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Data	Streams	
•  In	many	data	mining	situa-ons,	we	do	not	know	
the	en-re	data	set	in	advance	

•  Stream	Management	is	important	when	the	
input	rate	is	controlled	externally:	
– Google	queries	
–  Twi;er	or	Facebook	status	updates	

•  We	can	think	of	the	data	as	infinite	and		
non-sta-onary	(the	distribuHon	changes		
over	Hme)	
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The	Stream	Model	

•  Input	elements	enter	at	a	rapid	rate,		
at	one	or	more	input	ports	(i.e.,	streams)	
– We	call	elements	of	the	stream	tuples	

•  The	system	cannot	store	the	en-re	stream	
accessibly	

•  Q:	How	do	you	make	cri-cal	calcula-ons	about	the	
stream	using	a	limited	amount	of	(secondary)	
memory?	
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General	Stream	Processing	Model	
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Problems	on	Data	Streams	

•  Types	of	queries	one	wants	on	answer	on		
a	data	stream:	
– Sampling	data	from	a	stream	

•  Construct	a	random	sample	

– Queries	over	sliding	windows	
•  Number	of	items	of	type	x	in	the	last	k	elements		
of	the	stream	
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Problems	on	Data	Streams	
•  Types	of	queries	one	wants	on	answer	on		
a	data	stream:	
– Filtering	a	data	stream	

•  Select	elements	with	property	x	from	the	stream	
– Coun-ng	dis-nct	elements	

•  Number	of	disHnct	elements	in	the	last	k	elements		
of	the	stream	

– Es-ma-ng	moments	
•  EsHmate	avg./std.	dev.	of	last	k	elements	

– Finding	frequent	elements	
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ApplicaHons	
•  Mining	query	streams	

– Google	wants	to	know	what	queries	are		
more	frequent	today	than	yesterday	

•  Mining	click	streams	
– Yahoo	wants	to	know	which	of	its	pages	are	
ge\ng	an	unusual	number	of	hits	in	the	past	hour	

•  Mining	social	network	news	feeds	
– E.g.,	look	for	trending	topics	on	Twi;er,	Facebook	
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ApplicaHons	
•  Sensor	Networks		

– Many	sensors	feeding	into	a	central	controller	

•  Telephone	call	records		
– Data	feeds	into	customer	bills	as	well	as	
se;lements	between	telephone	companies	

•  IP	packets	monitored	at	a	switch	
– Gather	informaHon	for	opHmal	rouHng	
– Detect	denial-of-service	a;acks	
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Sampling	from	a	Data	Stream:	
Sampling	a	fixed	proporHon	



Sampling	from	a	Data	Stream	
•  Since	we	can	not	store	the	en-re	stream,		
one	obvious	approach	is	to	store	a	sample	

•  Two	different	problems:	
–  (1)	Sample	a	fixed	propor-on	of	elements		
in	the	stream	(say	1	in	10)	

–  (2)	Maintain	a	random	sample	of	fixed	size		
over	a	potenHally	infinite	stream	

•  At	any	“Hme”	k	we	would	like	a	random	sample		
of	s	elements	

– What	is	the	property	of	the	sample	we	want	to	maintain?	
For	all	Hme	steps	k,	each	of	k	elements	seen	so	far	has		
equal	prob.	of	being	sampled	
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Sampling	a	Fixed	ProporHon	

•  Problem	1:	Sampling	fixed	propor-on	
•  Scenario:	Search	engine	query	stream	

–  Stream	of	tuples:	(user,	query,	Hme)	
– Answer	ques-ons	such	as:	How	oSen	did	a	user	run	
the	same	query	in	a	single	days	

– Have	space	to	store	1/10th	of	query	stream	

•  Naïve	solu-on:	
– Generate	a	random	integer	in	[0..9]	for	each	query	
–  Store	the	query	if	the	integer	is	0,	otherwise	discard			
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Problem	with	Naïve	Approach	
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Problem	with	Naïve	Approach	
•  QuesHon:	what	fracHon	of	queries	are	
duplicate?	

•  Suppose	there	are	x	single	queries	and	d	
duplicate	queries;	(x+2d)	stream	items	

•  FracHon	of	duplicate	queries:	d/(x+d)	
•  Proposed	approach:	keep	10%	sample	

– x/10	single	queries,	2d/10	duplicate	queries	
– 2d/100	queries	marked	duplicate,	18d/100	not.	
– Answer:	(	d/100)	/	(	(x/10	+18d/100)	+	d/100	)	
– Or:	d	/	(10	x	+19	d)	



SoluHon:	Sample	Users	

Solu-on:	
•  Pick	1/10th	of	users	and	take	all	their		
searches	in	the	sample	

•  Use	a	hash	funcHon	that	hashes	the		
user	name	or	user	id	uniformly	into	10	
buckets	
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Generalized	SoluHon	
•  Stream	of	tuples	with	keys:	

–  Key	is	some	subset	of	each	tuple’s	components	
•  e.g.,	tuple	is	(user,	search,	Hme);	key	is	user	

–  Choice	of	key	depends	on	applicaHon	

•  To	get	a	sample	of	a/b	frac-on	of	the	stream:	
–  Hash	each	tuple’s	key	uniformly	into	b	buckets	
–  Pick	the	tuple	if	its	hash	value	is	at	most	a	
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Hash table with b buckets, pick the tuple if its hash value is at most a. 
How to generate a 30% sample?  
Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets 



Sampling	from	a	Data	Stream:	
Sampling	a	fixed-size	sample	

As	the	stream	grows,	the	sample	is	of	
fixed	size	



Maintaining	a	fixed-size	sample	
•  Problem	2:	Fixed-size	sample	
•  Suppose	we	need	to	maintain	a	random	
sample	S	of	size	exactly	s	tuples	
–  E.g.,	main	memory	size	constraint	

•  Why?	Don’t	know	length	of	stream	in	advance	
•  Suppose	at	-me	n	we	have	seen	n	items	

–  Each	item	is	in	the	sample	S	with	equal	prob.	s/n	
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How to think about the problem: say s = 2 
Stream: a x c y z k c d e g… 
 
At n= 5, each of the first 5 tuples is included in the sample S with equal prob. 
At n= 7, each of the first 7 tuples is included in the sample S with equal prob. 
Imprac-cal	solu-on	would	be	to	store	all	the	n	tuples	seen		
so	far	and	out	of	them	pick	s	at	random	



SoluHon:	Fixed	Size	Sample	
•  Algorithm	(a.k.a.	Reservoir	Sampling)	

– Store	all	the	first	s	elements	of	the	stream	to	S	
– Suppose	we	have	seen	n-1	elements,	and	now		
the	nth	element	arrives	(n	>	s)	

• With	probability	s/n,	keep	the	nth	element,	else	discard	
it	

•  If	we	picked	the	nth	element,	then	it	replaces	one	of	the		
s	elements	in	the	sample	S,	picked	uniformly	at	random	

•  Claim:	This	algorithm	maintains	a	sample	S	
with	the	desired	property:	
– Aper	n	elements,	the	sample	contains	each	
element	seen	so	far	with	probability	s/n	
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Proof:	By	InducHon	
•  We	prove	this	by	induc-on:	

– Assume	that	aper	n	elements,	the	sample	contains	
each	element	seen	so	far	with	probability	s/n	

– We	need	to	show	that	aper	seeing	element	n+1	the	
sample	maintains	the	property	

•  Sample	contains	each	element	seen	so	far	with	probability	
s/(n+1)	

•  Base	case:	
– Aper	we	see	n=s	elements	the	sample	S	has	the	
desired	property	

•  Each	out	of	n=s	elements	is	in	the	sample	with	probability	s/
s	=	1	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h;p://

www.mmds.org	
19	



Proof:	By	InducHon	
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Queries	over	a		
(long)	Sliding	Window	



Sliding	Windows	
•  A	useful	model	of	stream	processing	is	that	
queries	are	about	a	window	of	length	N	–		
the	N	most	recent	elements	received	

•  Interes-ng	case:	N	is	so	large	that	the	data	
cannot	be	stored	in	memory,	or	even	on	disk	
– Or,	there	are	so	many	streams	that	windows		
for	all	cannot	be	stored	

•  Amazon	example:		
–  For	every	product	X	we	keep	0/1	stream	of	whether	
that	product	was	sold	in	the	n-th	transacHon	

– We	want	answer	queries,	how	many	Hmes	have	we	
sold	X	in	the	last	k	sales	
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Sliding	Window:	1	Stream	
•  Sliding	window	on	a	single	stream:	
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CounHng	Bits	(1)	
•  Problem:		

– Given	a	stream	of	0s	and	1s	
– Be	prepared	to	answer	queries	of	the	form		
How	many	1s	are	in	the	last	k	bits?	where	k	≤ N	

•  Obvious	solu-on:		
Store	the	most	recent	N	bits	
– When	new	bit	comes	in,	discard	the	N+1st		bit	

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 

Past                              Future 
J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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CounHng	Bits	(2)	
•  You	can	not	get	an	exact	answer	without	
storing	the	en-re	window	

•  Real	Problem:		
What	if	we	cannot	afford	to	store	N	bits?	
– E.g.,	we’re	processing	1	billion	streams	and		
N		=	1	billion	

•  But	we	are	happy	with	an	approximate	
answer	

25	
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An	a;empt:	Simple	soluHon	
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DGIM	Method	
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DGIM	Method	

•  DGIM	soluHon	does	not	assume	uniformity	
•  Store	O(log	N)2	bits	per	stream.	
•  SoluHon	gives	and	answer	which	is	never	off	
by	more	than	50%	
– Can	be	improved	to	arbitrary	factor	1/r,	r>0.	



Idea:	ExponenHal	Windows	
•  Solu-on	that	doesn’t	(quite)	work:	

– Summarize	exponen-ally	increasing	regions		
of	the	stream,	looking	backward	

– Drop	small	regions	if	they	begin	at	the	same	point	
as	a	larger	region	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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What’s	Good?	
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What’s	Not	So	Good?	
•  As	long	as	the	1s	are	fairly	evenly	distributed,	
the	error	due	to	the	unknown	region	is	small	–	
no	more	than	50%	

•  But	it	could	be	that	all	the	1s	are	in	the	
unknown	area	at	the	end	

•  In	that	case,	the	error	is	unbounded!	
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Fixup:	DGIM	method	
•  Idea:	Instead	of	summarizing	fixed-length	
blocks,	summarize	blocks	with	specific	
number	of	1s:	
– Let	the	block	sizes	(number	of	1s)	increase	
exponenHally	

•  When	there	are	few	1s	in	the	window,	block	
sizes	stay	small,	so	errors	are	small	

32	
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DGIM:	Timestamps	
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DGIM:	Buckets	
•  A	bucket	in	the	DGIM	method	is	a	record	

consisHng	of:	
–  (A)	The	-mestamp	of	its	end	[O(log	N)	bits]	
–  (B)	The	number	of	1s	between	its	beginning	and	
end	[O(log	log	N)	bits]	

•  Constraint	on	buckets:		
Number	of	1s	must	be	a	power	of	2	

–  That	explains	the	O(log	log	N)		in	(B)	above	

34	
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RepresenHng	a	Stream	by	Buckets	

•  Either	one	or	two	buckets	with	the	same	
power-of-2	number	of	1s	

•  Buckets	do	not	overlap	in	-mestamps	

•  Buckets	are	sorted	by	size	
– Earlier	buckets	are	not	smaller	than	later	buckets	

•  Buckets	disappear	when	their		
end-Hme	is	>	N		Hme	units	in	the	past	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Example:	BuckeHzed	Stream	
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N	

1 of 
size 2 

2 of 
size 4 

2 of 
size 8 

At least 1 of 
size 16.  Partially 
beyond window. 

2 of 
size 1 

1001010110001011010101010101011010101010101110101010111010100010110010 

Three	proper-es	of	buckets	that	are	maintained:	
		-	Either	one	or	two	buckets	with	the	same	power-of-2	number	of	1s	
		-	Buckets	do	not	overlap	in	Hmestamps	
		-	Buckets	are	sorted	by	size	



UpdaHng	Buckets	(1)	

•  When	a	new	bit	comes	in,	drop	the	last	
(oldest)	bucket	if	its	end-Hme	is	prior	to	N		
Hme	units	before	the	current	Hme	

•  2	cases:	Current	bit	is	0	or	1	

•  If	the	current	bit	is	0:		
no	other	changes	are	needed	

37	
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UpdaHng	Buckets	(2)	

•  If	the	current	bit	is	1:	
–  (1)	Create	a	new	bucket	of	size	1,	for	just	this	bit	

•  End	-mestamp	=	current	-me	

–  (2)	If	there	are	now	three	buckets	of	size	1,	
combine	the	oldest	two	into	a	bucket	of	size	2	

–  (3)	If	there	are	now	three	buckets	of	size	2,	
	combine	the	oldest	two	into	a	bucket	of	size	4	

–  (4)	And	so	on	…	

38	
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Example:	UpdaHng	Buckets	
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Bit of value 1 arrives 

Two orange buckets get merged into a yellow bucket 

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1: 

Buckets get merged… 

State of the buckets after merging 
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How	to	Query?	

•  To	es-mate	the	number	of	1s	in	the	most	
recent	N	bits:	
1.   Sum	the	sizes	of	all	buckets	but	the	last	

(note	“size”	means	the	number	of	1s	in	the	bucket)	

2.   Add	half	the	size	of	the	last	bucket	

•  Remember:	We	do	not	know	how	many	1s		
of	the	last	bucket	are	sHll	within	the	wanted	
window	
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Example:	BuckeHzed	Stream	
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Error	Bound:	Proof	
•  Why	is	error	50%?	Let’s	prove	it!	
•  Suppose	the	last	bucket	has	size	2j	
•  Then	by	assuming	2j-1		(i.e.,	half)	of	its	1s	are	
sHll	within	the	window,	we	make	an	error	of	
at	most	2j-1	

•  Since	there	is	at	least	one	bucket	of	each	of	
the	sizes	less	than	2j,	the	true	sum	is	at	least		
1	+	2	+	4	+	..	+	2j-1		=	2j	-1	

•  Thus,	error	at	most	50%	
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N	

At least 16 1s 



Further	Reducing	the	Error	

•  Instead	of	maintaining	1	or	2	of	each	size	
bucket,	we	allow	either	r-1	or	r	buckets		(r	>	2)	
– Except	for	the	largest	size	buckets;	we	can	have	
any	number	between	1	and	r	of	those	

•  Error	is	at	most	O(1/r)	
•  By	picking	r	appropriately,	we	can	tradeoff	
between	number	of	bits	we	store	and	the	
error	
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Analysis	
•  Actual	count	is	c.		
•  There	are	at	least	d	and	at	most	d+1	buckets	
of	each	size.	

•  Answer	is	returned	from	2j	size	bucket.	
•  Case	1:	esHmate	<	c	

– Final	bucket:	2j-1.	c	is	at	least	(d	*	2j).		
diff	/	c	<		1	/	4d	

•  Case	2:	esHmate	>	c	
– Final	bucket:	2j-1.	c	is	at	least	(d	*	2j).		
diff	/	c	>		1	/	4d	

•  FracHonal	error	=	(2j-1	-1)	/	(1+	d*2j	–	1)	
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Extensions	
•  Can	we	use	the	same	trick	to	answer	queries	
How	many	1’s	in	the	last	k?	where	k	<	N?	
– A:	Find	earliest	bucket	B	that	at	overlaps	with	k.	
Number	of	1s	is	the	sum	of	sizes	of	more	recent	
buckets	+	½	size	of	B	

	

•  Can	we	handle	the	case	where	the	stream	is	
not	bits,	but	integers,	and	we	want	the	sum	
of	the	last	k	elements?	
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Extensions	
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ci …estimated count for i-th bit 

2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  6  

2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  6  3 
2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  6  3  2   
2  5  7  1  3  8  4  6  7  9  1  3  7  6  5  3  5  7  1  3  3  1  2  2  6  3  2  5 

Idea: Sum in each 
bucket is at most 
2b (unless bucket 
has only 1 integer) 
Bucket sizes: 

1 2 8 16 4 



Summary	
•  Sampling	a	fixed	propor-on	of	a	stream	

– Sample	size	grows	as	the	stream	grows	

•  Sampling	a	fixed-size	sample	
– Reservoir	sampling	

•  Coun-ng	the	number	of	1s	in	the	last	N	
elements	
– ExponenHally	increasing	windows	
– Extensions:	

•  Number	of	1s	in	any	last	k	(k	<	N)	elements	
•  Sums	of	integers	in	the	last	N	elements	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	

Mining	of	Massive	Datasets,	h;p://
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