
Storage Archival
. Storage

~_

Problems on Data Streams

* Types of queries one wants on answer on
a data stream:
— Sampling data from a stream
e Construct a random sample

— Queries over sliding windows

* Number of items of type x in the last k elements
of the stream

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Problems on Data Streams

* Types of queries one wants on answer on
a data stream:

— Filtering a data stream
* Select elements with property x from the stream

— Counting distinct elements

e Number of distinct elements in the last k elements
of the stream

— Estimating moments
* Estimate avg./std. dev. of last k elements
— Finding frequent elements

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Applications

* Mining query streams

— Google wants to know what queries are
more frequent today than yesterday

* Mining click streams

— Yahoo wants to know which of its pages are
getting an unusual number of hits in the past hour

* Mining social network news feeds

— E.g., look for trending topics on Twitter, Facebook

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Applications

* Sensor Networks
— Many sensors feeding into a central controller

* Telephone call records

— Data feeds into customer bills as well as
settlements between telephone companies

* |P packets monitored at a switch
— Gather information for optimal routing

— Detect denial-of-service attacks

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Sampling from a Data Stream:
Sampling a fixed proportion

Sampling from a Data Stream

* Since we can not store the entire stream,
one obvious approach is to store a sample

 Two different problems:

— (1) Sample a fixed proportion of elements
in the stream (say 1 in 10)

— (2) Maintain a random sample of fixed size
over a potentially infinite stream

e At any “time” k we would like a random sample
of s elements

— What is the property of the sample we want to maintain?
For all time steps k, each of k elements seen so far has
equal prob. of being sampled

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

10

Sampling a Fixed Proportion

* Problem 1: Sampling fixed proportion
* Scenario: Search engine query stream

— Stream of tuples: (user, query, time)

— Answer questions such as: How often did a user run
the same query in a single days

— Have space to store 1/10% of query stream
* Naive solution:

— Generate a random integer in [0..9] for each query
— Store the query if the integer is 0, otherwise discard

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

11

Problem with Naive Approach

* Simple question: What fraction of queries by an
average search engine user are duplicates?

— Suppose each user issues x queries once and d queries
twice (total of x+2d queries)
e Correct answer: d/(x+d)

— Proposed solution: We keep 10% of the queries

» Sample will contain x/10 of the singleton queries and
2d/10 of the duplicate queries at least once
* But only d/100 pairs of duplicates
— d/100=1/10-1/10-d
* Of d “duplicates” 18d/100 appear exactly once
— 18d/100 = ((1/10 - 9/10)+(9/10 - 1/10)) - d

— So the sample-based answer is /100 /x/10 +4/100
+184d/100 =d/10x+19d

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 12
www.mmds.org

Problem with Naive Approach

Question: what fraction of queries are
duplicate?

Suppose there are x single queries and d
duplicate queries; (x+2d) stream items
Fraction of duplicate queries: d/(x+d)

Proposed approach: keep 10% sample

— x/10 single queries, 2d/10 duplicate queries
— 2d/100 queries marked duplicate, 18d/100 not.
— Answer: (d/100) / ((x/10 +18d/100) + d/100)
—Or:d/(10x +19 d)

Solution: Sample Users

Solution:

* Pick 1/10t of users and take all their
searches in the sample

* Use a hash function that hashes the
user name or user id uniformly into 10
buckets

Generalized Solution

e Stream of tuples with keys:
— Key is some subset of each tuple’s components

* e.g., tupleis (user, search, time); key is user

— Choice of key depends on application

* To get a sample of a/b fraction of the stream:
— Hash each tuple’s key uniformly into b buckets
— Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 15
www.mmds.org

Sampling from a Data Stream:
Sampling a fixed-size sample

As the stream grows, the sample is of
fixed size

Maintaining a fixed-size sample
Problem 2: Fixed-size sample

Suppose we need to maintain a random
sample S of size exactly s tuples

— E.g., main memory size constraint
Why? Don’t know length of stream in advance

Suppose at time n we have seen n items

— Each item is in the sample S with equal prob. s/n

How to think about the problem: say s = 2

St : kcd
ream l?xcyz'c' eg

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.
At n=7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen
so far and out of them pick s at random

man:
Mining of Massive Datasets, http:// 17
www.mmds.org

Solution: Fixed Size Sample

* Algorithm (a.k.a. Reservoir Sampling)
— Store all the first s elements of the stream to §

— Suppose we have seen n-1 elements, and now
the nt" element arrives (n > s)

* With probability s/n, keep the nt" element, else discard
it

* If we picked the nt" element, then it replaces one of the
s elements in the sample S, picked uniformly at random

* Claim: This algorithm maintains a sample §
with the desired property:

— After n elements, the sample contains each
element seen so far with probability s/n

Proof: By Induction

 We prove this by induction:

— Assume that after n elements, the sample contains
each element seen so far with probability s/n

— We need to show that after seeing element n+1 the
sample maintains the property
e Sample contains each element seen so far with probability
s/(n+1)
* Base case:
— After we see n=s elements the sample S has the
desired property

e Each out of n=s elements is in the sample with probability s/
s=1

Proof: By Induction

Inductive hypothesis: After n elements, the sample §
contains each element seen so far with prob. s/n

Now element n+1 arrives

Inductive step: For elements already in S, probability that
the algorithm keepsitin Sis:

S S s—1 n
l-— |+ — || — | =——
(n+1) (n+1)(S n+l1

Element n+1 discarded Element n+1 Element in the
not discarded sample not picked

So, at time n, tuples in S were there with prob. s/n
Time n—n+1, tuple stayed in § with prob. n/(n+1)
So prob. tupleisinSattime n+l1=s/n-n/n+1 =s/n+1

J. Leskovec, A. Rajaraman, J. Ullman: Mining of

Massive Datasets, http://www.mmds.org 20

Queries over a
(long) Sliding Window

Sliding Windows

* A useful model of stream processing is that
gueries are about a window of length N —
the N most recent elements received

* Interesting case: N is so large that the data
cannot be stored in memory, or even on disk

— Or, there are so many streams that windows
for all cannot be stored

* Amazon example:

— For every product X we keep 0/1 stream of whether
that product was sold in the n-th transaction

— We want answer queries, how many times have we
sold X in the last k sales

Sliding Window: 1 Stream

 Sliding window on a single stream:

gwertyuioplasdfghl|jk

gwertyuiopalsdfghjk

gwertyuiopasidfghjk

lzxcvbnm

lzxcvbnm

lzxcvbnm

gwertyuiopasdiffghjk

llzxcvbnm

«— Past Future—

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org

23

Counting Bits (1)
* Problem:

— Given a stream of 0s and 1s

— Be prepared to answer queries of the form
How many 1s are in the last k bits? where k < N

e Obvious solution:
Store the most recent N bits

— When new bit comes in, discard the N+1st bit

010011011101010110|110110 Suppose N=6

«——— Past Future ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org 24

Counting Bits (2)

* You can not get an exact answer without
storing the entire window

e Real Problem:
What if we cannot afford to store N bits?

— E.g., we're processing 1 billion streams and

N =1 billion
010011011101010110

«—Past Future —

 But we are happy with an approximate
answer

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

25

An attempt: Simple solution

* Q: How many 1s are in the last N bits?

* Asimple solution that does not really solve our

problem: Uniformity assumption

« N >
010011100010100100010110110111001010110011010

Past Future —

e Maintain 2 counters:

— S: number of 1s from the beginning of the stream
— Z: number of Os from the beginning of the stream

 How many 1s are in the last N bits? A/-S/$+ 7

e But, what if stream is non-uniform?
— What if distributien.ehanges.over time?

Mining of Massive Datasets, http:// 26
www.mmds.org

DGIM Method

* DGIM solution that does not assume
uniformity

* We store O(log2 /) bits per stream

* Solution gives approximate answer,
never off by more than 50%

— Error factor can be reduced to any fraction > 0,
with more complicated algorithm and

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

27

DGIM Method

* DGIM solution does not assume uniformity

» Store O(log N)? bits per stream.

e Solution gives and answer which is never off
by more than 50%
— Can be improved to arbitrary factor 1/r, r>0.

ldea: Exponential Windows

e Solution that doesn’t (quite) work:

— Summarize exponentially increasing regions
of the stream, looking backward

— Drop small regions if they begin at the same point
Window of 35 3 |arger region

width 16
has 6 1s >4 10
—_—y — 4
' : 3 2
2 || 1
o
010011100010100105001011011011

1001010110011010
< N >

We can reconstruct the countj_cgjsl’gggc,lﬁt.N bits, except we

are not sure how many of the Wa&g&Mssi&?rém&Juded inthe N 29

www.mmds.org

What's Good?

 Stores only O(log?N) bits
— O(log/) counts of logd2 N bits each

* Easy update as more bits enter

* Errorin count no greater than the number
of 1s in the “unknown” area

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

30

What’s Not So Good?

* Aslong as the 1s are fairly evenly distributed,
the error due to the unknown region is small —
no more than 50%

e Butit could be that all the 1s are in the
unknown area at the end

* |n that case, the error is unbounded!

6 10

4—?—» 4

3 2

2|1

- 1o
010011100010100100@;9;%Q$1g@41001010110011010
#H-m-n-g—e-f—k‘ka-&swe—Da-t-a-&et—s—h#bp#N = LN

www.mmds.org

Fixup: DGIM method

* |dea: Instead of summarizing fixed-length
blocks, summarize blocks with specific
number of 1s:

— Let the block sizes (number of 1s) increase
exponentially

e When there are few 1s in the window, block

sizes stay small, so errors are small

1001010110001011

G

101010101010110j1010101010111

0

1010101

110101

D00

101

1LDO[L

N

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

32

DGIM: Timestamps

e Each bit in the stream has a timestamp,
starting 1, 2, ...

e Record timestamps modulo N (the window
size), so we can represent any relevant

timestamp in @(logd2 N) bits

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

33

DGIM: Buckets

* A bucket in the DGIM method is a record
consisting of:
— (A) The timestamp of its end [O(log) bits]

— (B) The number of 1s between its beginning and
end [O(log log N) bits]

e Constraint on buckets:
Number of 1s must be a power of 2

— That explains the O(log log N) in (B) above

(

)10101010101011

01010101010111

0

1010101

110101

000

1001010110001011

L leskovec A RBajaraman L Ullman:

101

Mining of

MdsSive Datasets, http://
www.mmds.org

Representing a Stream by Buckets

Either one or two buckets with the same
power-of-2 number of 1s

Buckets do not overlap in timestamps

Buckets are sorted by size
— Earlier buckets are not smaller than later buckets

Buckets disappear when their
end-time is > N time units in the past

Example: Bucketized Stream

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 size 2 size 1

N NEVANR V(Y

100101011000101]010101010101011 101010101011101010101j110101PO0LO1J1)Ol

P o
< »

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by sizevec A rajaraman, J. Uliman:

Mining of Massive Datasets, http:// 36
www.mmds.org

Updating Buckets (1)

* When a new bit comes in, drop the last
(oldest) bucket if its end-time is prior to N
time units before the current time

e 2 cases: Current bitisOor1

* If the current bit is O:
no other changes are needed

Updating Buckets (2)

If the current bit is 1:

— (1) Create a new bucket of size 1, for just this bit
* End timestamp = current time

— (2) If there are now three buckets of size 1,
combine the oldest two into a bucket of size 2

— (3) If there are now three buckets of size 2,
combine the oldest two into a bucket of size 4

— (4) And so on ...

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 38
www.mmds.org

Example: Updating Buckets

Current state of the stream:
100101011000101101010101010101101010101010111D:L0101011101010001011(b0ﬁ

Bit of value 1 arrives
00101011000101101010101010101101[0101010101111)1L010101110101000101100@)5

Two orange buckets get merged into a yellow bucket
00101011000101101010101010101101010101010111()1010101lfllOlOl()OOlOlZ.OOlOD

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:
0101100010110101010101010110101010101011101010101110101()001L011001()1105

Buckets get merged...
010110001011001010101010101101010101010111Pp1010101 110101()00101JLOOl()]Ll()ﬂ

State of the buckets after merging
010110001011010101010101011010101010101110101010111010100010110010110ﬂ

J. Teskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 39
www.mmds.org

How to Query?

To estimate the number of 1s in the most
recent N bits:

1. Sum the sizes of all buckets but the last

(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

Remember: We do not know how many 1s
of the last bucket are still within the wanted
window

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

40

Example: Bucketized Stream

At least 1 of 2 of 2 of 1 of 2 of
size 16. Partially size 8 size 4 Size 2 size 1

beyond lwindow. /\ /\ \

100101011000101101010101010101101010101010111D]LOlOlOlltllOlOl()OOlOl l()O@)

< N

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 41
www.mmds.org

Error Bound: Proof
Why is error 50%7? Let’s prove it!

Suppose the last bucket has size 2/

Then by assuming 2/ (i.e., half) of its 1s are
still within the window, we make an error of

at most 21

Since there is at least one bucket of each of
the sizes less than 2/, the true sum is at least

1+2+4+..+21 =21

Thus, error at most 50%

At least 16 1s
A

0

1010101

110101

D00

101

L(

‘ 11111111000000001)110101010101101010101010111

J. Leskovec, A. Rajaraman,J. Ullman:

Mining of Magstve Datasets, http://
www.mmds.org

Further Reducing the Error

* |nstead of maintaining 1 or 2 of each size
bucket, we allow either r-1 or r buckets (r > 2)

— Except for the largest size buckets; we can have
any number between 1 and r of those
* Erroris at most O(1/r)

* By picking r appropriately, we can tradeoff
between number of bits we store and the
error

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 43
www.mmds.org

Analysis

Actual count is c.

There are at least d and at most d+1 buckets
of each size.

Answer is returned from 2! size bucket.

Case 1: estimate < ¢

— Final bucket: 21, cis at least (d * 2J).
diff /c< 1/4d

Case 2: estimate > c

— Final bucket: 21, cis at least (d * 2)).
diff /c> 1/ 4d

Fractional error = (21 -1) / (1+ d*2/ - 1)

Extensions

e Can we use the same trick to answer queries
How many 1’s in the last k? where k< N?
— A: Find earliest bucket B that at overlaps with k.

Number of 1s is the sum of sizes of more recent
buckets + ¥ size of B

10010101100010110

0

1010101

110101

D00

1010101010101101010101010111
4 k

101

LDOILD

e Can we handle the case where the stream is
not bits, but integers, and we want the sum
of the last k elements?

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

45

Extensions

* Stream of positive integers

e We want the sum of the last k elements
— Amazon: Avg. price of last k sales

 Solution:

— (1) If you know all have at most m bits

* Treat m bits of each integer as a sepagatestfeaaq count for i-th bit
* Use DGIM to count 1s in each integer

* The sumis =}7/=0Tm—1#cli2T/
— (2) Use buckets to keep partial sums
 Sum of elements insize b bucket is at most 2°

2571384679137
2571384679137
2571384679137

6 5

NS

7 1]3

2/l

6 5
6 5

257138467913T765

www.mmds.org

39
— <

/7 113 3

3)[1] 2]
1 2

28 B

35

7 1|3

3|1 2

3.9 .

the)

1 2

2
ABRE
ABRIZE

Idea: Sum in each
bucket is at most
2P (unless bucket
has only 1 integer)
Bucket sizes:

16/8]4]2[1]

Summary

 Sampling a fixed proportion of a stream
— Sample size grows as the stream grows
 Sampling a fixed-size sample
— Reservoir sampling

* Counting the number of 1s in the last N
elements
— Exponentially increasing windows
— Extensions:

* Number of 1s in any last k (k < N) elements
* Sums of integers.in the last N elements

