
CS60021:	Scalable	Data	Mining	
	

Spark	
Sourangshu	Bha<acharya	

SCALA	

Scala	
•  Scala	is	both	func?onal	and	object-oriented	

–  every	value	is	an	object	
–  every	func?on	is	a	value--including	methods	

•  Scala	is	interoperable	with	java.	
•  Scala	is	sta?cally	typed	

–  includes	a	local	type	inference	system:	
–  in	Java	1.5:		

Pair<Integer, String> p =
 new Pair<Integer, String>(1, "Scala");

–  in	Scala:	
val p = new MyPair(1, "scala");

Var	and	Val	
q Use	var to	declare	variables:	

q  var x = 3;
q  x += 4;

q Use	val to	declare	values	(final	vars)	
q  val y = 3;
q  y += 4; // error

q No?ce	no	types,	but	it	is	sta?cally	typed	
q  var x = 3;
q  x = “hello world”; // error

q Type	annota?ons:	
q  var x : Int = 3;

Class	defini?on	
class Point(val xc: Int, val yc: Int) {
 var x: Int = xc
 var y: Int = yc

 def move(dx: Int, dy: Int) {
 x = x + dx
 y = y + dy
 println ("Point x location : " + x);
 println ("Point y location : " + y);
 }
}

Scala	

q Class	instances	
q val c = new IntCounter[String];

q Accessing	members		
q println(c.size); // same as c.size()

q Defining	func?ons:	
q  def foo(x : Int) { println(x == 42); }
q  def bar(y : Int): Int = y + 42; // no braces

 // needed!

q  def return42 = 42; // No parameters either!

Scala	

q Defining	lambdas	–	nameless	func?ons	(types	
some?mes	needed)	
q val f = x :Int => x + 42;	

q Closures	(context	sensi?ve	func?ons)	
q  var y = 3;
q  val g = {x : Int => y += 1; x+y; }

q Maps	(and	a	cool	way	to	do	some	func?ons)	
q List(1,2,3).map(_+10).foreach(println)	

q Filtering	(and	ranges!)	
q  1 to 100 filter (_ % 7 == 3) foreach (println)

“Statements”
•  Scala’s “statements” should really be called “expressions,” because every

statement has a value
•  The value of many statements, for example the while loop,	is ()	

•  () is a value of type Unit	
•  () is the only value of type Unit	
•  ()	basically means “Nothing to see here. Move along.”

•  The value of a if or match	statement is the last value computed
•  The value of a block, {…}, is the last value computed in the block

•  A statement is ended by the end of the line (not with a semicolon) unless it is

obviously incomplete, or if the next line cannot begin a valid statement
–  For example, x	=	3	*	(2	*	y	+ is obviously incomplete
–  Because Scala lets you leave out a lot of unnecessary punctuation, sometimes a line

that you think is complete really isn’t complete (or vice versa)
•  You can end statements with semicolons, but that’s not good Scala practice

8

Familiar statement types
•  These are the same as in Java, but have a value of 	():

–  variable	=	expression	//	also	+=,	*=,	etc.	
–  while	(condition)	{	statements	}
–  do	{	statements	}	while	(condition)	

•  These are the same as in Java, but may have a useful value:
–  {	statements	}	

•  The value of the block is the last value computed in it
–  if	(condition)	{	statements	}	else	{	statements	}

•  The value is the value of whichever block is chosen
•  If the value is to be used, both blocks should have the same type, otherwise

the type of the result is the “least upper bound” of the two types
–  if	(condition)	{	statements	}

•  The value is the value of the last statement executed, but its type is Any –
if you want a value, you really should use an else	

•  As in Java, braces around a single statement may be omitted
9

Arrays
•  Arrays in Scala are parameterized types

–  Array[String] is an Array of Strings, where String is a type parameter
–  In Java we would call this a “generic type”

•  When no initial values are given, new is required, along with an
explicit type:
–  val	ary	=	new	Array[Int](5)	

•  When initial values are given, new is not allowed:
–  val	ary2	=	Array(3,	1,	4,	1,	6)	

•  Array syntax in Scala is just object syntax

•  Scala’s Lists are more useful, and used more often, than Arrays
–  val	list1	=	List(3,	1,	4,	1,	6)	
–  val	list2	=	List[Int]()	//	An	empty	list	must	have	an	

explicit	type	

Simple List operations
•  By default, Lists, like Strings, are immutable

–  Operations on an immutable List return a new List
•  Basic operations:

–  list.head (or list	head) returns the first element in the list
–  list.tail (or list	tail) returns a list with the first element removed
–  list(i) returns the ith element (starting from 0) of the list
–  list(i)	=	value is illegal (immutable, remember?)
–  value	::	list returns a list with value appended to the front
–  list1	:::	list2 appends (“concatenates”) the two lists
–  list.contains(value) (or list	contains	value) tests whether value is in list	

•  Many operations on Lists also work on other kinds of Sequences
•  An operation on a Sequence may return a Sequence of a different type

–  scala>	"abc"	::	List(1,	2,	3)	
res22:	List[Any]	=	List(abc,	1,	2,	3)	

–  This happens because Any is the only type that can hold both integers and strings
•  There are over 150 built-in operations on Lists—use the API!

Tuples
•  Scala has tuples, up to size 22 (why 22? I have no idea.)

–  scala>	val	t	=	Tuple3(3,	"abc",	5.5)	
t:	(Int,	java.lang.String,	Double)	=	(3,abc,5.5)	

–  scala>	val	tt	=	(3,	"abc",	5.5)		
tt:	(Int,	java.lang.String,	Double)	=	(3,abc,5.5)	
	

•  Tuples are referenced starting from 1, using _1, _2, ...
–  scala>	val	t	=	('a',	"one",	1)	

t:	(Char,	String,	Int)	=	(a,one,1)	
–  scala>	t._2	

res3:	String	=	one	
	

•  Tuples, like Lists, are immutable
•  Tuples are a great way to return more than one value from a

method

Simple method definitions
•  def	isEven(n:	Int)	=	{	

		val	m	=	n	%	2	
		m	==	0	
}
–  The result is the last value (in this case, a Boolean)
–  This is really kind of poor style; the extra variable isn’t needed

•  def	isEven(n:	Int)	=	n	%	2	==	0

–  This is much better style
–  The result is just a single expression, so no braces are needed

•  def	countTo(n:	Int)	{	

		for	(i	<-	1	to	10)	{	println(i)	}	
}	
–  It’s good style to omit the =	when the result is ()
–  If you omit the =, the result will be ()	
–  You need either braces or an =; you can’t leave out both

Methods and functions
•  A method is a function that belongs to an object

–  Methods usually use, and manipulate, the fields of an object

•  A function does not belong to any object
–  The inputs to a function are, or should be, just its parameters
–  The result of calling a function is, or should be, just its return value

•  Scala can sometimes accept a method where a function is
expected
–  A method can sometimes be “converted” to a function by following

with an underscore (for example, isEven	_)

Functions are first-class objects
•  Functions are values (like integers, etc.) and can be assigned to

variables, passed to and returned from functions, and so on
•  Wherever you see the => symbol, it’s a literal function
•  Example (assigning a literal function to the variable foo):

–  scala>	val	foo	=	
		(x:	Int)	=>	if	(x	%	2	==	0)	x	/	2	else	3	*	x	+	1	
foo:	(Int)	=>	Int	=	<function1>	
	
scala>	foo(7)	
res28:	Int	=	22	

•  The basic syntax of a function literal is
 parameter_list => function_body

•  In this example, foreach is a function that takes a function as a
parameter:
–  myList.foreach(i	=>	println(2	*	i))

Functions as parameters
•  To define a function, you must specify the types of each of its parameters
•  Therefore, to have a function parameter, you must know how to write its type:

–  (type1,	type2,	...,	typeN)	=>	return_type	
–  type	=>	return_type	//	if	only	one	parameter	
–  ()	=>	return_type	//	if	no	parameters	

•  Example:
–  scala>	def	doTwice(f:	Int	=>	Int,	n:	Int)	=	f(f(n))	

doTwice:	(f:	(Int)	=>	Int,n:	Int)Int	
	
scala>	def	collatz(n:	Int)	=	if	(n	%	2	==	0)	n	/	2	else	3	*	n	
+	1	
collatz:	(n:	Int)Int	
	
scala>	doTwice(collatz,	7)	
res2:	Int	=	11	
	
scala>	doTwice(a	=>	101	*	a,	3)							
res4:	Int	=	30603	

Higher-order methods on Lists
•  map applies a one-parameter function to every element of a List, returning

a new List
–  scala>	def	double(n:	Int)	=	2	*	n	

double:	(n:	Int)Int	
–  scala>	val	ll	=	List(2,	3,	5,	7,	11)	

ll:	List[Int]	=	List(2,	3,	5,	7,	11)	
–  scala>	ll	map	double	

res5:	List[Int]	=	List(4,	6,	10,	14,	22)	
–  scala>	ll	map	(n	=>	3	*	n)	

res6:	List[Int]	=	List(6,	9,	15,	21,	33)	
–  scala>	ll	map	(n	=>	n	>	5)	

res8:	List[Boolean]	=	List(false,	false,	false,	true,	
true)

•  filter applies a one-parameter test to every element of a List, returning a
List of those elements that pass the test
–  scala>	ll	filter(n	=>	n	<	5)		

res10:	List[Int]	=	List(2,	3)	
–  scala>	ll	filter	(_	<	5) // abbreviated function where parameter is

used once
res11:	List[Int]	=	List(2,	3)	

More higher-order methods
•  def	filterNot(p:	(A)	=>	Boolean):	List[A]	

–  Selects all elements of this list which do not satisfy a predicate

•  def	count(p:	(A)	=>	Boolean):	Int	
–  Counts the number of elements in the list which satisfy a predicate		

	
•  def	forall(p:	(A)	=>	Boolean):	Boolean	

–  Tests whether a predicate holds for every element of this list
	

•  def	exists(p:	(A)	=>	Boolean):	Boolean	
–  Tests whether a predicate holds for at least one of the elements of this list

	
•  def	find(p:	(A)	=>	Boolean):	Option[A]	

–  Finds the first element of the list satisfying a predicate, if any
	

•  def	sortWith(lt:	(A,	A)	=>	Boolean):	List[A]	
–  Sorts this list according to a comparison function	

SPARK	

Spark	

Spark	is	an	In-Memory	Cluster	CompuAng	
plaCorm	for	IteraAve	and	InteracAve	

ApplicaAons.	

h<p://spark.apache.org	

Spark	

q Started	in	AMPLab	at	UC	Berkeley.	
q Resilient	Distributed	Datasets.	
q Data	and/or	Computa?on	Intensive.	
q Scalable	–	fault	tolerant.	
q Integrated	with	SCALA.	
q Straggler	handling.	
q Data	locality.	
q Easy	to	use.	

Background	

•  Commodity	clusters	have	become	an	important	compu?ng	
plaZorm	for	a	variety	of	applica?ons	
–  In	industry:	search,	machine	transla?on,	ad	targe?ng,	…	
–  In	research:	bioinforma?cs,	NLP,	climate	simula?on,	…	

•  High-level	cluster	programming	models	like	MapReduce	
power	many	of	these	apps	

•  Theme	of	this	work:	provide	similarly	powerful	abstrac8ons	
for	a	broader	class	of	applica8ons	

Mo?va?on	
Current	popular	programming	models	for	clusters	transform	
data	flowing	from	stable	storage	to	stable	storage	

E.g.,	MapReduce:	

Map	

Map	

Map	

Reduce	

Reduce	

Input	 Output	

Mo?va?on	

Map	

Map	

Map	

Reduce	

Reduce	

Input	 Output	

Benefits	of	data	flow:	run?me	can	decide	
where	to	run	tasks	and	can	automa?cally	

recover	from	failures	

•  Current	popular	programming	models	for	clusters	
transform	data	flowing	from	stable	storage	to	stable	
storage	

•  E.g.,	MapReduce:	

Mo?va?on	
•  Acyclic	data	flow	is	a	powerful	abstrac?on,	but	is	not	efficient	

for	applica?ons	that	repeatedly	reuse	a	working	set	of	data:	
–  IteraAve	algorithms	(many	in	machine	learning)	
–  InteracAve	data	mining	tools	(R,	Excel,	Python)	

•  Spark	makes	working	sets	a	first-class	concept	to	efficiently	
support	these	apps	

Spark	Goal	
•  Provide	distributed	memory	abstrac?ons	for	clusters	to	

support	apps	with	working	sets	
•  Retain	the	a<rac?ve	proper?es	of	MapReduce:	

–  Fault	tolerance	(for	crashes	&	stragglers)	
–  Data	locality	
–  Scalability	

Solution:	augment	data	flow	model	with	
“resilient	distributed	datasets”	(RDDs)	

Resilient	Distributed	Datasets	
q  Immutable	distributed	SCALA	collec?ons.	

q Array,	List,	Map,	Set,	etc.	
q Transforma?ons	on	RDDs	create	new	RDDs.	

q Map,	ReducebyKey,	Filter,	Join,	etc.	
q Ac?ons	on	RDD	return	values.	

q Reduce,	collect,	count,	take,	etc.	
q Seamlessly	integrated	into	a	SCALA	program.	
q RDDs	are	materialized	when	needed.	
q RDDs	are	cached	to	disk	–	graceful	degrada?on.	
q Spark	framework	re-computes	lost	splits	of	RDDs.	

27

RDDs	in	More	Detail	
q An	RDD	is	an	immutable,	par??oned,	logical	
collec?on	of	records	
q Need	not	be	materialized,	but	rather	contains	informa?on	
to	rebuild	a	dataset	from	stable	storage	

q Par??oning	can	be	based	on	a	key	in	each	record	
(using	hash	or	range	par??oning)	

q Built	using	bulk	transforma?ons	on	other	RDDs	
q Can	be	cached	for	future	reuse	

RDD	Opera?ons	
Transformations	
(define	a	new	RDD)	

map	
filter	
sample	
union	
groupByKey	
reduceByKey	
join	
cache	
…	

Actions	
(return	a	result	to	driver)	

reduce	
collect	
count	
save	
lookupKey	
…	
	
	
	

RDD	Fault	Tolerance	
•  RDDs	maintain	lineage	informa?on	that	can	be	used	to	

reconstruct	lost	par??ons	

•  Ex:	
cachedMsgs = textFile(...).filter(_.contains(“error”))
 .map(_.split(‘\t’)(2))
 .cache()

HdfsRDD	
path:	hdfs://…	

FilteredRDD	
func:	contains(...)	

MappedRDD	
func:	split(…)	 CachedRDD	

Benefits	of	RDD	Model	
q Consistency	is	easy	due	to	immutability	

	
q  Inexpensive	fault	tolerance	(log	lineage	rather	than	

replica?ng/checkpoin?ng	data)	
	

q Locality-aware	scheduling	of	tasks	on	par??ons	
	

q Despite	being	restricted,	model	seems	applicable	to	a	broad	
variety	of	applica?ons	

Spark	Architecture	

Example:	MapReduce	
•  MapReduce	data	flow	can	be	expressed	using	RDD	transforma?ons	

res = data.flatMap(rec => myMapFunc(rec))
 .groupByKey()
 .map((key, vals) => myReduceFunc(key, vals))

Or	with	combiners:	

res = data.flatMap(rec => myMapFunc(rec))
 .reduceByKey(myCombiner)
 .map((key, val) => myReduceFunc(key, val))

Word	Count	in	Spark	

val lines = spark.textFile(“hdfs://...”)

val counts = lines.flatMap(_.split(“\\s”))
 .reduceByKey(_ + _)

counts.save(“hdfs://...”)

Example:	Matrix	Mul?plica?on	

Matrix	Mul?plica?on	
u Representa?on	of	Matrix:	

u List	<Row	index,	Col	index,	Value>	
u Size	of	matrices:	First	matrix	(A):	m*k,	Second	matrix	(B):	k*n	

u Scheme:	
u For	each	input	record:	If	input	record	

u Mapper	key:	<row_index_matrix_1,	Column_index_matrix_2>	
u Mapper	value:	<	column_index_1	/	row_index_2,	value>	
u GroupByKey:	List(Mapper	Values)	
u Collect	all	(two)	records	with	the	same	first	field	mul?ply	

them	and	add	to	the	sum.		

Example:	Logis?c	Regression	

Logis?c	Regression	

•  Binary	Classifica?on.	y	ε	{+1,	-1}	
•  Probability	of	classes	given	by	linear	model:	

	
	
	

•  Regularized	ML	es?mate	of	w	given	dataset	(xi,	yi)	is	obtained	
by	minimizing:	

38

p(y | x,w) = 1
1+ e(−yw

T x)

l(w) = log(1+ exp(−yiw
T xi))+

λ
2
wTw

i
∑

Logis?c	Regression	
•  Gradient	of	the	objec?ve	is	given	by:	

	
	
	

•  Gradient	Descent	updates	are:	

∇l(w) = (1−σ (yiw
T xi))yixi −λw

i
∑

wt+1 = wt − s∇l(wt)

Spark	Implementa?on	

	
val x = loadData(file) //creates RDD

var w = 0

do {
//creates RDD

val g = x.map(a => grad(w,a)).reduce(_+_)

s = linesearch(x,w,g)

w = w – s * g

}while(norm(g) > e)

Scaleup	with	Cores	

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7

Ti
m

e
in

 s
ec

on
ds

Number of Cores

Epsilon (Pascal Challenge)

Spark-GD

Spark-CG Liblinear-C++

Scaleup	with	Nodes	

42

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Ti
m

e
in

 s
ec

on
ds

Number of nodes

Epsilon (Pascal Challenge)

Spark-GD

Spark-CG

996.24 s
Liblinear-C++

Example:	PageRank	

Basic	Idea	
•  Give	pages	ranks	(scores)	based	on	links	to	them	

–  Links	from	many	pages	è	high	rank	
–  Link	from	a	high-rank	page	è	high	rank	

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png

Algorithm	

1.0 1.0

1.0

1.0

1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

Algorithm	

1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5

Algorithm	
1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

0.58 1.0

1.85

0.58

Algorithm	
1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5

Algorithm	

0.39 1.72

1.31

0.58

.	.	.	

1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

Algorithm	

0.46 1.37

1.44

0.73

Final state:

1.  Start	each	page	at	a	rank	of	1	
2.  On	each	itera?on,	have	page	p	contribute	

rankp	/	|neighborsp|	to	its	neighbors	
3.  Set	each	page’s	rank	to	0.15	+	0.85	×	contribs	

Spark	Implementa?on	
val	links	=	//	RDD	of	(url,	neighbors)	pairs	
var	ranks	=	//	RDD	of	(url,	rank)	pairs	
	
for	(i	<-	1	to	ITERATIONS)	{	
		val	contribs	=	links.join(ranks).flatMap	{	
				(url,	(nhb,	rank))	=>	
						nhb(dest	=>	(dest,	rank/nhb.size))	
		}	
		ranks	=	contribs.reduceByKey(_	+	_)	
																		.mapValues(0.15	+	0.85	*	_)	
}	
	
ranks.saveAsTextFile(...)	

Example:	Alterna?ng	Least	squares	

Collabora?ve	filtering	

Matrix	Factoriza?on	

Alterna?ng	Least	Squares	

Naïve	Spark	ALS	

Efficient	Spark	ALS	

Example:	Log	Mining	
Load	error	messages	from	a	log	into	memory,	then	
interac?vely	search	for	various	pa<erns	

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block	1	

Block	2	

Block	3	

Worker	

Worker	

Worker	

Driver	

cachedMsgs.filter(_.contains(“foo”)).count

cachedMsgs.filter(_.contains(“bar”)).count

. . .

tasks	

results	

Cache	1	

Cache	2	

Cache	3	

Base	RDD	Transformed	RDD	

Ac?on	

Result:	full-text	search	of	Wikipedia	in	<1	sec	(vs	
20	sec	for	on-disk	data)	

Result:	scaled	to	1	TB	data	in	5-7	sec	
(vs	170	sec	for	on-disk	data)	

Spark	Scheduler	

Dryad-like	DAGs	
Pipelines	func?ons	
within	a	stage	
Cache-aware	work	
reuse	&	locality	
Par??oning-aware	
to	avoid	shuffles	 join	

union	

groupBy	

map	

Stage	3	

Stage	1	

Stage	2	

A:	 B:	

C:	 D:	

E:	

F:	

G:	

=	cached	data	partition	

User	Log	Mining	
val	userData	=	sc.sequenceFile[UserID,	UserInfo]("hdfs://...").persist()		
	
def	processNewLogs(logFileName:	String)	{	
	
val	events	=	sc.sequenceFile[UserID,	LinkInfo](logFileName)	
	
val	joined	=	userData.join(events)	//	RDD	of	(UserID,	(UserInfo,	LinkInfo))	pairs		
	
val	offTopicVisits	=	joined.filter	{		
case	(userId,	(userInfo,	linkInfo))	=>	//	Expand	the	tuple	into	its	components					

	userInfo.topics.contains(linkInfo.topic)		
}.count()		
	
println("Number	of	visits	to	non-subscribed	topics:	"	+	offTopicVisits)		
}		
	

User	Log	Mining	

User	Log	Mining	
val	userData	=	sc.sequenceFile[UserID,	UserInfo]("hdfs://...")		
.par??onBy(new	HashParAAoner(100))	//	Create	100	par88ons	
.persist()		
	
def	processNewLogs(logFileName:	String)	{	
	
val	events	=	sc.sequenceFile[UserID,	LinkInfo](logFileName)	
	
val	joined	=	userData.join(events)	//	RDD	of	(UserID,	(UserInfo,	LinkInfo))	pairs		
	
val	offTopicVisits	=	joined.filter	{		
case	(userId,	(userInfo,	linkInfo))	=>	
	//	Expand	the	tuple	into	its	components		
userInfo.topics.contains(linkInfo.topic)		
}.count()		
println("Number	of	visits	to	non-subscribed	topics:	"	+	offTopicVisits)		
}		

User	Log	Mining	

Par??oning	
q  Opera?ons	benefiQng	from	par??oning:	

	
cogroup(),	groupWith(),	join(),	le{OuterJoin(),	rightOuter	Join(),	
groupByKey(),	reduceByKey(),	combineByKey(),	and	lookup().		

q  Opera?ons	affecAng	par??oning:	
	
cogroup(),	groupWith(),	join(),	le{OuterJoin(),	rightOuter	Join(),	
groupByKey(),	reduceByKey(),	combineByKey(),	par??onBy(),	sort()	
	
mapValues()	(if	the	parent	RDD	has	a	par??oner),	
flatMapValues()	(if	parent	has	a	par??oner)	
filter()	(if	parent	has	a	par??oner).		

Page	Rank	(Revisited)	
val	links	=	sc.objectFile[(String,	Seq[String])]("links")	.par??onBy(new	
HashParAAoner(100)).persist()		
	
var	ranks	=	links.mapValues(v	=>	1.0)		
	
for(i<-0	un?l	10)	{	
val	contribu?ons	=	links.join(ranks).flatMap	{		
case	(pageId,	(nbh,	rank))	=>	nbh.map(dest	=>	(dest,	rank	/	nbh.size))		
}		
ranks	=	contribu?ons.reduceByKey((x,	y)	=>	x	+	y).mapValues(v	=>	0.15	+	
0.85*v)	
	}		
ranks.saveAsTextFile("ranks")		
	
	

Accumulators	
val	sc	=	new	SparkContext(...)	val	file	=	sc.textFile("file.txt")		
	
val	blankLines	=	sc.accumulator(0)		
//	Create	an	Accumulator[Int]	ini8alized	to	0		
val	callSigns	=	file.flatMap(
line	=>	{			if	(line	==	"")	{		
blankLines	+=	1														//	Add	to	the	accumulator		
}		
line.split("	")	})	
	
callSigns.saveAsTextFile("output.txt”)	
	
println("Blank	lines:	"	+	blankLines.value)		

Physical	Execu?on	Plan	
q  User	code	defines	a	DAG	(directed	acyclic	graph)	of	RDDs	

q Opera?ons	on	RDDs	create	new	RDDs	that	refer	back	to	their	parents,	
thereby	crea?ng	a	graph.	
	

q  Ac?ons	force	transla?on	of	the	DAG	to	an	execu?on	plan	
q When	you	call	an	ac?on	on	an	RDD	it	must	be	computed.	This	requires	

compu?ng	its	parent	RDDs	as	well.	Spark’s	scheduler	submits	a	job	to	
compute	all	needed	RDDs.	That	job	will	have	one	or	more	stages,	
which	are	parallel	waves	of	computa?on	composed	of	tasks.	Each	
stage	will	correspond	to	one	or	more	RDDs	in	the	DAG.	A	single	stage	
can	correspond	to	mul?ple	RDDs	due	to	pipelining.	
	

q  Tasks	are	scheduled	and	executed	on	a	cluster	
q Stages	are	processed	in	order,	with	individual	tasks	launching	to	

compute	segments	of	the	RDD.	Once	the	final	stage	is	finished	in	a	job,	
the	ac?on	is	complete.	

Tasks	
•  Each	task	internally	performs	the	following	steps:	

	
q Fetching	its	input,	either	from	data	storage	(if	the	RDD	is	an	input	

RDD),	an	exis?ng	RDD	(if	the	stage	is	based	on	already	cached	data),	or	
shuffle	outputs.	
	

q Performing	the	opera?on	necessary	to	compute	RDD(s)	that	it	
represents.	For	instance,	execu?ng	filter()	or	map()	func?ons	on	the	
input	data,	or	perform-	ing	grouping	or	reduc?on.	
	

q Wri?ng	output	to	a	shuffle,	to	external	storage,	or	back	to	the	driver	
(if	it	is	the	final	RDD	of	an	ac?on	such	as	count()).	

