CS60021: Scalable Data Mining

Map Reduce
Sourangshu Bhattacharya

Motivation: Google Example

20+ billion web pages x 20KB = 400+ TB

1 computer reads 30-35 MB/sec from disk
— ~4 months to read the web

~1,000 hard drives to store the web

Takes even more to do something useful
with the datal

Today, a standard architecture for such
problems is emerging:

— Cluster of commodity Linux nodes

— Commodity network (ethernet) to connect them

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between
any pair of nodes
in a rack

CPU CPU CPU CPU

Mem Mem Mem Mem

Disk Disk Disk Disk

Each rack contains 16-64 nodes

In 2011 it was guestimateg that Googl& had, TM machines, http://bit.ly/ShhORO

www.mmds.org

Large-scale Computing

* Large-scale computing for data mining
problems on commodity hardware

* Challenges:

— How can we make it easy to write distributed
programs?

* One server may stay up 3 years (1,000 days)
* If you have 1,000 servers, expect to loose 1/day

* People estimated Google had ~1M machines in 2011
— 1,000 machines'f cl'é\?é?fy*tgg pliman:

Mining of Massive Dataset$, http://
www.mmds.org

Big Data Challenges

J Scalability: processing should scale with increase in data.
1 Fault Tolerance: function in presence of hardware failure
1 Cost Effective: should run on commodity hardware

1 Ease of use: programs should be small

 Flexibility: able to process unstructured data

(JSolution: Map Reduce !

ldea and Solution

* Issue: Copying data over a network takes time

* |dea:
— Bring computation close to the data
— Store files multiple times for reliability

 Map-reduce addresses these problems
— Elegant way to work with big data

— Storage Infrastructure — File system
e Google: GFS. Hadoop: HDFS

— Programming model

° Ma p_Reduce J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http:// 6
www.mmds.org

Storage Infrastructure

— If nodes fail, how to store data persistently?

e Answer:

— Distributed File System:

* Provides global file namespace
e Google GFS; Hadoop HDFS;

* Typical usage pattern
— Huge files (100s of GB to TB)
— Data is rarely updated in place
— Reads and appends are common

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

What is Hadoop ?

1 A scalable fault-tolerant distributed system for data storage
and processing.

(1 Core Hadoop:

1 Hadoop Distributed File System (HDFS)
(1 Hadoop YARN: Job Scheduling and Cluster Resource Management
(1 Hadoop Map Reduce: Framework for distributed data processing.

(1 Open Source system with large community support.
https://hadoop.apache.org/

Hadoop Architecture

MapReduce Status ———»

Job Submission ------ >
Node Status R =
Resource Request -----..... -

Courtesy: http://hadoop.apache.org/docs/r2.3.0/hadoop-yarn/hadoop-yarn-site/YARN.html

HDFS

HDFS

d Assumptions
O Hardware failure is the norm.
O Streaming data access.
O Write once, read many times.
O High throughput, not low latency.
 Large datasets.

] Characteristics:

O Performs best with modest number of large files
O Optimized for streaming reads
 Layer on top of native file system.

HDFS

 Data is organized into file and directories.
 Files are divided into blocks and distributed to nodes.

1 Block placement is known at the time of read
d Computation moved to same node.

(1 Replication is used for:
U Speed

1 Fault tolerance
O Self healing.

Goals of HDFS

Very Large Distributed File System

— 10K nodes, 100 million files, 10 PB

Assumes Commodity Hardware

— Files are replicated to handle hardware failure
— Detect failures and recovers from them
Optimized for Batch Processing

— Data locations exposed so that computations can
move to where data resides

— Provides very high aggregate bandwidth
User Space, runs on heterogeneous OS

Distributed File System

Single Namespace for entire cluster

Data Coherency

— Write-once-read-many access model

— Client can only append to existing files

Files are broken up into blocks

— Typically 128 MB block size

— Each block replicated on multiple DataNodes
Intelligent Client

— Client can find location of blocks

— Client accesses data directly from DataNode

HDFS Architecture

Metadata (Name, replicas, ...):

_ /homeffoo/data, 3, ...
Metadata ops Namenode
Block\ops
Read Datanodes Datanodes
= o Replication L "
U IBlocks
P
. Sy b Y
Rack 1 Vit Rack 2

NameNode Metadata

Meta-data in Memory

— The entire metadata is in main memory
— No demand paging of meta-data
Types of Metadata

— List of files

— List of Blocks for each file
— List of DataNodes for each block

— File attributes, e.g creation time, replication factor
A Transaction Log

— Records file creations, file deletions. etc

DataNode

A Block Server
— Stores data in the local file system (e.g. ext3)
— Stores meta-data of a block (e.g. CRC)
— Serves data and meta-data to Clients
 Block Report

— Periodically sends a report of all existing blocks to the
NameNode

« Facilitates Pipelining of Data
— Forwards data to other specified DataNodes

HDFS read client

: Distributed 2: get block locations
"m . FlleSystem B ————— ’ NameNode
dient :

, FSData namenode
: InputStream
cient JVM :

client node

DataNode DataNode

datanode datanode datanode

o Source: Hadoop: The Definitive Guide

HDFS write Client

. Distributed I S 2create
] R || omee | [
dient |

A

) FSData namenode
: OutputStream
cient JVM :

client node

4: write packet 5: ack packet

v

Pipeline of DataNode [N DataNode [DataNode
datanodes
datanode datanode datanode
4

Source: Hadoop: The Definitive Guide

Block Placement

Current Strategy

-- One replica on local node

-- Second replica on a remote rack

-- Third replica on same remote rack

-- Additional replicas are randomly placed
Clients read from nearest replica

Would like to make this policy pluggable

NameNode Falilure

A single point of failure
Transaction Log stored in multiple directories

— A directory on the local file system
— A directory on a remote file system (NFS/CIFS)
Need to develop a real HA solution

Data Pipelining

Client retrieves a list of DataNodes on which to place
replicas of a block

Client writes block to the first DataNode

The first DataNode forwards the data to the next
DataNode in the Pipeline

When all replicas are written, the Client moves on to
write the next block in file

MAP REDUCE

What is Map Reduce ?

1 Method for distributing a task across multiple servers.
1 Proposed by Dean and Ghemawat, 2004.

[Consists of two developer created phases:
O Map
O Reduce

 In between Map and Reduce is the Shuffle and Sort phase.

1 User is responsible for casting the problem into map — reduce
framework.

1 Multiple map-reduce jobs can be “chained”.

Programming Model: MapReduce

Warm-up task:
 We have a huge text document

e Count the number of times each
distinct word appears in the file

 Sample application:

— Analyze web server logs to find popular URLs

Task: Word Count

Case 1:

— File too large for memory, but all <word, count> pairs
fit in memory

Case 2:
 Count occurrences of words:
— words (doc.txt) | sort | uniq -c
 where words takes a file and outputs the words in it, one
per aline

e Case 2 captures the essence of MapReduce
— Great thing is that it is naturally parallelizable

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

MapReduce: Overview

Sequentially read a lot of data
Map:

— Extract something you care about
Group by key: Sort and Shuffle
Reduce:

— Aggregate, summarize, filter or transform

Write the result

Outline stays the same, Map and Reduce
change to fit the problem

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

27

MapReduce: The Map Step

Input

key-value pairs

/| v

AN =)

Intermediate
key-value pairs

. O
el 4
= O

@.

J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://
www.mmds.org

28

MapReduce: The Reduce Step

Output

Intermediate Key-value groups key-value pairs
key-value pairs

ST M@
oM oMy =0
©//

>

7 4 @

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 29
www.mmds.org

More Specifically

* Input: a set of key-value pairs

* Programmer specifies two methods:
—Map(k, v) — <k, v'>*
» Takes a key-value pair and outputs a set of key-value pairs
— E.g., key is the filename, value is a single line in the file
* There is one Map call for every (k,v) pair
— Reduce(k’, <v’>*) — <k’, v"'>*
* All values v’ with same key k’ are reduced together
and processed in v’ order
* There is one Reduce function call per unique key k’

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 30
www.mmds.org

MapReduce: Word Counting

Provided by the
programmer

MAP:
Read input and
produces a set of
key-value pairs

Group by key:
Collect all pairs
with same key

The crew of the space

shuttle Endeavor recently (The’ 1) (crew, 1)

returned to Earth as (crew, 1) (crew, 1)

ambassadors, harbingers of

a new era of space (Of, 1) (Space, 1)

exploration. Scientists at (the, 1) (the, 1)
| NASA are saying that the |

recent assembly of the (Space,]_) (the,]_)

Dextre bot is the first step in (shuttle 1) (the 1)
s SSng oM Space oot 2 2

man/mache partnership.
"The work we're doing now

(Endeavor, 1) (shuttle, 1)

- the robotics we're doing (recently, 1) (recently, 1)
-- is what we're going to
needccovvvvienennn.

Big document (key, value). .., » rike¥s-value).

Mining of Massive Datasets, http://
www.mmds.org

Provided by the
programmer

Reduce:
Collect all values
belonging to the
key and output

(crew, 2)
(space, 1)
(the, 3)
(shuttle, 1)
(recently, 1)

(key, value)

reads

©
5
c
Q
>
o
Q
(%)

Only

Word Count Using MapReduce

map (key, wvalue):
// key: document name; value: text of the document
for each word w in value:

emit (w, 1)

reduce (key, values):
// key: a word; value: an iterator over counts
result = 0
for each count v 1in values:
result += v
emit (key, result)

Map Phase

1 User writes the mapper method.

M Input is an unstructured record:
U E.g. Arow of RDBMS table,
[A line of a text file, etc

1 Output is a set of records of the form: <key, value>
 Both key and value can be anything, e.g. text, number, etc.

J E.g. for row of RDBMS table: <column id, value>
M Line of text file: <word, count>

Shuffle/Sort phase

1 Shuffle phase ensures that all the mapper output records with
the same key value, goes to the same reducer.

[Sort ensures that among the records received at each
reducer, records with same key arrives together.

Reduce phase

(1 Reducer is a user defined function which processes mapper
output records with some of the keys output by mapper.

M Input is of the form <key, value>
O All records having same key arrive together.

1 Output is a set of records of the form <key, value>
1 Key is not important

Parallel picture

Input Map Shuffle and Sort Reduce Output

Example

e Word Count: Count the total no. of

Server 1: John has a red car, which has no radio. server 2: Mary has a red bicycle. Server 3: Bill has no car or bicycle.

John: 1 Mary: 1 Bill: 1
has: 2 has: 1 has: 1
a1 a1 no: 1
Map red: 1 red: 1 car: 1
car: 1 bicycle: 1 or: 1
which: 1 biclycle:1
no: 1
radio: 1
Server 1 Server 2 Server 3
John: car: 1 bicycle: 1
1 car: 1 bicycle: 1
:::21 which: 1 Bill: 1
. no: 1 or: 1
Reduce has: 1 .
:f : radio: 1
: Mary: 1
red: 1 v

red: 1

input

Map Reduce

| reduce > output

0067011990..
0043011990..
0043011990..
0043012650...

[(0, 0067011990..)
(106, 0043011990..)
(212, 0043011990..) -
(318, 0043012650..)

(1949, [111,78])

(1949, 111)
(1950, [0, 22, -11]) [

o 1949,112
(1950, 22) >

1950,22

0043012650..

(424, 0043012650..)

What was the max/min temperature for the last century ?

Hadoop Map Reduce

1 Provides:
O Automatic parallelization and Distribution
U Fault Tolerance

O Methods for interfacing with HDFS for colocation of computation and
storage of output.

O Status and Monitoring tools
O APl in Java

1 Ability to define the mapper and reducer in many languages through
Hadoop streaming.

Hadoop MR Data Flow

: HDFS
- replication

—
- ppd __p_ai}-—b HDFS
replication

Source: Hadoop: The Definitive Guide

Hadoop(v2) MR job

2: get new
. application !
MapReduce ||: run job _’;__’__,__,,,..:-_—-—v
program [7| Job " 4 submit —»| ResourceManager
client JVM application
client node resoyfce nanager node
5a: start container /[T
................. 8: allocate resources
NodeManager
3: copy job 5b: launch

resources

' Qa:start :

. node manager nod

6: initialize;
job N | MRAppMaster |_._container :
: : NodeManager
. mode manager node' :
EQb:Iaunc%
7: retrieve X
input splits task JVM
Shared
filesystem - . YarnChild
(e.g. HDFS) 10: retrieve job resources
11:runl
MapTask
or
ReduceTask

0|:§: The Definitive Guide

SourcerHad

e .

Shuffle and sort

rtition
psgrt and

map task

spill fo dlSk

bufferin =
memory

input
split

»
-
4°

Copy “Sort” Reduce
phase phase phase
reduce task
fech .. | p-.,,
........... merge

reduce

merge

output

/ merge

/' mixture of in-memory and on-dlsk data

Other

maps

Source: Hadoop: The Definitive Guide

Data Flow

* Input and final output are stored on a
distributed file system (FS):

— Scheduler tries to schedule map tasks “close” to
physical storage location of input data

* Intermediate results are stored on local FS
of Map and Reduce workers

e Output is often input to another
Ma pREd uce taS.Kskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://
www.mmds.org

43

Coordination: Master

— Task status: (idle, in-progress, completed)
— Idle tasks get scheduled as workers become available

— When a map task completes, it sends the master the
location and sizes of its R intermediate files, one for
each reducer

— Master pushes this info to reducers

 Master pings workers periodically to detect
failures

Fault tolerance

(dComes from scalability and cost effectiveness

JAHDFS:
JReplication
JdMap Reduce
JRestarting failed tasks: map and reduce

JWriting map output to FS
JMinimizes re-computation

Dealing with Failures

— Map tasks completed or in-progress at
worker are reset to idle

— Reduce workers are notified when task is rescheduled on
another worker

— Only in-progress tasks are reset to idle
— Reduce task is restarted

— MapReduce task is aborted and client is notified

Failures

A Task failure

A Task has failed - report error to nodemanager, appmaster,
client.

dTask not responsive, JVM failure - Nodemanager restarts
tasks.

J Application Master failure
JApplication master sends heartbeats to resourcemanager.

If not received, the resource manager retrives job history
of the run tasks.

(A Node manager failure

How many Map and Reduce jobs?

* M map tasks, R reduce tasks

— Make M much larger than the number of nodes
in the cluster

— One DFS chunk per map is common

— Improves dynamic load balancing and speeds up
recovery from worker failures

* Usually R is smaller than M
— Because output is spread across R files

Task Granularity & Pipelining

map tasks >> machines
— Minimizes time for fault recovery

— Can do pipeline shuffling with map execution
— Better dynamic load balancing

Process Time >

User Program |MapReduce() ... wait ...

Master Assign tasks to worker machines...

Worker 1 Map | Map 3

Worker 2 Map 2

Worker 3 Reduce |
Worker 4 Reduce 2

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 49
www.mmds.org

Refinements: Backup Tasks

— Slow workers significantly lengthen the job
completion time:

e Other jobs on the machine
* Bad disks
* Weird things

 Solution

— Near end of phase, spawn backup copies of tasks
* Whichever one finishes first “wins”

* Effect
— Dramatically shortens job completion time

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 50
www.mmds.org

Refinement: Combiners

e Often a Map task will produce many pairs of
the form (k,v,), (k,v,), ... for the same key k

— E.g., popular words in the word count example

* Can save network time by S s
i) g@bl:@ @,:@é g

— combine(k, list(v4)) > v, %J

s [away [on |1 [ty [ioe |

— Combiner is usually same O ¢ %%

as the reduce function B

 Works only if reduce
function is commutative and associative

Refinement: Combiners

Back to our word counting example:

— Combiner combines the values of all keys of a single
mapper (single machine):

Block 1

Block 2

B D) =
(A.) 1 (8.2)
an || s o) | lenl
(8,F) | [PLMaPPECTT | 0y | L Combiner | ;o)
(B.) o) 1)

(C.8) Bl

(0.

(A1)

T

Mapper 1| | ¢y

B

.1

— Much less data needs to be copied and shuffled!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://

www.mmds.org

(A, 12D)
(8, [2,])
(€, [0
0, 12,2])

€ _

(A.2)
(8.3)
(€.2)
(D.4)
(EN)

52

Refinement: Partition Function

 Want to control how keys get partitioned

— Inputs to map tasks are created by contiguous splits of
input file

— Reduce needs to ensure that records with the same
intermediate key end up at the same worker
e System uses a default partition function:
— hash(key) mod R

e Sometimes useful to override the hash function:

— E.g., hash(hostname(URL)) mod R ensures URLs from a
host end up in the same output file

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

53

Example: Join By Map-Reduce

 Compute the natural join R(A,B) >~ 5(B,C)
* Rand S are each stored in files
* Tuples are pairs (a,b) or (b,c)

AL B B | C
=h b, b, C, a, C,

2 2 3 2
5 b, b, Cs a, Cs
a, b, s

Map-Reduce Join

Use a hash function h from B-values to 1...k
A Map process turns:

— Each input tuple R(a,b) into key-value pair (b,(a,R))
— Each input tuple S(b,c) into (b,(c,S))

Map processes send each key-value pair with
key b to Reduce process h(b)

— Hadoop does this automatically; just tell it what k is.

Each Reduce process matches all the pairs (b,
(a,R)) with all (b,(c,S)).and outputs (a,b,c).

