CS60021: Scalable Data Mining

Similarity Search and Hashing

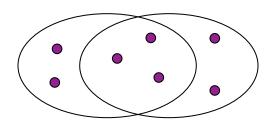
Sourangshu Bhattacharya

Finding Similar Items

Distance Measures

Goal: Find near-neighbors in high-dim. space

- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Today: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union: $sim(C_1, C_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$
 - Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$



3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Task: Finding Similar Documents

- Goal: Given a large number (*N* in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by "same story"

• Problems:

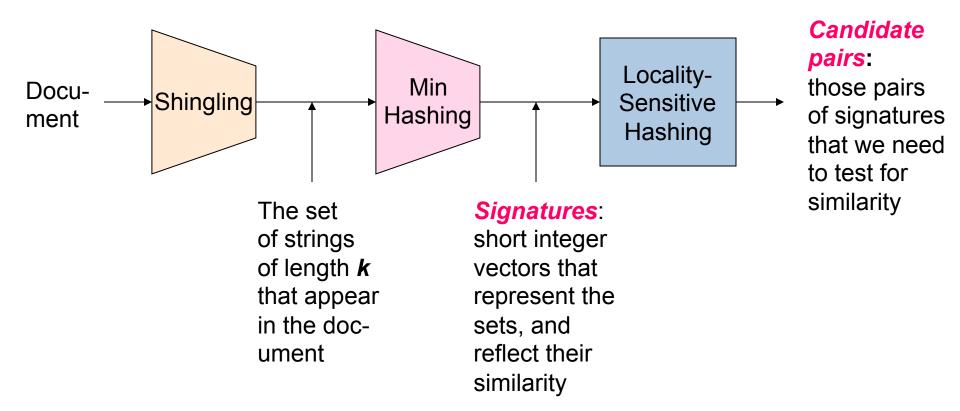
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

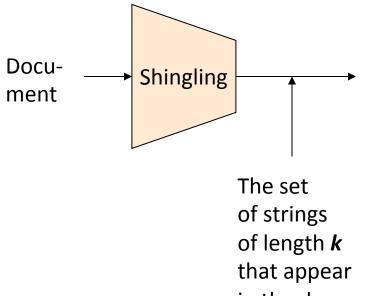
3 Essential Steps for Similar Docs

- **1.** *Shingling:* Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity
- **3.** Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

The Big Picture





in the document

Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

• Step 1: Shingling: Convert documents to sets

• Simple approaches:

- Document = set of words appearing in document
- Document = set of "important" words
- Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- Example: k=2; document D₁ = abcab
 Set of 2-shingles: S(D₁) = {ab, bc, ca}
 - Option: Shingles as a bag (multiset), count ab twice: S'(D₁)
 = {ab, bc, ca, ab}

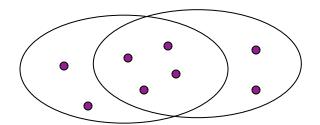
Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its kshingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
- Example: k=2; document D₁ = abcab
 Set of 2-shingles: S(D₁) = {ab, bc, ca}
 Hash the singles: h(D₁) = {1, 5, 7}

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$

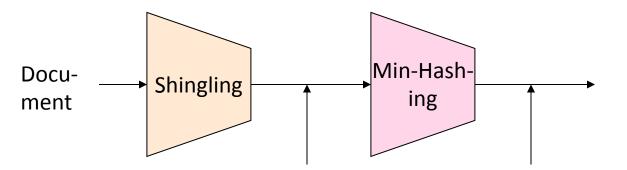


Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhash / LSH

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naïvely, we would have to compute pairwise
 Jaccard similarities for every pair of docs
 - N(N−1)/2 ≈ 5*10¹¹ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...



The set of strings of length *k* that appear in the document

Signatures:

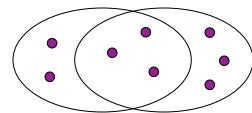
short integer vectors that represent the sets, and reflect their similarity

MinHashing

Step 2: *Minhashing:* Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

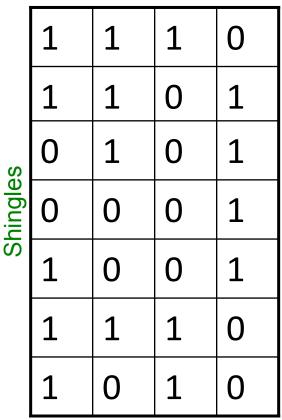


- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: C₁ = 10111; C₂ = 10011
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row *e* and column *s* if and only if *e* is a member of *s*
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: sim(C₁,C₂) = ?
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - d(C₁,C₂) = 1 (Jaccard similarity) = 3/6



Outline: Finding Similar Columns

• So far:

- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: Check that columns with similar signatures are really similar

• Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

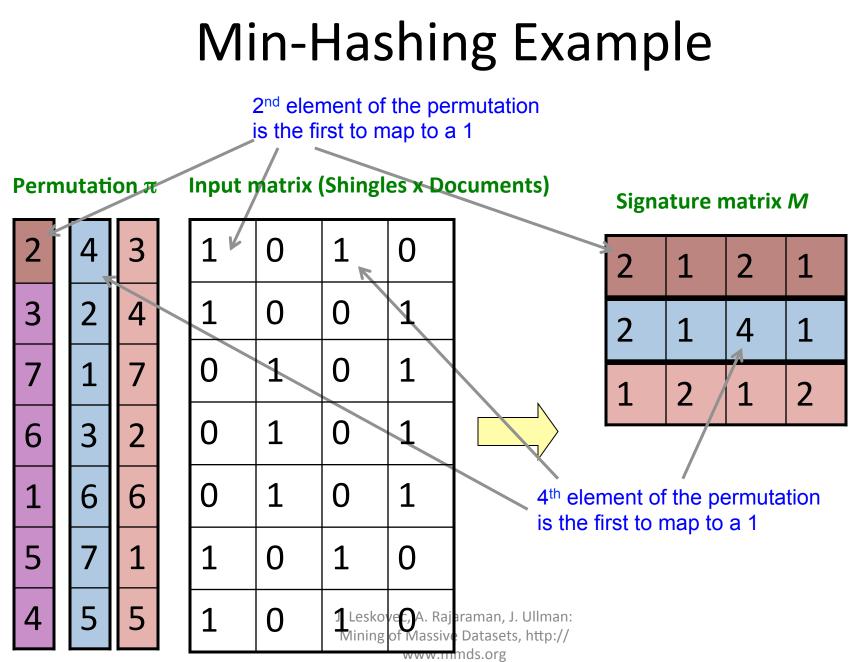
- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) *h(C)* is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function *h(·)* such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- **Goal:** Find a hash function *h(·)* such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function h_π(C) = the index of the first (in the permuted order π) row in which column C has value 1:
 h_π(C) = min_π π(C)
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column



The Min-Hash Property

- Choose a random permutation π
- <u>Claim</u>: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let **X** be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any *y*∈*X* is mapped to the *min* element
 - Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or

 $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

- So the prob. that **both** are true is the prob. $\mathbf{y} \in \mathbf{C}_1 \cap \mathbf{C}_2$
- $\Pr[\min(\pi(C_1))=\min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2| = sim(C_1, C_2)$

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

23

Four Types of Rows

• Given cols C₁ and C₂, rows may be classified as:

 $C_1 C_2$

- A 1 1
- B 1 0
- C 0 1
- D 0 0
- a = # rows of type A, etc.
- Note: sim(C₁, C₂) = a/(a +b +c)
- Then: $Pr[h(C_1) = h(C_2)] = Sim(C_1, C_2)$
 - Look down the cols C_1 and C_2 until we see a 1
 - If it's a type-A row, then h(C₁) = h(C₂)
 If a type-B or type-C row, then not

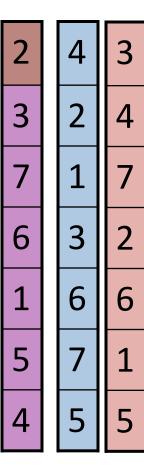
Similarity for Signatures

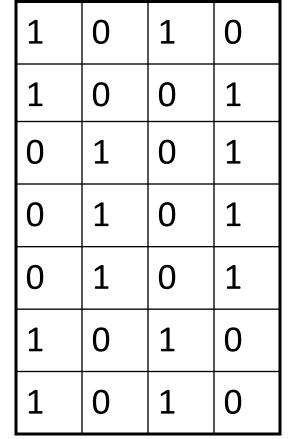
- We know: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

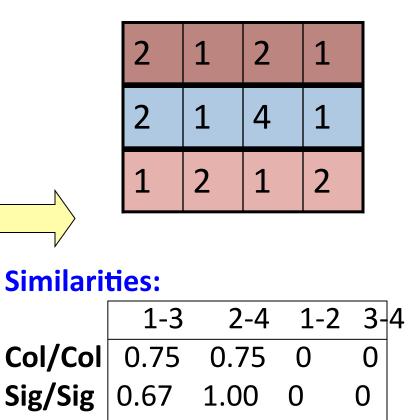
Permutation π

Input matrix (Shingles x Documents)





Signature matrix M



J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://

www.mmds.org

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of *sig(C)* as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min (\pi_i(C))$

- Note: The sketch (signature) of document C is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick **K** = 100 hash functions k_i
 - Ordering under k_i gives a random row permutation!

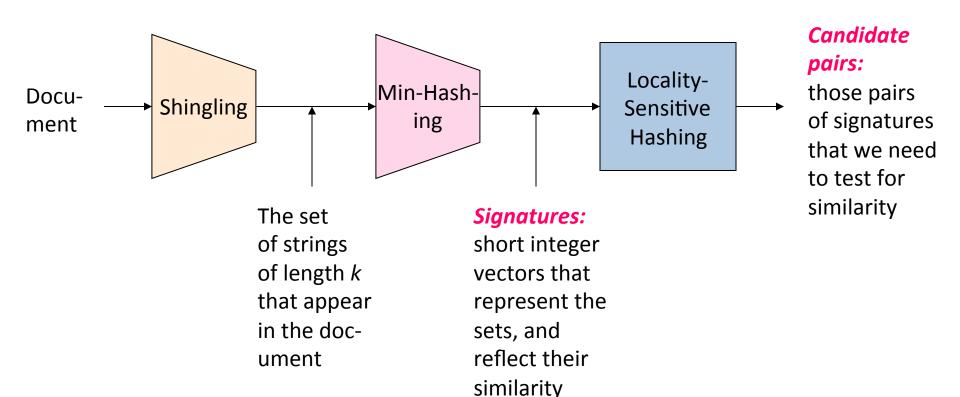
One-pass implementation

- For each column *C* and hash-func. *k_i* keep a "slot" for the minhash value
- Initialize all sig(C)[i] = ∞
- Scan rows looking for 1s
 - Suppose row *j* has 1 in column *C*
 - Then for each k_i :
 - If k_i(j) < sig(C)[i], then sig(C)[i] ← k_i(j)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org How to pick a random hash function h(x)? Universal hashing:

 $h_{a,b}(x)=((a \cdot x+b) \mod p) \mod N$ where:

a,b ... random integers p ... prime number (p > N)



Locality Sensitive Hashing Step 3: Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function *f(x,y)* that tells whether *x* and *y* is a *candidate pair*: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:

- Hash columns of signature matrix *M* to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Candidates from Min-Hash

- Pick a similarity threshold *s* (0 < s < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

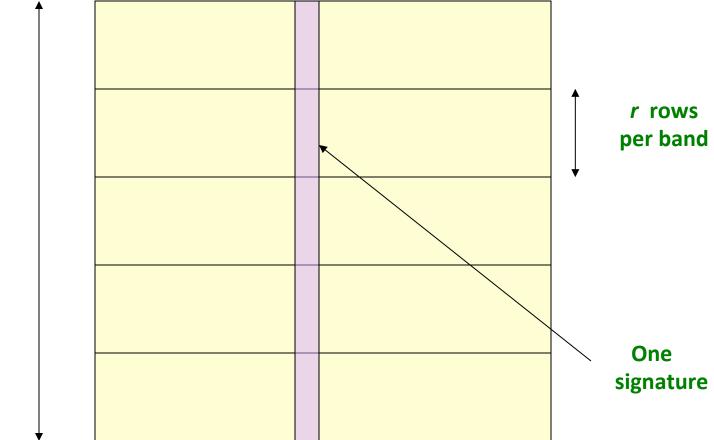
M (i, x) = M (i, y) for at least frac. s values of i

We expect documents *x* and *y* to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

- Big idea: Hash columns of signature matrix *M* several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition *M* into *b* Bands



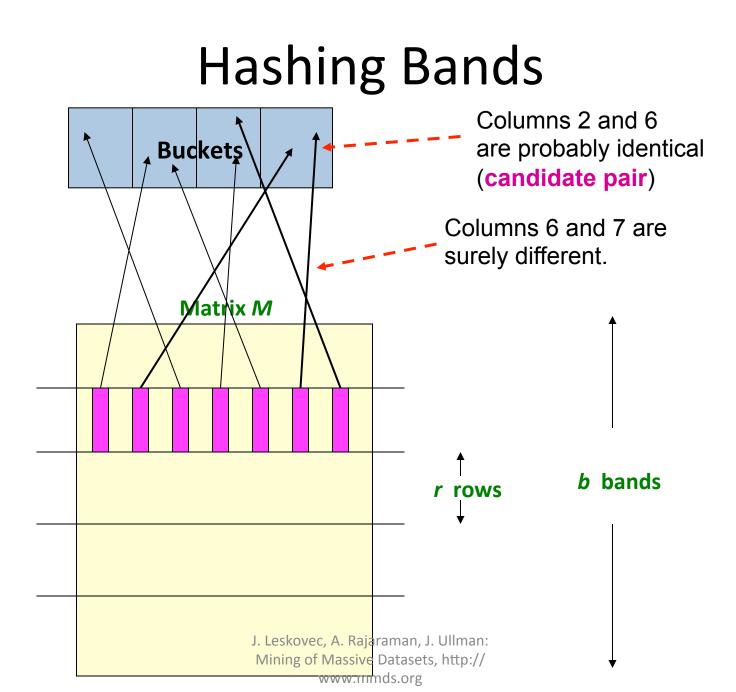
b bands

J. LSignature; matrix UMan: Mining of Massive Datasets, http:// www.mmds.org

Partition M into Bands

- Divide matrix *M* into *b* bands of *r* rows
- For each band, hash its portion of each column to a hash table with *k* buckets
 Make *k* as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org



Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of Bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least *s* = 0.8 similar

C₁, C₂ are 80% Similar

- Find pairs of ≥ s=0.8 similarity, set b=20, r=5
- **Assume:** sim(C₁, C₂) = 0.8
 - Since sim(C_1, C_2) \ge s, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C₁, C₂ identical in one particular band: (0.8)⁵ = 0.328
- Probability C₁, C₂ are *not* similar in all of the 20 bands: (1-0.328)²⁰ = 0.00035
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C_1 , C_2 are 30% Similar

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- Assume: $sim(C_1, C_2) = 0.3$

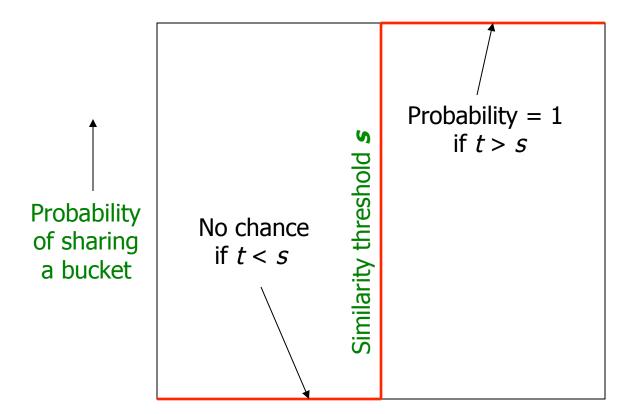
- Since sim(C_1 , C_2) < s we want C_1 , C_2 to hash to NO common buckets (all bands should be different)

- Probability C₁, C₂ identical in one particular **band:** $(0.3)^5 = 0.00243$
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 - (1 - 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their J. Leskovec, A. Rajaraman, J. Ullman: similarity is belowing freshold as ts, http://

LSH Involves a Tradeoff

- Pick:
 - The number of Min-Hashes (rows of *M*)
 - The number of bands **b**, and
 - The number of rows *r* per band
 - to balance false positives/negatives
- Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

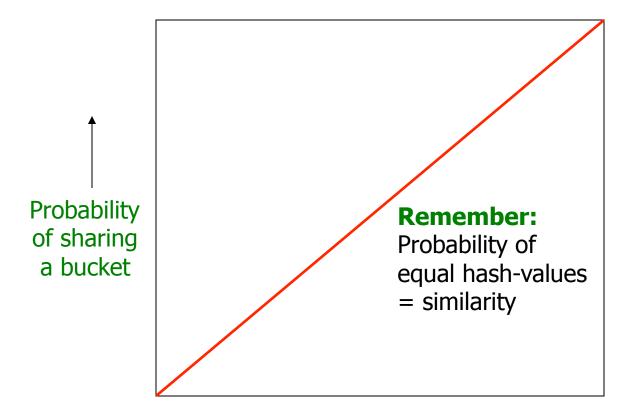
Analysis of LSH – What We Want



Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

What 1 Band of 1 Row Gives You



Similarity $t = sim(C_1, C_2)$ of two sets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

b bands, r rows/band

- Columns C₁ and C₂ have similarity *t*
- Pick any band (*r* rows)

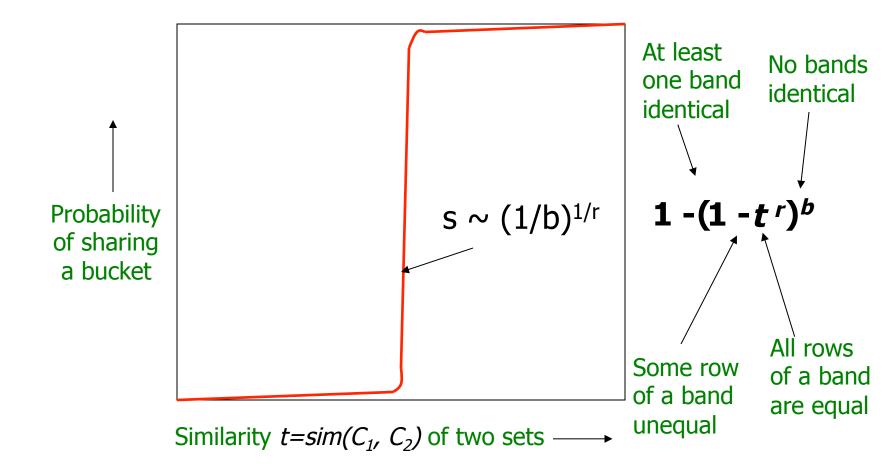
– Prob. that all rows in band equal = t^r

– Prob. that some row in band unequal = 1 - t^r

- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical =

 $1 - (1 - t^r)^b$

What b Bands of r Rows Gives You



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

Example: *b* = 20; *r* = 5

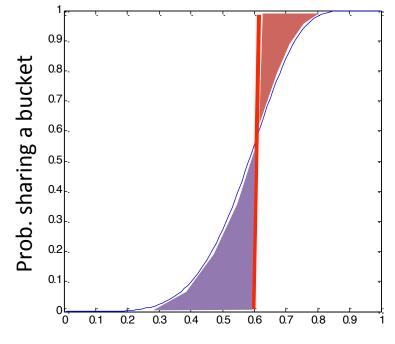
- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
. 8 . Lesko Mining	vec, A. 19:006 . Ullman: of Massive Datasets, http://

Picking r and b: The S-curve

Picking r and b to get the best S-curve

- 50 hash-functions (r=5, b=10)



Blue area: False Negative rate Green area: False Positive rate

Similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:// www.mmds.org

LSH Summary

- Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find **candidate pairs** of similarity \ge **s**

GENERALIZATION OF LSH

LSH: Locality Sensitive Hashing C'02

- U = Universe of objects
- S: U \times U \rightarrow [0, 1] = Similarity function

An LSH for a similarity S is a probability distribution over a set \mathcal{H} of hash functions such that

 $Pr_{h \in \mathcal{H}} [h(A) = h(B)] = S(A, B)$ for each A, B \in U

LSH: Gap definition IMRS'97, IM'98, GIM'99

S: U × U → [0, 1] = Similarity function over a universe U of objects

An (r, R, p, P)-LSH for a similarity S is a probability distribution over a set \mathcal{H} of hash functions such that

• $S(A, B) \ge R \Rightarrow Pr_{h \in \mathcal{H}} [h(A) = h(B)] > P$

• $S(A, B) < r \Rightarrow Pr_{h \in \mathcal{H}} [h(A) = h(B)] < p$ for each A, B \in U; here, r < R and P > p

Original definition implies an (r, R, r, R) gap version

Eg 1. Hamming similarity

• Given two n-bit vectors x and y

 $HS(x, y) = #\{i : x_i = y_i\}/n$

Eg, disjoint vectors have similarity 0 and HS(x, x) = 1

x = 01001, y = 10011, HS(x, y) = 2/5

• 1 – HS(x, y) is the Hamming distance metric

Sampling hash IM'98

- $\mathcal{H} = \{h_1, ..., h_n\}, \text{ where } h_i(x) = x_i$
 - The i-th hash function outputs the i-th bit of x

Claim. Sampling hash forms an LSH for Hamming similarity

 $Pr[h(x) = h(y)] = Pr_i[h_i(x) = h_i(y)] = HS(x, y)$

Eg 2. Jaccard similarity

• Given two sets A and B

 $J(A, B) = |A \cap B| / |A \cup B|$

Eg, disjoint sets have similarity 0 and J(A, A) = 1

$$A = \{1, 2\}, B = \{2, 3\}, J(A, B) = 1/3$$

- 1 J(A, B) is a metric
- Used extensively in many scientific and sociological applications
- Paul Jaccard introduced this similarity in 1901 for comparing and clustering fields of flowers on the Alps

MinHash B'97, BCFM'00

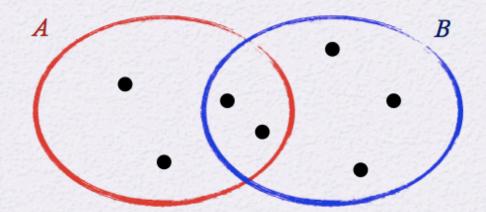
- Given a universe U, pick a permutation π on U uniformly at random
- Hash each subset S ⊆ U to the minimum value it contains according to π

Eg,
$$A = \{1, 2\}, B = \{2, 3\}$$

 $\pi = (1 < 2 < 3), h(A) = 1, h(B) = 2$ $\pi = (1 < 3 < 2), h(A) = 1, h(B) = 3$ $\pi = (2 < 1 < 3), h(A) = 2, h(B) = 2$ $\pi = (2 < 3 < 1), h(A) = 2, h(B) = 2$ $\pi = (3 < 1 < 2), h(A) = 1, h(B) = 3$ $\pi = (3 < 2 < 1), h(A) = 2, h(B) = 3$

MinHash (contd)

Claim. MinHash forms an LSH for Jaccard similarity



 $\Pr[h(A) = h(B)] = |A \cap B| / |A \cup B| = J(A, B)$

Eg 3. Angle similarity

Given two unit vectors x and y

 $\theta(x, y) =$ angle between x and y

- Natural measure of similarity for high-dimensional vectors
- Eg, $\theta(x, x) = 0$ and $\theta(x, y)$ maximum at y = -x $x = (\sqrt{3}/2, 1/2), y = (1/\sqrt{2}, 1/\sqrt{2}), \theta(x, y) = \pi/12$
- Used extensively in text processing, machine learning applications

SimHash C'02

- Pick a random unit vector r
- Hash each vector x by computing sgn(x, r)

Eg, x = $(\sqrt{3}/2, 1/2)$, r = (0.41, -0.91), h(x) = -0.1

 Can also pick each entry of r from N(0, 1) and normalize

SimHash (contd)

Claim. SimHash forms an LSH for angle similarity

$\Pr[h(x) = h(y)] = 1 - \theta(x, y)/\pi$

r

y

A different set similarity measure: if x and y are characteristic vectors $\theta = \arccos(|A \cap B| / (\sqrt{A}\sqrt{B}))$

A metric condition C'02

Theorem. S is LSHable $\Rightarrow 1 - S$ is a metric **Proof.** Fix a hash function h and define $\Delta_{h}(A, B) \equiv [h(A) \neq h(B)]$ $1 - S(A, B) = \Pr_{h \in \mathcal{H}} \Delta_h(A, B)$ $\Delta_{h}(A, B)$ satisfies the triangle inequality $\Delta_h(A, B) + \Delta_h(B, C) \geq \Delta_h(A, C)$