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Mo?va?on:	Google	Example	
•  20+	billion	web	pages	x	20KB	=	400+	TB	
•  1	computer	reads	30-35	MB/sec	from	disk	

–  ~4	months	to	read	the	web	
•  ~1,000	hard	drives	to	store	the	web	
•  Takes	even	more	to	do	something	useful		
with	the	data!	

•  Today,	a	standard	architecture	for	such	
problems	is	emerging:	
–  Cluster	of	commodity	Linux	nodes	
–  Commodity	network	(ethernet)	to	connect	them	
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Cluster	Architecture	
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Large-scale	Compu?ng	
•  Large-scale	compuAng	for	data	mining		
problems	on	commodity	hardware	

•  Challenges:	
– How	do	you	distribute	computaAon?	
– How	can	we	make	it	easy	to	write	distributed	
programs?	

– Machines	fail:	
•  One	server	may	stay	up	3	years	(1,000	days)	
•  If	you	have	1,000	servers,	expect	to	loose	1/day	
•  People	es?mated	Google	had	~1M	machines	in	2011	

–  1,000	machines	fail	every	day!	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Big	Data	Challenges	
q Scalability:	processing	should	scale	with	increase	in	data.	
q Fault	Tolerance:	func?on	in	presence	of	hardware	failure	
q Cost	Effec?ve:	should	run	on	commodity	hardware	
q Ease	of	use:	programs	should	be	small	
q Flexibility:	able	to	process	unstructured	data	

q Solu?on:	Map	Reduce	!	



Idea	and	Solu?on	
•  Issue:	Copying	data	over	a	network	takes	Ame	
•  Idea:	

– Bring	computa?on	close	to	the	data	
– Store	files	mul?ple	?mes	for	reliability	

•  Map-reduce	addresses	these	problems	
– Elegant	way	to	work	with	big	data	
– Storage	Infrastructure	–	File	system	

•  Google:	GFS.	Hadoop:	HDFS	
– Programming	model	

•  Map-Reduce	 J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Storage	Infrastructure	

•  Problem:	
–  If	nodes	fail,	how	to	store	data	persistently?		

•  Answer:	
– Distributed	File	System:	

•  Provides	global	file	namespace	
•  Google	GFS;	Hadoop	HDFS;	

•  Typical	usage	paKern	
– Huge	files	(100s	of	GB	to	TB)	
– Data	is	rarely	updated	in	place	
–  Reads	and	appends	are	common	
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What	is	Hadoop		?	
q A	scalable	fault-tolerant	distributed	system	for	data	storage	

and	processing.	
q Core	Hadoop:	

q Hadoop	Distributed	File	System	(HDFS)	
q Hadoop	YARN:	Job	Scheduling	and	Cluster	Resource	Management	
q Hadoop	Map	Reduce:	Framework	for	distributed	data	processing.	

q Open	Source	system	with	large	community	support.	
							h=ps://hadoop.apache.org/			



Hadoop	Architecture	

YARN	

Courtesy:	h=p://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html	



HDFS	



HDFS	
q Assump?ons	

q Hardware	failure	is	the	norm.	
q Streaming	data	access.	
q Write	once,	read	many	?mes.	
q High	throughput,	not	low	latency.	
q Large	datasets.	

q Characteris?cs:	
q Performs	best	with	modest	number	of	large	files	
q Op?mized	for	streaming	reads	
q Layer	on	top	of	na?ve	file	system.	



HDFS	
q Data	is	organized	into	file	and	directories.	
q Files	are	divided	into	blocks	and	distributed	to	nodes.	
q Block	placement	is	known	at	the	?me	of	read	

q Computa?on	moved	to	same	node.	

q Replica?on	is	used	for:	
q Speed	
q Fault	tolerance	
q Self	healing.	



Goals of HDFS 
•  Very Large Distributed File System 

 – 10K nodes, 100 million files, 10 PB 
•   Assumes Commodity Hardware 

 – Files are replicated to handle hardware failure 
 – Detect failures and recovers from them 

•  Optimized for Batch Processing 
 – Data locations exposed so that computations can 
move to where data resides 
 – Provides very high aggregate bandwidth 

•  User Space, runs on heterogeneous OS  



Distributed File System 
•  Single Namespace for entire cluster 
•  Data Coherency 

 – Write-once-read-many access model 
 – Client can only append to existing files  

•  Files are broken up into blocks 
 – Typically 128 MB block size 
 – Each block replicated on multiple DataNodes 

•  Intelligent Client 
 – Client can find location of blocks 
 – Client accesses data directly from DataNode 





NameNode Metadata 
•  Meta-data in Memory 

 – The entire metadata is in main memory 
 – No demand paging of meta-data 

•  Types of Metadata 
 – List of files 
 – List of Blocks for each file 
 – List of DataNodes for each block 
 – File attributes, e.g creation time, replication factor 

•  A Transaction Log 
 – Records file creations, file deletions. etc 



DataNode 
•  A Block Server 

 – Stores data in the local file system (e.g. ext3) 
 – Stores meta-data of a block (e.g. CRC) 
 – Serves data and meta-data to Clients 

•  Block Report 
 – Periodically sends a report of all existing blocks to the 
NameNode 

•  Facilitates Pipelining of Data 
 – Forwards data to other specified DataNodes 



HDFS	read	client	

Source:	Hadoop:	The	Defini?ve	Guide	



HDFS	write	Client	

Source:	Hadoop:	The	Defini?ve	Guide	



Block Placement 
•  Current Strategy 

 -- One replica on local node 
 -- Second replica on a remote rack 
 -- Third replica on same remote rack 
 -- Additional replicas are randomly placed 

•  Clients read from nearest replica 
•  Would like to make this policy pluggable 



NameNode Failure 
•  A single point of failure 
•  Transaction Log stored in multiple directories 

 – A directory on the local file system 
 – A directory on a remote file system (NFS/CIFS) 

•  Need to develop a real HA solution 



Data Pipelining 
•  Client retrieves a list of DataNodes on which to place 

replicas of a block 
•  Client writes block to the first DataNode 
•  The first DataNode forwards the data to the next 

DataNode in the Pipeline 
•  When all replicas are written, the Client moves on to 

write the next block in file 



MAP	REDUCE	



What	is	Map	Reduce	?	
q  	Method	for	distribu?ng	a	task	across	mul?ple	servers.	
q Proposed	by	Dean	and	Ghemawat,		2004.	
q Consists	of	two	developer	created	phases:	

q Map	
q Reduce	

q  In	between	Map	and	Reduce	is	the	Shuffle	and	Sort	phase.	
q User	is	responsible	for	cas?ng	the	problem	into	map	–	reduce	

framework.	
q Mul?ple	map-reduce	jobs	can	be	“chained”.	



Programming	Model:	MapReduce	

Warm-up	task:	
•  We	have	a	huge	text	document	

•  Count	the	number	of	?mes	each		
dis?nct	word	appears	in	the	file	

•  Sample	applicaAon:		
– Analyze	web	server	logs	to	find	popular	URLs	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Task:	Word	Count	

Case	1:		
–  File	too	large	for	memory,	but	all	<word,	count>	pairs	
fit	in	memory	

Case	2:	
•  Count	occurrences	of	words:	

– words(doc.txt) | sort | uniq -c 
•  where	words	takes	a	file	and	outputs	the	words	in	it,	one	
per	a	line	

•  Case	2	captures	the	essence	of	MapReduce	
– Great	thing	is	that	it	is	naturally	parallelizable	
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MapReduce:	Overview	
•  Sequen?ally	read	a	lot	of	data	
•  Map:	

–  Extract	something	you	care	about	

•  Group	by	key:	Sort	and	Shuffle	
•  Reduce:	

–  Aggregate,	summarize,	filter	or	transform	

•  Write	the	result	

Outline	stays	the	same,	Map	and	Reduce	
change	to	fit	the	problem	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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MapReduce:	The	Map	Step	
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MapReduce:	The	Reduce	Step	
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More	Specifically	
•  Input:	a	set	of	key-value	pairs	
•  Programmer	specifies	two	methods:	

– Map(k, v) → <k’, v’>* 
•  Takes	a	key-value	pair	and	outputs	a	set	of	key-value	pairs	

–  E.g.,	key	is	the	filename,	value	is	a	single	line	in	the	file	

•  There	is	one	Map	call	for	every	(k,v)	pair	

– Reduce(k’, <v’>*) → <k’, v’’>* 
•  All	values	v’	with	same	key	k’	are	reduced	together		
and	processed	in	v’	order	

•  There	is	one	Reduce	func?on	call	per	unique	key	k’	
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MapReduce:	Word	Coun?ng	
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Word	Count	Using	MapReduce	

map(key, value): 
// key: document name; value: text of the document 
 for each word w in value: 

  emit(w, 1) 

 

reduce(key, values): 
// key: a word; value: an iterator over counts 
 result = 0 
 for each count v in values: 
  result += v 
 emit(key, result) 

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Map	Phase	
q User	writes	the	mapper	method.	
q  Input	is	an	unstructured	record:	

q E.g.	A	row	of	RDBMS	table,	
q A	line	of	a	text	file,	etc	

q Output	is	a	set	of	records	of	the	form:	<key,	value>	
q Both	key	and	value	can	be	anything,	e.g.	text,	number,	etc.	
q E.g.	for	row	of	RDBMS	table:	<column	id,	value>	
q Line	of	text	file:	<word,	count>	



Shuffle/Sort	phase	
q Shuffle	phase	ensures	that	all	the	mapper	output	records	with	

the	same	key	value,	goes	to	the	same	reducer.	
q Sort	ensures	that	among	the	records	received	at	each	

reducer,	records	with	same	key	arrives	together.	
	



Reduce	phase	
q Reducer	is	a	user	defined	func?on	which	processes	mapper	

output	records	with	some	of	the	keys	output	by	mapper.	
q  Input	is	of	the	form	<key,	value>	

q All	records	having	same	key	arrive	together.	

q Output	is	a	set	of	records	of	the	form	<key,	value>	
q Key	is	not	important	



Parallel	picture	



Example	

•  Word	Count:	Count	the	total	no.	of	
occurrences	of	each	word	



Map	Reduce	

What	was	the	max/min	temperature	for	the	last		century	?	



Hadoop	Map	Reduce	
q Provides:	

q Automa?c	paralleliza?on	and	Distribu?on	
q Fault	Tolerance	
q Methods	for	interfacing	with	HDFS	for	coloca?on	of	computa?on	and	

storage	of	output.	
q Status	and	Monitoring	tools	
q API	in	Java	
q Ability	to	define	the	mapper	and	reducer	in	many	languages	through	

Hadoop	streaming.	



Hadoop	MR	Data	Flow	

Source:	Hadoop:	The	Defini?ve	Guide	



Hadoop(v2)	MR	job	

Source:	Hadoop:	The	Defini?ve	Guide	



Shuffle	and	sort	

Source:	Hadoop:	The	Defini?ve	Guide	



Data	Flow	

•  Input	and	final	output	are	stored	on	a	
distributed	file	system	(FS):	
– Scheduler	tries	to	schedule	map	tasks	“close”	to	
physical	storage	loca?on	of	input	data	

•  Intermediate	results	are	stored	on	local	FS		
of	Map	and	Reduce	workers	

•  Output	is	oVen	input	to	another		
MapReduce	task	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	

Mining	of	Massive	Datasets,	h=p://
www.mmds.org	
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Coordina?on:	Master	

•  Master	node	takes	care	of	coordinaAon:	
–  Task	status:	(idle,	in-progress,	completed)	
–  Idle	tasks	get	scheduled	as	workers	become	available	
– When	a	map	task	completes,	it	sends	the	master	the	
loca?on	and	sizes	of	its	R	intermediate	files,	one	for	
each	reducer	

– Master	pushes	this	info	to	reducers	

•  Master	pings	workers	periodically	to	detect	
failures	
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Fault	tolerance	

q Comes	from	scalability	and	cost	effec?veness	
q HDFS:	

q Replica?on	
q Map	Reduce	

q Restar?ng	failed	tasks:	map	and	reduce	
q Wri?ng	map	output	to	FS	
q Minimizes	re-computa?on	



Dealing	with	Failures	

•  Map	worker	failure	
– Map	tasks	completed	or	in-progress	at		
worker	are	reset	to	idle	

–  Reduce	workers	are	no?fied	when	task	is	rescheduled	on	
another	worker	

•  Reduce	worker	failure	
–  Only	in-progress	tasks	are	reset	to	idle		
–  Reduce	task	is	restarted	

•  Master	failure	
– MapReduce	task	is	aborted	and	client	is	no?fied	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Failures	

q Task	failure	
q Task	has	failed	–	report	error	to	nodemanager,	appmaster,	
client.	

q Task	not	responsive,	JVM	failure	–	Nodemanager	restarts	
tasks.	

q Applica?on	Master	failure	
q Applica?on	master	sends	heartbeats	to	resourcemanager.	
q If	not	received,	the	resource	manager	retrives	job	history	
of	the	run	tasks.	

q Node	manager	failure	



How	many	Map	and	Reduce	jobs?	

•  M	map	tasks,	R	reduce	tasks	
•  Rule	of	a	thumb:	

– Make	M	much	larger	than	the	number	of	nodes	
in	the	cluster	

– One	DFS	chunk	per	map	is	common	
–  Improves	dynamic	load	balancing	and	speeds	up	
recovery	from	worker	failures	

•  Usually	R	is	smaller	than	M	
– Because	output	is	spread	across	R	files	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Task	Granularity	&	Pipelining	

•  Fine	granularity	tasks:		map	tasks	>>	machines	
– Minimizes	?me	for	fault	recovery	
– Can	do	pipeline	shuffling	with	map	execu?on	
– Be=er	dynamic	load	balancing		

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Refinements:	Backup	Tasks	
•  Problem	

–  Slow	workers	significantly	lengthen	the	job	
comple?on	?me:	

•  Other	jobs	on	the	machine	
•  Bad	disks	
•  Weird	things	

•  SoluAon	
– Near	end	of	phase,	spawn	backup	copies	of	tasks	

•  Whichever	one	finishes	first	“wins”	
•  Effect	

– Drama?cally	shortens	job	comple?on	?me	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Refinement:	Combiners	

•  Oven	a	Map	task	will	produce	many	pairs	of	
the	form	(k,v1),	(k,v2),	…	for	the	same	key	k	
– E.g.,	popular	words	in	the	word	count	example	

•  Can	save	network	Ame	by		
pre-aggregaAng	values	in		
the	mapper:	
– combine(k, list(v1)) à v2 
– Combiner	is	usually	same		
as	the	reduce	func?on	

•  Works	only	if	reduce		
func?on	is	commuta?ve	and	associa?ve	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Refinement:	Combiners	

•  Back	to	our	word	counAng	example:	
–  Combiner	combines	the	values	of	all	keys	of	a	single	
mapper	(single	machine):	
	
	

	
– Much	less	data	needs	to	be	copied	and	shuffled!	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Refinement:	Par??on	Func?on	

•  Want	to	control	how	keys	get	parAAoned	
–  Inputs	to	map	tasks	are	created	by	con?guous	splits	of	
input	file	

–  Reduce	needs	to	ensure	that	records	with	the	same	
intermediate	key	end	up	at	the	same	worker	

•  System	uses	a	default	parAAon	funcAon:	
–  hash(key) mod R 

•  SomeAmes	useful	to	override	the	hash	funcAon:	
–  E.g.,	hash(hostname(URL)) mod R	ensures	URLs	from	a	
host	end	up	in	the	same	output	file	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Example:	Join	By	Map-Reduce	
•  Compute	the	natural	join	R(A,B)	⋈	S(B,C)	
•  R	and	S	are	each	stored	in	files	
•  Tuples	are	pairs	(a,b)	or	(b,c)	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Map-Reduce	Join	
•  Use	a	hash	funcAon	h	from	B-values	to	1...k	
•  A	Map	process	turns:	

– Each	input	tuple	R(a,b)	into	key-value	pair	(b,(a,R))	
– Each	input	tuple	S(b,c)	into	(b,(c,S))	

•  Map	processes	send	each	key-value	pair	with	
key	b	to	Reduce	process	h(b)	
– Hadoop	does	this	automa?cally;	just	tell	it	what	k	is.	

•  Each	Reduce	process	matches	all	the	pairs	(b,
(a,R))	with	all	(b,(c,S))	and	outputs	(a,b,c).	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	

Mining	of	Massive	Datasets,	h=p://
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