
CS60021:	Scalable	Data	Mining	
	

Map	Reduce	
Sourangshu	Bha=acharya	

Mo?va?on:	Google	Example	
•  20+	billion	web	pages	x	20KB	=	400+	TB	
•  1	computer	reads	30-35	MB/sec	from	disk	

–  ~4	months	to	read	the	web	
•  ~1,000	hard	drives	to	store	the	web	
•  Takes	even	more	to	do	something	useful		
with	the	data!	

•  Today,	a	standard	architecture	for	such	
problems	is	emerging:	
–  Cluster	of	commodity	Linux	nodes	
–  Commodity	network	(ethernet)	to	connect	them	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
2	

Cluster	Architecture	

Mem	

Disk	

CPU	

Mem	

Disk	

CPU	

…	

Switch	

Each	rack	contains	16-64	nodes	

Mem	

Disk	

CPU	

Mem	

Disk	

CPU	

…	

Switch	

Switch	1	Gbps	between		
any	pair	of	nodes	
in	a	rack	

2-10	Gbps	backbone	between	racks	

In 2011 it was guestimated that Google had 1M machines, http://bit.ly/Shh0RO J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
3	

Large-scale	Compu?ng	
•  Large-scale	compuAng	for	data	mining		
problems	on	commodity	hardware	

•  Challenges:	
– How	do	you	distribute	computaAon?	
– How	can	we	make	it	easy	to	write	distributed	
programs?	

– Machines	fail:	
•  One	server	may	stay	up	3	years	(1,000	days)	
•  If	you	have	1,000	servers,	expect	to	loose	1/day	
•  People	es?mated	Google	had	~1M	machines	in	2011	

–  1,000	machines	fail	every	day!	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
4	

Big	Data	Challenges	
q Scalability:	processing	should	scale	with	increase	in	data.	
q Fault	Tolerance:	func?on	in	presence	of	hardware	failure	
q Cost	Effec?ve:	should	run	on	commodity	hardware	
q Ease	of	use:	programs	should	be	small	
q Flexibility:	able	to	process	unstructured	data	

q Solu?on:	Map	Reduce	!	

Idea	and	Solu?on	
•  Issue:	Copying	data	over	a	network	takes	Ame	
•  Idea:	

– Bring	computa?on	close	to	the	data	
– Store	files	mul?ple	?mes	for	reliability	

•  Map-reduce	addresses	these	problems	
– Elegant	way	to	work	with	big	data	
– Storage	Infrastructure	–	File	system	

•  Google:	GFS.	Hadoop:	HDFS	
– Programming	model	

•  Map-Reduce	 J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
6	

Storage	Infrastructure	

•  Problem:	
–  If	nodes	fail,	how	to	store	data	persistently?		

•  Answer:	
– Distributed	File	System:	

•  Provides	global	file	namespace	
•  Google	GFS;	Hadoop	HDFS;	

•  Typical	usage	paKern	
– Huge	files	(100s	of	GB	to	TB)	
– Data	is	rarely	updated	in	place	
–  Reads	and	appends	are	common	

	 J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
7	

What	is	Hadoop		?	
q A	scalable	fault-tolerant	distributed	system	for	data	storage	

and	processing.	
q Core	Hadoop:	

q Hadoop	Distributed	File	System	(HDFS)	
q Hadoop	YARN:	Job	Scheduling	and	Cluster	Resource	Management	
q Hadoop	Map	Reduce:	Framework	for	distributed	data	processing.	

q Open	Source	system	with	large	community	support.	
							h=ps://hadoop.apache.org/			

Hadoop	Architecture	

YARN	

Courtesy:	h=p://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html	

HDFS	

HDFS	
q Assump?ons	

q Hardware	failure	is	the	norm.	
q Streaming	data	access.	
q Write	once,	read	many	?mes.	
q High	throughput,	not	low	latency.	
q Large	datasets.	

q Characteris?cs:	
q Performs	best	with	modest	number	of	large	files	
q Op?mized	for	streaming	reads	
q Layer	on	top	of	na?ve	file	system.	

HDFS	
q Data	is	organized	into	file	and	directories.	
q Files	are	divided	into	blocks	and	distributed	to	nodes.	
q Block	placement	is	known	at	the	?me	of	read	

q Computa?on	moved	to	same	node.	

q Replica?on	is	used	for:	
q Speed	
q Fault	tolerance	
q Self	healing.	

Goals of HDFS
•  Very Large Distributed File System

 – 10K nodes, 100 million files, 10 PB
•  Assumes Commodity Hardware

 – Files are replicated to handle hardware failure
 – Detect failures and recovers from them

•  Optimized for Batch Processing
 – Data locations exposed so that computations can
move to where data resides
 – Provides very high aggregate bandwidth

•  User Space, runs on heterogeneous OS

Distributed File System
•  Single Namespace for entire cluster
•  Data Coherency

 – Write-once-read-many access model
 – Client can only append to existing files

•  Files are broken up into blocks
 – Typically 128 MB block size
 – Each block replicated on multiple DataNodes

•  Intelligent Client
 – Client can find location of blocks
 – Client accesses data directly from DataNode

NameNode Metadata
•  Meta-data in Memory

 – The entire metadata is in main memory
 – No demand paging of meta-data

•  Types of Metadata
 – List of files
 – List of Blocks for each file
 – List of DataNodes for each block
 – File attributes, e.g creation time, replication factor

•  A Transaction Log
 – Records file creations, file deletions. etc

DataNode
•  A Block Server

 – Stores data in the local file system (e.g. ext3)
 – Stores meta-data of a block (e.g. CRC)
 – Serves data and meta-data to Clients

•  Block Report
 – Periodically sends a report of all existing blocks to the
NameNode

•  Facilitates Pipelining of Data
 – Forwards data to other specified DataNodes

HDFS	read	client	

Source:	Hadoop:	The	Defini?ve	Guide	

HDFS	write	Client	

Source:	Hadoop:	The	Defini?ve	Guide	

Block Placement
•  Current Strategy

 -- One replica on local node
 -- Second replica on a remote rack
 -- Third replica on same remote rack
 -- Additional replicas are randomly placed

•  Clients read from nearest replica
•  Would like to make this policy pluggable

NameNode Failure
•  A single point of failure
•  Transaction Log stored in multiple directories

 – A directory on the local file system
 – A directory on a remote file system (NFS/CIFS)

•  Need to develop a real HA solution

Data Pipelining
•  Client retrieves a list of DataNodes on which to place

replicas of a block
•  Client writes block to the first DataNode
•  The first DataNode forwards the data to the next

DataNode in the Pipeline
•  When all replicas are written, the Client moves on to

write the next block in file

MAP	REDUCE	

What	is	Map	Reduce	?	
q  	Method	for	distribu?ng	a	task	across	mul?ple	servers.	
q Proposed	by	Dean	and	Ghemawat,		2004.	
q Consists	of	two	developer	created	phases:	

q Map	
q Reduce	

q  In	between	Map	and	Reduce	is	the	Shuffle	and	Sort	phase.	
q User	is	responsible	for	cas?ng	the	problem	into	map	–	reduce	

framework.	
q Mul?ple	map-reduce	jobs	can	be	“chained”.	

Programming	Model:	MapReduce	

Warm-up	task:	
•  We	have	a	huge	text	document	

•  Count	the	number	of	?mes	each		
dis?nct	word	appears	in	the	file	

•  Sample	applicaAon:		
– Analyze	web	server	logs	to	find	popular	URLs	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
25	

Task:	Word	Count	

Case	1:		
–  File	too	large	for	memory,	but	all	<word,	count>	pairs	
fit	in	memory	

Case	2:	
•  Count	occurrences	of	words:	

– words(doc.txt) | sort | uniq -c
•  where	words	takes	a	file	and	outputs	the	words	in	it,	one	
per	a	line	

•  Case	2	captures	the	essence	of	MapReduce	
– Great	thing	is	that	it	is	naturally	parallelizable	
	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
26	

MapReduce:	Overview	
•  Sequen?ally	read	a	lot	of	data	
•  Map:	

–  Extract	something	you	care	about	

•  Group	by	key:	Sort	and	Shuffle	
•  Reduce:	

–  Aggregate,	summarize,	filter	or	transform	

•  Write	the	result	

Outline	stays	the	same,	Map	and	Reduce	
change	to	fit	the	problem	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
27	

MapReduce:	The	Map	Step	

v	k	

k	 v	

k	 v	

map	
v	k	

v	k	

…	

k	 v	
map	

Input
key-value pairs

Intermediate
key-value pairs

…	

k	 v	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
28	

MapReduce:	The	Reduce	Step	

k	 v	

…	

k	 v	

k	 v	

k	 v	

Intermediate
key-value pairs

Group	
by	key	

reduce	

reduce	

k	 v	

k	 v	

k	 v	

…	

k	 v	

…	

k	 v	

k	 v	 v	

v	 v	

Key-value groups
Output
key-value pairs

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
29	

More	Specifically	
•  Input:	a	set	of	key-value	pairs	
•  Programmer	specifies	two	methods:	

– Map(k, v) → <k’, v’>*
•  Takes	a	key-value	pair	and	outputs	a	set	of	key-value	pairs	

–  E.g.,	key	is	the	filename,	value	is	a	single	line	in	the	file	

•  There	is	one	Map	call	for	every	(k,v)	pair	

– Reduce(k’, <v’>*) → <k’, v’’>*
•  All	values	v’	with	same	key	k’	are	reduced	together		
and	processed	in	v’	order	

•  There	is	one	Reduce	func?on	call	per	unique	key	k’	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
30	

MapReduce:	Word	Coun?ng	

The crew of the space
shuttle Endeavor recently
re turned to Ear th as
ambassadors, harbingers of
a new era o f space
exploration. Scientists at
NASA are saying that the
recent assembly of the
Dextre bot is the first step in
a long-term space-based
man/mache partnership.
'"The work we're doing now
-- the robotics we're doing
-- is what we're going to
need ……………………..

Big document

(The,	1)	
(crew,	1)	
(of,	1)	
(the,	1)	
(space,	1)	
(shu=le,	1)	

(Endeavor,	1)	
(recently,	1)	

….	

(crew,	1)	
(crew,	1)	
(space,	1)	
(the,	1)	
(the,	1)	
(the,	1)	

(shu=le,	1)	
(recently,	1)	

…	

(crew,	2)	
(space,	1)	
(the,	3)	

(shu=le,	1)	
(recently,	1)	

…	

MAP:	
Read	input	and	
produces	a	set	of	
key-value	pairs	

Group	by	key:	
Collect	all	pairs	
with	same	key	

Reduce:	
Collect	all	values	
belonging	to	the	
key	and	output	

(key, value)

Provided by the
programmer

Provided by the
programmer

(key, value) (key, value)

Se
qu

en
?a

lly
	re

ad
	th

e	
da
ta
	

O
nl
y	
			
se
qu

en
?a

l		
		r
ea
ds
	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
31	

Word	Count	Using	MapReduce	

map(key, value):
// key: document name; value: text of the document
 for each word w in value:

 emit(w, 1)

reduce(key, values):
// key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
32	

Map	Phase	
q User	writes	the	mapper	method.	
q  Input	is	an	unstructured	record:	

q E.g.	A	row	of	RDBMS	table,	
q A	line	of	a	text	file,	etc	

q Output	is	a	set	of	records	of	the	form:	<key,	value>	
q Both	key	and	value	can	be	anything,	e.g.	text,	number,	etc.	
q E.g.	for	row	of	RDBMS	table:	<column	id,	value>	
q Line	of	text	file:	<word,	count>	

Shuffle/Sort	phase	
q Shuffle	phase	ensures	that	all	the	mapper	output	records	with	

the	same	key	value,	goes	to	the	same	reducer.	
q Sort	ensures	that	among	the	records	received	at	each	

reducer,	records	with	same	key	arrives	together.	
	

Reduce	phase	
q Reducer	is	a	user	defined	func?on	which	processes	mapper	

output	records	with	some	of	the	keys	output	by	mapper.	
q  Input	is	of	the	form	<key,	value>	

q All	records	having	same	key	arrive	together.	

q Output	is	a	set	of	records	of	the	form	<key,	value>	
q Key	is	not	important	

Parallel	picture	

Example	

•  Word	Count:	Count	the	total	no.	of	
occurrences	of	each	word	

Map	Reduce	

What	was	the	max/min	temperature	for	the	last		century	?	

Hadoop	Map	Reduce	
q Provides:	

q Automa?c	paralleliza?on	and	Distribu?on	
q Fault	Tolerance	
q Methods	for	interfacing	with	HDFS	for	coloca?on	of	computa?on	and	

storage	of	output.	
q Status	and	Monitoring	tools	
q API	in	Java	
q Ability	to	define	the	mapper	and	reducer	in	many	languages	through	

Hadoop	streaming.	

Hadoop	MR	Data	Flow	

Source:	Hadoop:	The	Defini?ve	Guide	

Hadoop(v2)	MR	job	

Source:	Hadoop:	The	Defini?ve	Guide	

Shuffle	and	sort	

Source:	Hadoop:	The	Defini?ve	Guide	

Data	Flow	

•  Input	and	final	output	are	stored	on	a	
distributed	file	system	(FS):	
– Scheduler	tries	to	schedule	map	tasks	“close”	to	
physical	storage	loca?on	of	input	data	

•  Intermediate	results	are	stored	on	local	FS		
of	Map	and	Reduce	workers	

•  Output	is	oVen	input	to	another		
MapReduce	task	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	

Mining	of	Massive	Datasets,	h=p://
www.mmds.org	

43	

Coordina?on:	Master	

•  Master	node	takes	care	of	coordinaAon:	
–  Task	status:	(idle,	in-progress,	completed)	
–  Idle	tasks	get	scheduled	as	workers	become	available	
– When	a	map	task	completes,	it	sends	the	master	the	
loca?on	and	sizes	of	its	R	intermediate	files,	one	for	
each	reducer	

– Master	pushes	this	info	to	reducers	

•  Master	pings	workers	periodically	to	detect	
failures	

	
J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
44	

Fault	tolerance	

q Comes	from	scalability	and	cost	effec?veness	
q HDFS:	

q Replica?on	
q Map	Reduce	

q Restar?ng	failed	tasks:	map	and	reduce	
q Wri?ng	map	output	to	FS	
q Minimizes	re-computa?on	

Dealing	with	Failures	

•  Map	worker	failure	
– Map	tasks	completed	or	in-progress	at		
worker	are	reset	to	idle	

–  Reduce	workers	are	no?fied	when	task	is	rescheduled	on	
another	worker	

•  Reduce	worker	failure	
–  Only	in-progress	tasks	are	reset	to	idle		
–  Reduce	task	is	restarted	

•  Master	failure	
– MapReduce	task	is	aborted	and	client	is	no?fied	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
46	

Failures	

q Task	failure	
q Task	has	failed	–	report	error	to	nodemanager,	appmaster,	
client.	

q Task	not	responsive,	JVM	failure	–	Nodemanager	restarts	
tasks.	

q Applica?on	Master	failure	
q Applica?on	master	sends	heartbeats	to	resourcemanager.	
q If	not	received,	the	resource	manager	retrives	job	history	
of	the	run	tasks.	

q Node	manager	failure	

How	many	Map	and	Reduce	jobs?	

•  M	map	tasks,	R	reduce	tasks	
•  Rule	of	a	thumb:	

– Make	M	much	larger	than	the	number	of	nodes	
in	the	cluster	

– One	DFS	chunk	per	map	is	common	
–  Improves	dynamic	load	balancing	and	speeds	up	
recovery	from	worker	failures	

•  Usually	R	is	smaller	than	M	
– Because	output	is	spread	across	R	files	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
48	

Task	Granularity	&	Pipelining	

•  Fine	granularity	tasks:		map	tasks	>>	machines	
– Minimizes	?me	for	fault	recovery	
– Can	do	pipeline	shuffling	with	map	execu?on	
– Be=er	dynamic	load	balancing		

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
49	

Refinements:	Backup	Tasks	
•  Problem	

–  Slow	workers	significantly	lengthen	the	job	
comple?on	?me:	

•  Other	jobs	on	the	machine	
•  Bad	disks	
•  Weird	things	

•  SoluAon	
– Near	end	of	phase,	spawn	backup	copies	of	tasks	

•  Whichever	one	finishes	first	“wins”	
•  Effect	

– Drama?cally	shortens	job	comple?on	?me	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
50	

Refinement:	Combiners	

•  Oven	a	Map	task	will	produce	many	pairs	of	
the	form	(k,v1),	(k,v2),	…	for	the	same	key	k	
– E.g.,	popular	words	in	the	word	count	example	

•  Can	save	network	Ame	by		
pre-aggregaAng	values	in		
the	mapper:	
– combine(k, list(v1)) à v2
– Combiner	is	usually	same		
as	the	reduce	func?on	

•  Works	only	if	reduce		
func?on	is	commuta?ve	and	associa?ve	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
51	

Refinement:	Combiners	

•  Back	to	our	word	counAng	example:	
–  Combiner	combines	the	values	of	all	keys	of	a	single	
mapper	(single	machine):	
	
	

	
– Much	less	data	needs	to	be	copied	and	shuffled!	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
52	

Refinement:	Par??on	Func?on	

•  Want	to	control	how	keys	get	parAAoned	
–  Inputs	to	map	tasks	are	created	by	con?guous	splits	of	
input	file	

–  Reduce	needs	to	ensure	that	records	with	the	same	
intermediate	key	end	up	at	the	same	worker	

•  System	uses	a	default	parAAon	funcAon:	
–  hash(key) mod R

•  SomeAmes	useful	to	override	the	hash	funcAon:	
–  E.g.,	hash(hostname(URL)) mod R	ensures	URLs	from	a	
host	end	up	in	the	same	output	file	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
53	

Example:	Join	By	Map-Reduce	
•  Compute	the	natural	join	R(A,B)	⋈	S(B,C)	
•  R	and	S	are	each	stored	in	files	
•  Tuples	are	pairs	(a,b)	or	(b,c)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
Mining	of	Massive	Datasets,	h=p://

www.mmds.org	
54	

A B
a1 b1

a2 b1

a3 b2

a4 b3

B C
b2 c1

b2 c2

b3 c3

⋈	
A C
a3 c1

a3 c2

a4 c3

=	

R
S

Map-Reduce	Join	
•  Use	a	hash	funcAon	h	from	B-values	to	1...k	
•  A	Map	process	turns:	

– Each	input	tuple	R(a,b)	into	key-value	pair	(b,(a,R))	
– Each	input	tuple	S(b,c)	into	(b,(c,S))	

•  Map	processes	send	each	key-value	pair	with	
key	b	to	Reduce	process	h(b)	
– Hadoop	does	this	automa?cally;	just	tell	it	what	k	is.	

•  Each	Reduce	process	matches	all	the	pairs	(b,
(a,R))	with	all	(b,(c,S))	and	outputs	(a,b,c).	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	

Mining	of	Massive	Datasets,	h=p://
www.mmds.org	

55	

