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Finding	Similar	Items	



Distance	Measures	
¡  Goal:	Find	near-neighbors	in	high-dim.	space	

–  We	formally	define	“near	neighbors”	as		
points	that	are	a	“small	distance”	apart	

•  For	each	applicaGon,	we	first	need	to	define	what	“distance”	
means	

•  Today:	Jaccard	distance/similarity	
–  The	Jaccard	similarity	of	two	sets	is	the	size	of	their	intersecGon	

divided	by	the	size	of	their	union:	
sim(C1,	C2)	=	|C1∩C2|/|C1∪C2|	

–  Jaccard	distance:	d(C1,	C2)	=	1	-	|C1∩C2|/|C1∪C2|	
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3 in intersection 
8 in union 
Jaccard similarity= 3/8 
Jaccard distance = 5/8 



Task:	Finding	Similar	Documents	
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3	EssenGal	Steps	for	Similar	Docs	

1.   Shingling:	Convert	documents	to	sets	

2.   Min-Hashing:	Convert	large	sets	to	short	signatures,	
while	preserving	similarity	

3.   Locality-Sensi:ve	Hashing:	Focus	on		
pairs	of	signatures	likely	to	be	from		
similar	documents	

–  Candidate	pairs!	
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The	Big	Picture	
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Shingling	

Step	1:	Shingling:	Convert	documents	to	sets	

Shingling	Docu-	
ment	

The	set	
of	strings	
of	length	k	
that	appear	
in	the	doc-	
ument	



Documents	as	High-Dim	Data	

•  Step	1:	Shingling:	Convert	documents	to	sets	

•  Simple	approaches:	
– Document	=	set	of	words	appearing	in	document	
– Document	=	set	of	“important”	words	
– Don’t	work	well	for	this	applicaGon.	Why?	

•  Need	to	account	for	ordering	of	words!	
•  A	different	way:	Shingles!	
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Define:	Shingles	
•  A	k-shingle	(or	k-gram)	for	a	document	is	a	sequence	
of	k	tokens	that	appears	in	the	doc	
–  Tokens	can	be	characters,	words	or	something	else,	
depending	on	the	applicaGon	

–  Assume	tokens	=	characters	for	examples	

•  Example:	k=2;	document	D1	=	abcab	
Set	of	2-shingles:	S(D1)	=	{ab,	bc,	ca}	
–  OpOon:	Shingles	as	a	bag	(mulGset),	count	ab	twice:	S’(D1)	
=	{ab,	bc,	ca, ab}	
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Compressing	Shingles	
•  To	compress	long	shingles,	we	can	hash	them	to	(say)	4	bytes	
•  Represent	a	document	by	the	set	of	hash	values	of	its	k-

shingles	
–  Idea:	Two	documents	could	(rarely)	appear	to	have	shingles	in	

common,	when	in	fact	only	the	hash-values	were	shared	

•  Example:	k=2;	document	D1=	abcab	
Set	of	2-shingles:	S(D1)	=	{ab,	bc,	ca}	
Hash	the	singles:	h(D1)	=	{1,	5,	7}	
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Similarity	Metric	for	Shingles	
•  Document	D1	is	a	set	of	its	k-shingles	C1=S(D1)	
•  Equivalently,	each	document	is	a		

0/1	vector	in	the	space	of	k-shingles	
–  Each	unique	shingle	is	a	dimension	
–  Vectors	are	very	sparse	

•  A	natural	similarity	measure	is	the		
Jaccard	similarity:	
	 	sim(D1,	D2)	=	|C1∩C2|/|C1∪C2|	
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Working	AssumpGon	

•  Documents	that	have	lots	of	shingles	in	common	
have	similar	text,	even	if	the	text	appears	in	
different	order	

•  Caveat:	You	must	pick	k	large	enough,	or	most	
documents	will	have	most	shingles	
–  k	=	5	is	OK	for	short	documents	
–  k	=	10	is	be>er	for	long	documents	
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MoGvaGon	for	Minhash	/	LSH	
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MinHashing	

Step	2:	Minhashing:	Convert	large	sets	to	
short	signatures,	while	preserving	similarity	
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Encoding	Sets	as	Bit	Vectors	
•  Many	similarity	problems	can	be		

formalized	as	finding	subsets	that		
have	significant	intersecOon	

•  Encode	sets	using	0/1	(bit,	boolean)	vectors		
–  One	dimension	per	element	in	the	universal	set	

•  Interpret	set	intersecGon	as	bitwise	AND,	and		
set	union	as	bitwise	OR	

•  Example:	C1	=	10111;	C2	=	10011	
–  Size	of	intersecGon	=	3;	size	of	union	=	4,		
–  Jaccard	similarity	(not	distance)	=	3/4	
–  Distance:	d(C1,C2)	=	1	–	(Jaccard	similarity)	=	1/4	
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From	Sets	to	Boolean	Matrices	
•  Rows	=	elements	(shingles)	
•  Columns	=	sets	(documents)	

–  1	in	row	e	and	column	s	if	and	only	if	e	is	a	
member	of	s	

–  Column	similarity	is	the	Jaccard	similarity	of	the	
corresponding	sets	(rows	with	value	1)	

–  Typical	matrix	is	sparse!	

•  Each	document	is	a	column:	
–  Example:	sim(C1	,C2)	=	?	

•  Size	of	intersecGon	=	3;	size	of	union	=	6,		
Jaccard	similarity	(not	distance)	=	3/6	

•  d(C1,C2)	=	1	–	(Jaccard	similarity)	=	3/6	
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Outline:	Finding	Similar	Columns	
•  So	far:	

– Documents	→	Sets	of	shingles	
– Represent	sets	as	boolean	vectors	in	a	matrix	

•  Next	goal:	Find	similar	columns	while	
compuOng	small	signatures	
– Similarity	of	columns	==	similarity	of	signatures	
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Outline:	Finding	Similar	Columns	
•  Next	Goal:	Find	similar	columns,	Small	signatures	
•  Naïve	approach:	

–  1)	Signatures	of	columns:	small	summaries	of	columns	
–  2)	Examine	pairs	of	signatures	to	find	similar	columns	

•  EssenOal:	SimilariGes	of	signatures	and	columns	are	related	

–  3)	OpOonal:	Check	that	columns	with	similar	signatures	
are	really	similar	

•  Warnings:	
–  Comparing	all	pairs	may	take	too	much	Gme:	Job	for	LSH	

•  These	methods	can	produce	false	negaGves,	and	even	false	
posiGves	(if	the	opGonal	check	is	not	made)	
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Hashing	Columns	(Signatures)	
•  Key	idea:	“hash”	each	column	C	to	a	small	signature	h(C),	such	

that:	
–  (1)	h(C)	is	small	enough	that	the	signature	fits	in	RAM	
–  (2)	sim(C1,	C2)	is	the	same	as	the	“similarity”	of	signatures	h(C1)	and	h(C2)	

•  	
	

•  Goal:	Find	a	hash	funcOon	h(·)	such	that:	
–  If	sim(C1,C2)	is	high,	then	with	high	prob.	h(C1)	=	h(C2)	
–  If	sim(C1,C2)	is	low,	then	with	high	prob.	h(C1)	≠	h(C2)	

•  	
	

•  Hash	docs	into	buckets.	Expect	that	“most”	pairs	of	near	
duplicate	docs	hash	into	the	same	bucket!	
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Min-Hashing	
•  Goal:	Find	a	hash	funcOon	h(·)	such	that:	

–  if	sim(C1,C2)	is	high,	then	with	high	prob.	h(C1)	=	h(C2)	
–  if	sim(C1,C2)	is	low,	then	with	high	prob.	h(C1)	≠	h(C2)	

•  Clearly,	the	hash	funcOon	depends	on		
the	similarity	metric:	
–  Not	all	similarity	metrics	have	a	suitable		
hash	funcGon	

•  There	is	a	suitable	hash	funcOon	for		
the	Jaccard	similarity:	It	is	called	Min-Hashing		

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Min-Hashing	
•  Imagine	the	rows	of	the	boolean	matrix	permuted	under	

random	permutaOon	π	

•  Define	a	“hash”	funcOon	hπ(C)	=	the	index	of	the	first	(in	the	
permuted	order	π)	row	in	which	column	C	has	value	1:	
	 	 	hπ (C) = minπ π(C) 

•  Use	several	(e.g.,	100)	independent	hash	funcGons	(that	is,	
permutaGons)	to	create	a	signature	of	a	column	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Min-Hashing	Example	
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The	Min-Hash	Property	
•  Choose	a	random	permutaOon	π	
•  Claim:	Pr[hπ(C1)	=	hπ(C2)]	=	sim(C1,	C2)		
•  Why?	

–  Let	X	be	a	doc	(set	of	shingles),	y∈	X	is	a	shingle	
–  Then:	Pr[π(y)	=	min(π(X))]	=	1/|X|	

•  It	is	equally	likely	that	any	y∈	X	is	mapped	to	the	min	element	

–  Let	y	be	s.t.	π(y)	=	min(π(C1∪C2))	
–  Then	either: 		π(y)	=	min(π(C1))		if	y	∈	C1	,	or	
	 	 	 		π(y)	=	min(π(C2))		if	y	∈	C2	

–  So	the	prob.	that	both	are	true	is	the	prob.	y	∈	C1	∩	C2	
–  Pr[min(π(C1))=min(π(C2))]=|C1∩C2|/|C1∪C2|=	sim(C1,	C2)		

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Four	Types	of	Rows	
•  Given	cols	C1	and	C2,	rows	may	be	classified	as:	

	 	 	 	C1 	C2	
	 	 	A 	1 	1	
	 	 	B 	1 	0	
	 	 	C 	0 	1	
	 	 	D 	0 	0	

–  a	=	#	rows	of	type	A,	etc.	
•  Note:	sim(C1,	C2)	=	a/(a	+b	+c)	
•  Then:	Pr[h(C1)	=	h(C2)]	=	Sim(C1,	C2)		

–  Look	down	the	cols	C1	and	C2	unGl	we	see	a	1	
–  If	it’s	a	type-A	row,	then	h(C1)	=	h(C2)	

If	a	type-B	or	type-C	row,	then	not	

24	
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Similarity	for	Signatures	

•  We	know:	Pr[hπ(C1)	=	hπ(C2)]	=	sim(C1,	C2)	
•  Now	generalize	to	mulGple	hash	funcGons	

•  The	similarity	of	two	signatures	is	the	fracOon	of	
the	hash	funcOons	in	which	they	agree	

•  Note:	Because	of	the	Min-Hash	property,	the	
similarity	of	columns	is	the	same	as	the	expected	
similarity	of	their	signatures	
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Min-Hashing	Example	
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Min-Hash	Signatures	
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ImplementaGon	Trick	
•  PermuOng	rows	even	once	is	prohibiOve	
•  Row	hashing!	

–  Pick	K	=	100	hash	funcGons	ki	
–  Ordering	under	ki	gives	a	random	row	permutaGon!	

•  One-pass	implementaOon	
–  For	each	column	C	and	hash-func.	ki	keep	a	“slot”	for	the	min-
hash	value	

–  IniGalize	all	sig(C)[i]	=	∞	
–  Scan	rows	looking	for	1s	

•  Suppose	row	j	has	1	in	column	C	
•  Then	for	each	ki	:	

–  If	ki(j)	<	sig(C)[i],	then	sig(C)[i]	←	ki(j)	
J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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hash function h(x)? 
Universal hashing: 
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where: 
a,b … random integers 
p … prime number (p > N) 



	
Locality	SensiGve	Hashing	
Step	3:	Locality-Sensi:ve	Hashing:		

Focus	on	pairs	of	signatures	likely	to	be	from	
similar	documents	
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LSH:	First	Cut	
•  Goal:	Find	documents	with	Jaccard	similarity	at	
least	s	(for	some	similarity	threshold,	e.g.,	s=0.8)	

•  LSH	–	General	idea:	Use	a	funcGon	f(x,y)	that	
tells	whether	x	and	y	is	a	candidate	pair:	a	pair	
of	elements	whose	similarity	must	be	evaluated	

•  For	Min-Hash	matrices:		
– Hash	columns	of	signature	matrix	M	to	many	buckets	
– Each	pair	of	documents	that	hashes	into	the		
same	bucket	is	a	candidate	pair	

30	
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Candidates	from	Min-Hash	

•  Pick	a	similarity	threshold	s	(0	<	s	<	1)	

•  Columns	x	and	y	of	M	are	a	candidate	pair	if	
their	signatures	agree	on	at	least	fracGon	s	of	
their	rows:		
M	(i,	x)	=	M	(i,	y)	for	at	least	frac.	s	values	of	i	
– We	expect	documents	x	and	y	to	have	the	same	
(Jaccard)	similarity	as	their	signatures	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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LSH	for	Min-Hash	

•  Big	idea:	Hash	columns	of		
signature	matrix	M	several	Omes	

•  Arrange	that	(only)	similar	columns	are	
likely	to	hash	to	the	same	bucket,	with	
high	probability	

•  Candidate	pairs	are	those	that	hash	to	
the	same	bucket	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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ParGGon	M	into	b	Bands	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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ParGGon	M	into	Bands	
•  Divide	matrix	M	into	b	bands	of	r	rows	

•  For	each	band,	hash	its	porGon	of	each	
column	to	a	hash	table	with	k	buckets	
– Make	k	as	large	as	possible	

•  Candidate	column	pairs	are	those	that	hash	
to	the	same	bucket	for	≥	1	band	

•  Tune	b	and	r	to	catch	most	similar	pairs,		
but	few	non-similar	pairs	

34	
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Matrix	M	

r		rows	 b		bands	

Buckets	
Columns 2 and 6 
are probably identical  
(candidate pair) 

Columns 6 and 7 are 
surely different. 

Hashing	Bands	

J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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Simplifying	AssumpGon	

•  There	are	enough	buckets	that	columns	are	
unlikely	to	hash	to	the	same	bucket	unless	
they	are	idenOcal	in	a	parGcular	band	

•  Hereauer,	we	assume	that	“same	bucket”	
means	“idenOcal	in	that	band”	

•  AssumpGon	needed	only	to	simplify	analysis,	
not	for	correctness	of	algorithm	

36	
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Example	of	Bands	

Assume	the	following	case:	
•  Suppose	100,000	columns	of	M	(100k	docs)	
•  Signatures	of	100	integers	(rows)	
•  Therefore,	signatures	take	40Mb	
•  Choose	b	=	20	bands	of	r	=	5	integers/band	

•  Goal:	Find	pairs	of	documents	that		
are	at	least	s	=	0.8	similar	
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C1,	C2	are	80%	Similar	
•  Find	pairs	of	≥	s=0.8	similarity,	set	b=20,	r=5	
•  Assume:	sim(C1,	C2)	=	0.8	

–  Since	sim(C1,	C2)	≥	s,	we	want	C1,	C2	to	be	a	candidate	
pair:	We	want	them	to	hash	to	at	least	1	common	bucket	
(at	least	one	band	is	idenGcal)	

•  Probability	C1,	C2	idenOcal	in	one	parOcular		
band:	(0.8)5	=	0.328	

•  Probability	C1,	C2	are	not	similar	in	all	of	the	20	
bands:	(1-0.328)20	=	0.00035		
–  i.e.,	about	1/3000th	of	the	80%-similar	column	pairs		
are	false	negaOves	(we	miss	them)	

– We	would	find	99.965%	pairs	of	truly	similar	documents	
38	
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C1,	C2	are	30%	Similar	
•  Find	pairs	of	≥	s=0.8	similarity,	set	b=20,	r=5	
•  Assume:	sim(C1,	C2)	=	0.3	

–  Since	sim(C1,	C2)	<	s	we	want	C1,	C2	to	hash	to	NO		
common	buckets	(all	bands	should	be	different)	

•  Probability	C1,	C2	idenOcal	in	one	parOcular	
band:	(0.3)5		=	0.00243	

•  Probability	C1,	C2	idenGcal	in	at	least	1	of	20	
bands:	1	-	(1	-	0.00243)20	=	0.0474	
–  In	other	words,	approximately	4.74%	pairs	of	docs	
with	similarity	0.3%	end	up	becoming	candidate	pairs	

•  They	are	false	posiOves	since	we	will	have	to	examine	them	
(they	are	candidate	pairs)	but	then	it	will	turn	out	their	
similarity	is	below	threshold	s	J.	Leskovec,	A.	Rajaraman,	J.	Ullman:	
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LSH	Involves	a	Tradeoff	
•  Pick:	

– The	number	of	Min-Hashes	(rows	of	M)		
– The	number	of	bands	b,	and		
– The	number	of	rows	r	per	band	

	to	balance	false	posiGves/negaGves	

•  Example:	If	we	had	only	15	bands	of	5	
rows,	the	number	of	false	posiGves	would	
go	down,	but	the	number	of	false	negaGves	
would	go	up	

40	
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Analysis	of	LSH	–	What	We	Want	

       Similarity t =sim(C1, C2) of two sets 

Probability 
of sharing 
a bucket 

Si
m

ila
rit

y 
th

re
sh

ol
d 

s 

No chance 
if t < s 

Probability = 1 
if t > s 
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What	1	Band	of	1	Row	Gives	You	
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Remember: 
Probability of 
equal hash-values 
= similarity 

       Similarity t =sim(C1, C2) of two sets 

Probability 
of sharing 
a bucket 



b	bands,	r	rows/band	

•  Columns	C1	and	C2	have	similarity	t	
•  Pick	any	band	(r	rows)	

– Prob.	that	all	rows	in	band	equal	=	tr		
– Prob.	that	some	row	in	band	unequal	=	1	-	tr		

•  Prob.	that	no	band	idenGcal		=	(1	-	tr)b	

•  Prob.	that	at	least	1	band	idenGcal	=																		
	 	 	1	-	(1	-	tr)b	
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What	b		Bands	of	r		Rows	Gives	You	

t r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

 
No bands 
identical 

1 - 

At least 
one band 
identical 

s ~ (1/b)1/r  
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       Similarity t=sim(C1, C2) of two sets 

Probability 
of sharing 
a bucket 



Example:	b		=	20;	r		=	5	
•  Similarity	threshold	s	
•  Prob.	that	at	least	1	band	is	idenOcal:	
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 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 



Picking	r	and	b:	The	S-curve	
•  Picking	r	and	b	to	get	the	best	S-curve	

– 50	hash-funcGons	(r=5,	b=10)	
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LSH	Summary	
•  Tune	M,	b,	r	to	get	almost	all	pairs	with	
similar	signatures,	but	eliminate	most	pairs	
that	do	not	have	similar	signatures	

•  Check	in	main	memory	that	candidate	pairs	
really	do	have	similar	signatures	

•  OpOonal:	In	another	pass	through	data,	
check	that	the	remaining	candidate	pairs	
really	represent	similar	documents	
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Summary:	3	Steps	
•  Shingling:	Convert	documents	to	sets	

–  We	used	hashing	to	assign	each	shingle	an	ID	

•  Min-Hashing:	Convert	large	sets	to	short	signatures,	while	
preserving	similarity	
–  We	used	similarity	preserving	hashing	to	generate	signatures	with	

property	Pr[hπ(C1)	=	hπ(C2)]	=	sim(C1,	C2)	
–  We	used	hashing	to	get	around	generaGng	random	permutaGons	

•  Locality-SensiOve	Hashing:	Focus	on	pairs	of	signatures	likely	to	
be	from	similar	documents	
–  We	used	hashing	to	find	candidate	pairs	of	similarity	≥	s	
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GENERALIZATION	OF	LSH	
























