CS60021: Scalable Data Mining

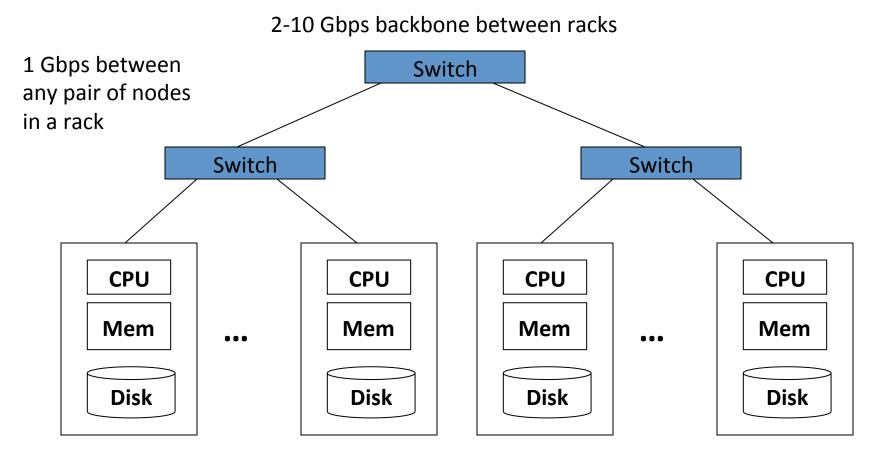
Map Reduce

Sourangshu Bhattacharya

Motivation: Google Example

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
 ~4 months to read the web
- ~1,000 hard drives to store the web
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
 - Cluster of commodity Linux nodes
 - Commodity network (ethernet) to connect them

Cluster Architecture



Each rack contains 16-64 nodes

In 2011 it was guestimated that Google had in Machines, http://bit.ly/ShhoRO

www.mmds.org

Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware
- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011
 - 1,000 machines fail every day Ullman: Mining of Massive Patasets, http://

Big Data Challenges

- □ Scalability: processing should scale with increase in data.
- □ Fault Tolerance: function in presence of hardware failure
- Cost Effective: should run on commodity hardware
- Ease of use: programs should be small
- □ Flexibility: able to process unstructured data

□ Solution: Map Reduce !

Idea and Solution

- Issue: Copying data over a network takes time
- Idea:
 - Bring computation close to the data
 - Store files multiple times for reliability
- Map-reduce addresses these problems
 - Elegant way to work with big data
 - Storage Infrastructure File system
 - Google: GFS. Hadoop: HDFS
 - Programming model
 - Map-Reduce

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Storage Infrastructure

• Problem:

– If nodes fail, how to store data persistently?

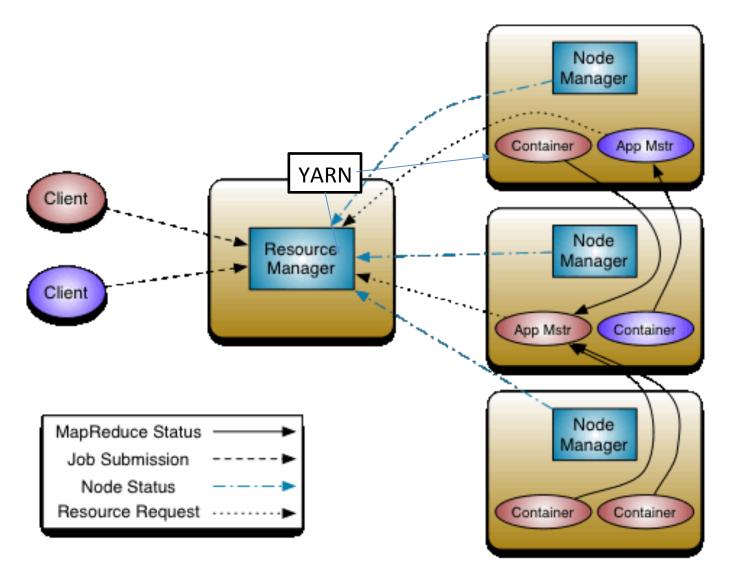
- Answer:
 - Distributed File System:
 - Provides global file namespace
 - Google GFS; Hadoop HDFS;
- Typical usage pattern
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

What is Hadoop ?

- A scalable fault-tolerant distributed system for data storage and processing.
- Core Hadoop:
 - □ Hadoop Distributed File System (HDFS)
 - □ Hadoop YARN: Job Scheduling and Cluster Resource Management
 - □ Hadoop Map Reduce: Framework for distributed data processing.
- Open Source system with large community support. https://hadoop.apache.org/

Hadoop Architecture



Courtesy: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html

HDFS

HDFS

Assumptions

□ Hardware failure is the norm.

□ Streaming data access.

Uvrite once, read many times.

□ High throughput, not low latency.

□ Large datasets.

Characteristics:

Performs best with modest number of large files

Optimized for streaming reads

Layer on top of native file system.

HDFS

- Data is organized into file and directories.
- □ Files are divided into blocks and distributed to nodes.
- Block placement is known at the time of read
 - Computation moved to same node.
- □ Replication is used for:
 - Speed
 - Fault tolerance
 - □ Self healing.

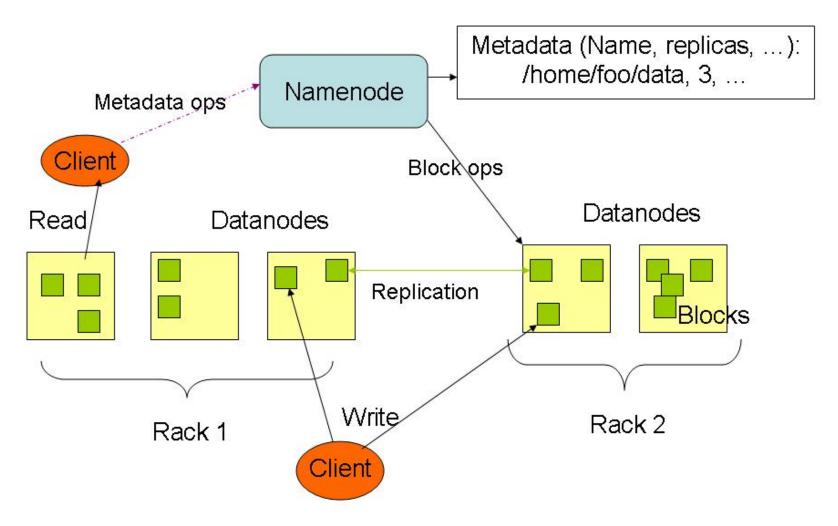
Goals of HDFS

- Very Large Distributed File System – 10K nodes, 100 million files, 10 PB
- Assumes Commodity Hardware
 - Files are replicated to handle hardware failure
 - Detect failures and recovers from them
- Optimized for Batch Processing
 - Data locations exposed so that computations can move to where data resides
 - Provides very high aggregate bandwidth
- User Space, runs on heterogeneous OS

Distributed File System

- Single Namespace for entire cluster
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Files are broken up into blocks
 - Typically 128 MB block size
 - Each block replicated on multiple DataNodes
- Intelligent Client
 - Client can find location of blocks
 - Client accesses data directly from DataNode

HDFS Architecture



NameNode Metadata

Meta-data in Memory

- The entire metadata is in main memory
- No demand paging of meta-data

Types of Metadata

- List of files
- List of Blocks for each file
- List of DataNodes for each block
- File attributes, e.g creation time, replication factor

A Transaction Log

– Records file creations, file deletions. etc

DataNode

A Block Server

- Stores data in the local file system (e.g. ext3)
- Stores meta-data of a block (e.g. CRC)
- Serves data and meta-data to Clients

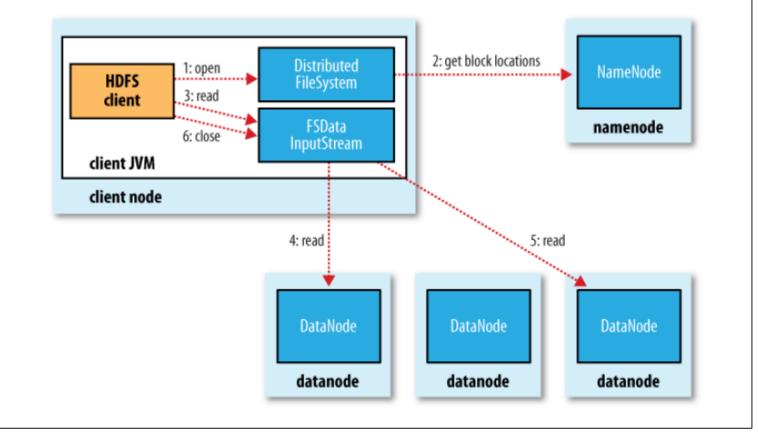
Block Report

Periodically sends a report of all existing blocks to the NameNode

Facilitates Pipelining of Data

– Forwards data to other specified DataNodes

HDFS read client

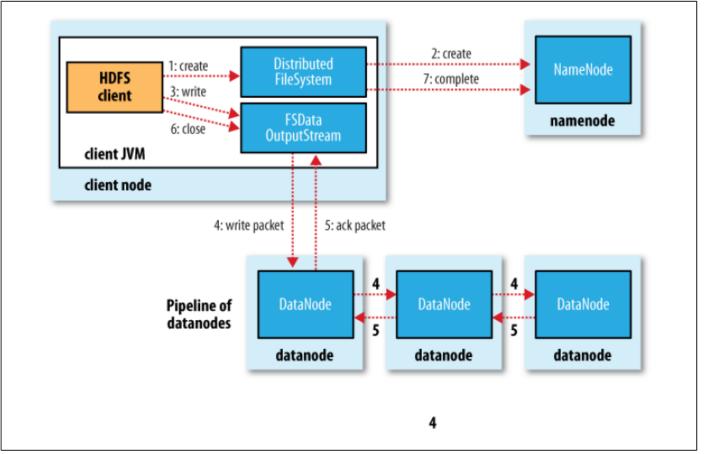


.

.

Source: Hadoop: The Definitive Guide

HDFS write Client



Source: Hadoop: The Definitive Guide

Block Placement

Current Strategy

- -- One replica on local node
- -- Second replica on a remote rack
- -- Third replica on same remote rack
- -- Additional replicas are randomly placed
- Clients read from nearest replica
- Would like to make this policy pluggable

NameNode Failure

- A single point of failure
- Transaction Log stored in multiple directories
 - A directory on the local file system
 - A directory on a remote file system (NFS/CIFS)
- Need to develop a real HA solution

Data Pipelining

- Client retrieves a list of DataNodes on which to place replicas of a block
- Client writes block to the first DataNode
- The first DataNode forwards the data to the next DataNode in the Pipeline
- When all replicas are written, the Client moves on to write the next block in file

MAP REDUCE

What is Map Reduce ?

- Method for distributing a task across multiple servers.
- □ Proposed by Dean and Ghemawat, 2004.
- Consists of two developer created phases:
 - 🛛 Мар
 - Reduce
- □ In between Map and Reduce is the Shuffle and Sort phase.
- User is responsible for casting the problem into map reduce framework.
- □ Multiple map-reduce jobs can be "chained".

Programming Model: MapReduce

Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

• Sample application:

- Analyze web server logs to find popular URLs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Task: Word Count

- Case 1:
 - File too large for memory, but all <word, count> pairs fit in memory

Case 2:

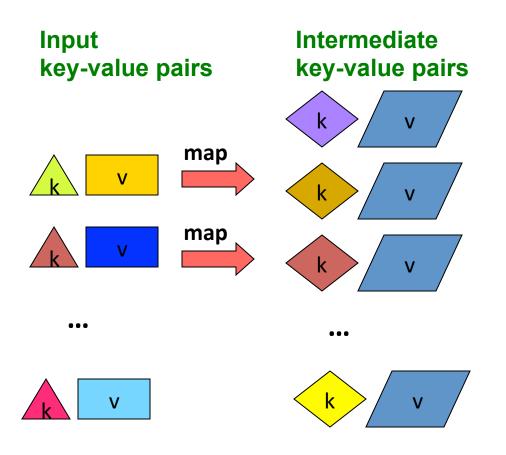
- Count occurrences of words:
 - -words(doc.txt) | sort | uniq -c
 - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
 Great thing is that it is naturally parallelizable

MapReduce: Overview

- Sequentially read a lot of data
- Map:
 - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
 - Aggregate, summarize, filter or transform
- Write the result

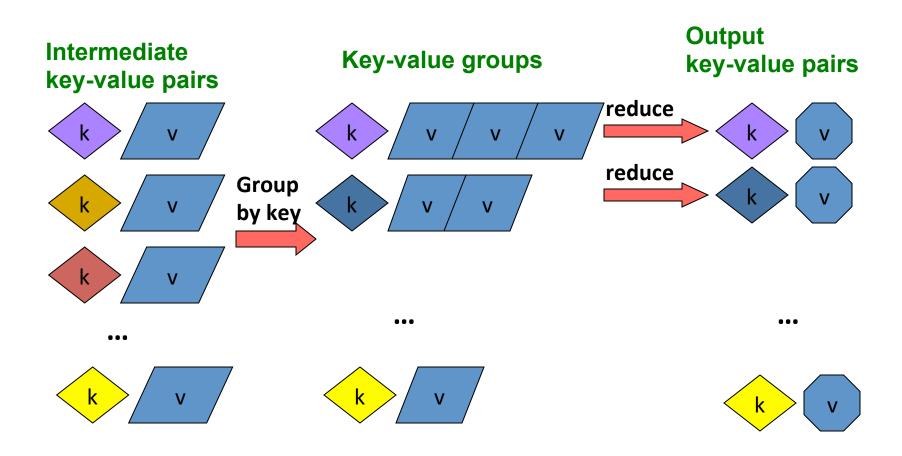
Outline stays the same, **Map** and **Reduce** change to fit the problem

MapReduce: The Map Step



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

MapReduce: The <u>Reduce</u> Step



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:

- Map(k, v) $\rightarrow <$ k', v'>*

- Takes a key-value pair and outputs a set of key-value pairs
 E.g., key is the filename, value is a single line in the file
- There is one Map call for every (k,v) pair
- Reduce(k', <v'>*) → <k', v''>*
 - All values v' with same key k' are reduced together and processed in v' order
 - There is one Reduce function call per unique key k'

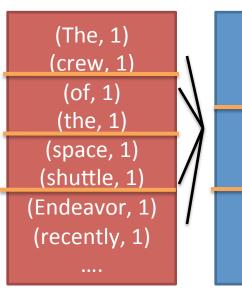
MapReduce: Word Counting

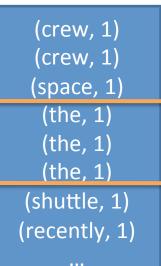
Provided by the programmer

MAP: Read input and produces a set of key-value pairs

Provided by the programmer

The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long term space based man/mache partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need





Group by key:

Collect all pairs

with same key

(crew, 2) (space, 1) (the, 3) (shuttle, 1) (recently, 1)

(key, value)

Only sequential reads

Big document

(key, value)eskovec, A. R(key, value): Mining of Massive Datasets, http:// www.mmds.org

Word Count Using MapReduce

map(key, value):

// key: document name; value: text of the document
for each word w in value:
 emit(w, 1)

reduce(key, values):

```
// key: a word; value: an iterator over counts
result = 0
for each count v in values:
   result += v
emit(key, result)
```

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Map Phase

- User writes the mapper method.
- □ Input is an unstructured record:
 - E.g. A row of RDBMS table,
 - □ A line of a text file, etc
- □ Output is a set of records of the form: <key, value>
 - □ Both key and value can be anything, e.g. text, number, etc.
 - □ E.g. for row of RDBMS table: <column id, value>
 - □ Line of text file: <word, count>

Shuffle/Sort phase

- □ Shuffle phase ensures that all the mapper output records with the same key value, goes to the same reducer.
- Sort ensures that among the records received at each reducer, records with same key arrives together.

Reduce phase

Reducer is a user defined function which processes mapper output records with some of the keys output by mapper.

□ Input is of the form <key, value>

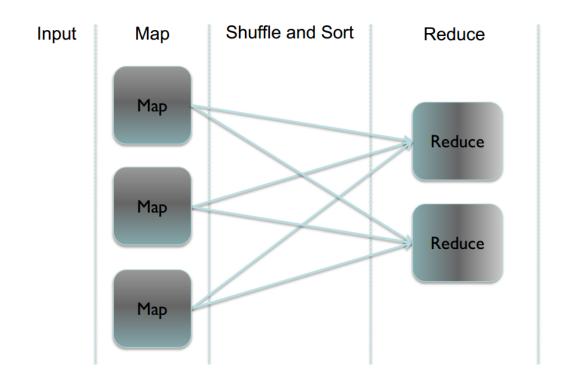
□ All records having same key arrive together.

Output is a set of records of the form <key, value>

Key is not important

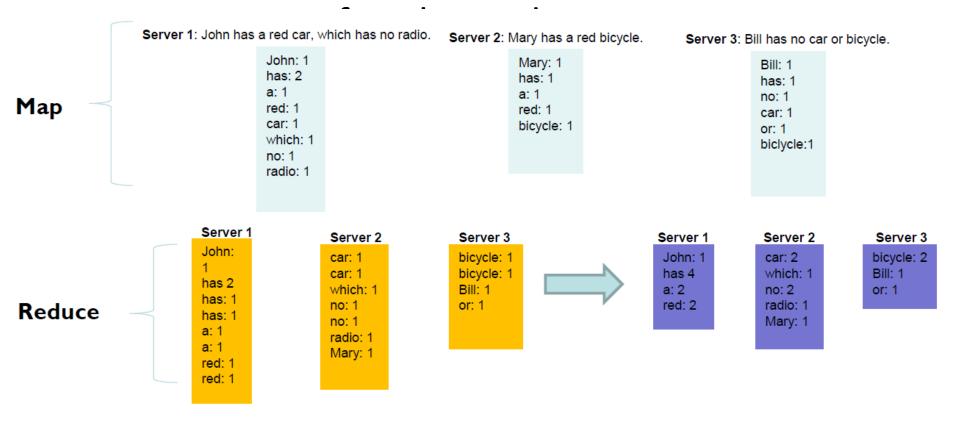
Parallel picture

Output

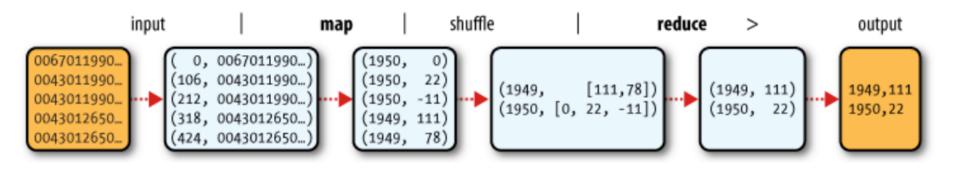


Example

• Word Count: Count the total no. of



Map Reduce



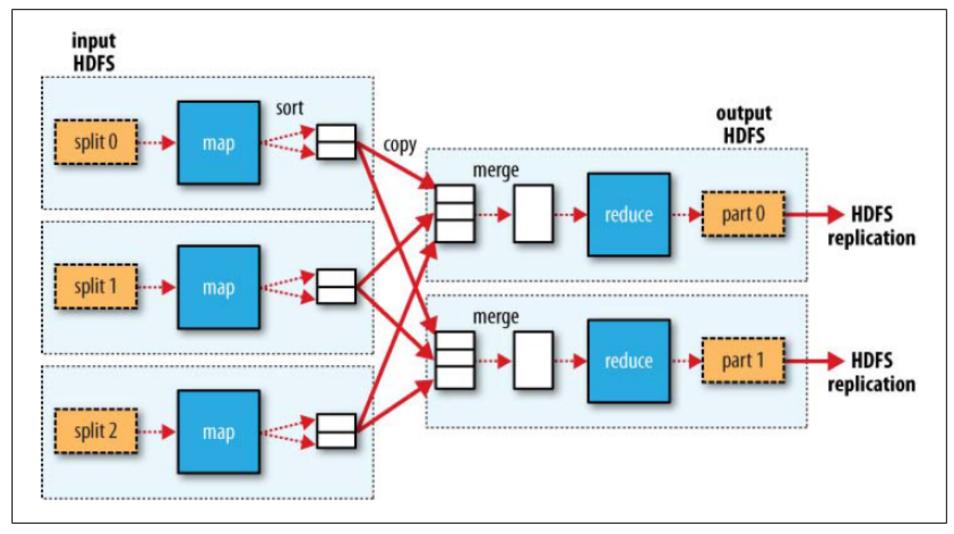
What was the max/min temperature for the last century ?

Hadoop Map Reduce

Provides:

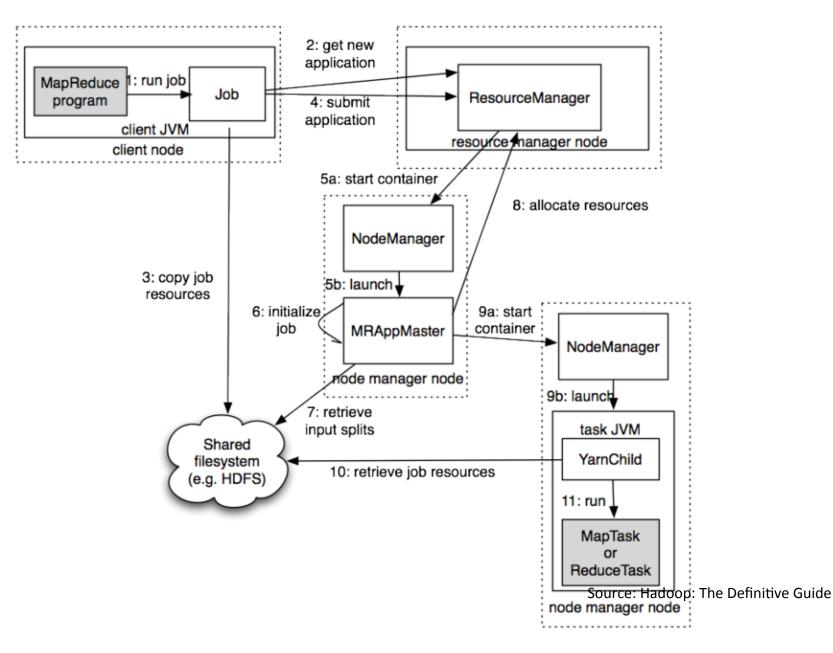
- □ Automatic parallelization and Distribution
- Fault Tolerance
- Methods for interfacing with HDFS for colocation of computation and storage of output.
- Status and Monitoring tools
- API in Java
- Ability to define the mapper and reducer in many languages through Hadoop streaming.

Hadoop MR Data Flow

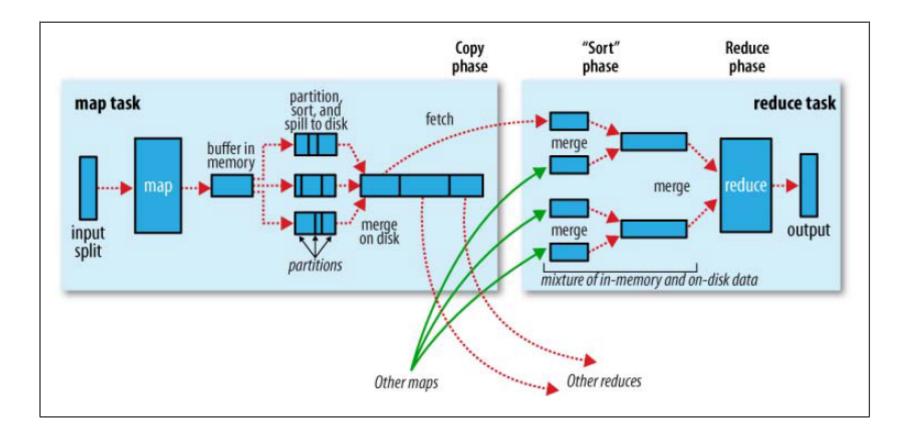


Source: Hadoop: The Definitive Guide

Hadoop(v2) MR job



Shuffle and sort



Source: Hadoop: The Definitive Guide

Data Flow

- Input and final output are stored on a distributed file system (FS):
 - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map and Reduce workers
- Output is often input to another MapReduce task

Coordination: Master

- Master node takes care of coordination:
 - Task status: (idle, in-progress, completed)
 - Idle tasks get scheduled as workers become available
 - When a map task completes, it sends the master the location and sizes of its *R* intermediate files, one for each reducer
 - Master pushes this info to reducers
- Master pings workers periodically to detect failures

Fault tolerance

- Comes from scalability and cost effectivenessHDFS:
 - Replication
- □ Map Reduce
 - □ Restarting failed tasks: map and reduce
 - □Writing map output to FS
 - □ Minimizes re-computation

Dealing with Failures

• Map worker failure

- Map tasks completed or in-progress at worker are reset to idle
- Reduce workers are notified when task is rescheduled on another worker

Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

• Master failure

MapReduce task is aborted and client is notified

Failures

- Task failure
 - Task has failed report error to nodemanager, appmaster, client.
 - Task not responsive, JVM failure Nodemanager restarts tasks.
- □ Application Master failure
 - □ Application master sends heartbeats to resourcemanager.
 - □ If not received, the resource manager retrives job history of the run tasks.
- □ Node manager failure

How many Map and Reduce jobs?

- *M* map tasks, *R* reduce tasks
- Rule of a thumb:
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually *R* is smaller than *M*
 - Because output is spread across *R* files

Task Granularity & Pipelining

- Fine granularity tasks: map tasks >> machines
 - Minimizes time for fault recovery
 - Can do pipeline shuffling with map execution
 - Better dynamic load balancing

Process	Time>										
User Program	MapReduce()				wait						
Master		Assign tasks to worker machines									
Worker 1		Map 1	Map 3								
Worker 2		Map 2									
Worker 3			Read 1.1		Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			Read 2.1				Read 2.2	Rea	d 2.3	Red	uce 2

Refinements: Backup Tasks

Problem

- Slow workers significantly lengthen the job completion time:
 - Other jobs on the machine
 - Bad disks
 - Weird things

Solution

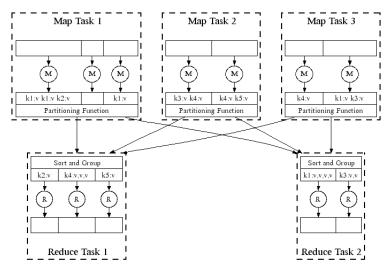
- Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect

- Dramatically shortens job completion time

Refinement: Combiners

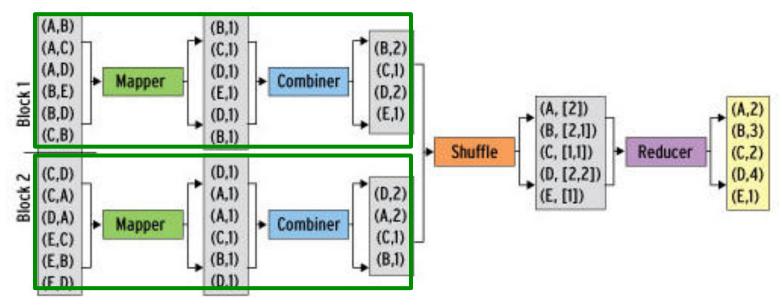
- Often a Map task will produce many pairs of the form (k,v₁), (k,v₂), ... for the same key k
 – E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
 - $-\operatorname{combine}(k, \operatorname{list}(v_1)) \rightarrow v_2$
 - Combiner is usually same as the reduce function
- Works only if reduce function is commutative and associative

www.mmds.org



Refinement: Combiners

- Back to our word counting example:
 - Combiner combines the values of all keys of a single mapper (single machine):



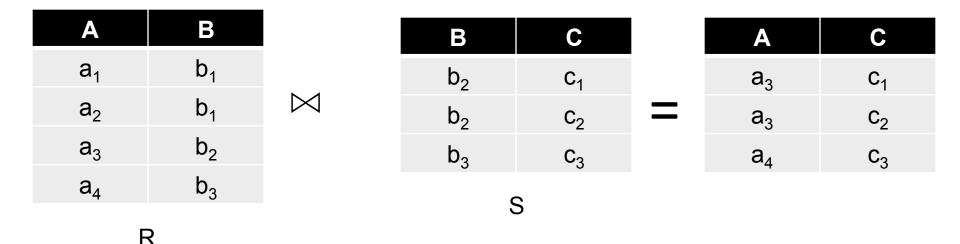
– Much less data needs to be copied and shuffled!

Refinement: Partition Function

- Want to control how keys get partitioned
 - Inputs to map tasks are created by contiguous splits of input file
 - Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
 - hash(key) mod R
- Sometimes useful to override the hash function:
 - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

Example: Join By Map-Reduce

- Compute the natural join *R*(*A*,*B*) ⋈ *S*(*B*,*C*)
- R and S are each stored in files
- Tuples are pairs (a,b) or (b,c)



Map-Reduce Join

- Use a hash function h from B-values to 1...k
- A Map process turns:
 - Each input tuple R(a,b) into key-value pair (b,(a,R))
 - Each input tuple S(b,c) into (b,(c,S))
- Map processes send each key-value pair with key b to Reduce process h(b)

– Hadoop does this automatically; just tell it what k is.

• Each **Reduce process** matches all the pairs (*b*, (*a*,*R*)) with all (*b*, (*c*,*S*)) and outputs (*a*,*b*,*c*).