CS60021: Scalable Data Mining

Similarity Search and Hashing



Finding Similar I[tems



Distance Measures

= Goal: Find near-neighbors in high-dim. space
— We formally define “near neighbors” as
points that are a “small distance” apart

* For each application, we first need to define what “distance”
means

* Today: Jaccard distance/similarity

— The Jaccard similarity of two sets is the size of their intersection
divided by the size of their union:
sim(C,, C,) = |C,NC,|/|C,UG,|
— Jaccard distance: d(C,, C,) =1 - |C,;NC,|/|C,UG,|
3 in intersection
8 in union

Jaccard similarity= 3/8
Jaccard distance = 5/8
J. Leskoveg, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://
www.mmds.org



Task: Finding Similar Documents

* Goal: Given a large number (#in the millions or billions) of
documents, find “near duplicate” pairs

* Applications:
— Mirror websites, or approximate mirrors
e Don’t want to show both in search results
— Similar news articles at many news sites

* Cluster articles by “same story”

* Problems:

— Many small pieces of one document can appear
out of order in another

— Too many documents to compare all pairs

— Documents are so large or so many that they cannot
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



3 Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures,
while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

— Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:

— Document = set of words appearing in document
— Document = set of “important” words

— Don’t work well for this application. Why?

Need to account for ordering of words!
A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



Define: Shingles

* A k-shingle (or k-gram) for a document is a sequence
of k tokens that appears in the doc

— Tokens can be characters, words or something else,
depending on the application

— Assume tokens = characters for examples

* Example: k=2; document D, = abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}

— Option: Shingles as a bag (multiset), count ab twice: S’(D,)
= {ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Represent a document by the set of hash values of its k-
shingles

— ldea: Two documents could (rarely) appear to have shingles in
common, when in fact only the hash-values were shared

* Example: k=2; document D,= abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}
Hash the singles: h(D,) ={1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 10
www.mmds.org



Similarity Metric for Shingles

* Document D, is a set of its k-shingles C,=S(D,)

* Equivalently, each document is a
0/1 vector in the space of k-shingles
— Each unique shingle is a dimension
— Vectors are vVery sparse
* A natural similarity measure is the
Jaccard similarity:

sim(D,, D,) = |C,NGC,|/|C,UG,]



Working Assumption

* Documents that have lots of shingles in common
have similar text, even if the text appears in

different order

e Caveat: You must pick k large enough, or most
documents will have most shingles
— k=5 is OK for short documents
— k=10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Motivation for Minhash / LSH

* Suppose we need to find near-duplicate documents
among /=1 million documents

* Naively, we would have to compute pairwise
Jaccard similarities for every pair of docs
— N(N-1)/2 = 5*%10 comparisons
— At 10° secs/day and 10°® comparisons/sec,
it would take 5 days

 For ¥= 10 million, it takes more than a year...

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Encoding Sets as Bit Vectors

Many similarity problems can be
formalized as finding subsets that
have significant intersection

Encode sets using 0/1 (bit, boolean) vectors
— One dimension per element in the universal set

Interpret set intersection as bitwise AND, and
set union as bitwise OR

Example: C, =10111; C, =10011
— Size of intersection = 3; size of union =4,
— Jaccard similarity (not distance) = 3/4
— Distance: d(C,,C,) = 1 — (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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From Sets to Boolean Matrices

* Rows = elements (shingles)
e Columns = sets (documents)

— linroweand columnsifandonlyifeisa
member of s

— Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

— Typical matrix is sparse!

 Each document is a column:
— Example: sim(C,,C,) =?
» Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6
+ d(C,C,) =1 - (Jaccard similarity) = 3/6

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

Shingles

Documents
1 (1 |1 |0
1 (1 |0 |1
O (1 [0 |1
O |0 [0 |1
1 (0 |0 |1
1 (1 |1 |0
1 (0 |1 |0

16




Outline: Finding Similar Columns

e So far:
— Documents — Sets of shingles
— Represent sets as boolean vectors in a matrix

* Next goal: Find similar columns while
computing small sighatures
— Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Outline: Finding Similar Columns

* Next Goal: Find similar columns, Small signatures
* Naive approach:

— 1) Signatures of columns: small summaries of columns
— 2) Examine pairs of signatures to find similar columns

* Essential: Similarities of signatures and columns are related

— 3) Optional: Check that columns with similar signatures
are really similar

* Warnings:

— Comparing all pairs may take too much time: Job for LSH

* These methods can produce false negatives, and even false
positives (if the optional check is not made)

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 18
www.mmds.org



Hashing Columns (Signatures)

Key idea: “hash” each column C to a small signature h(C), such
that:

— (1) h(C) is small enough that the signature fits in RAM

— (2) sim(C,, C,) is the same as the “similarity” of signatures h(C,) and h(C,)

Goal: Find a hash function h(:) such that:
— If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
— If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Hash docs into buckets. Expect that “most” pairs of near
duplicate docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 19
www.mmds.org



Min-Hashing

Goal: Find a hash function h(:) such that:
— if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
— if sim(C,,C,) is low, then with high prob. h(C,) £ h(C,)

Clearly, the hash function depends on
the similarity metric:

— Not all similarity metrics have a suitable
hash function
There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 20
www.mmds.org



Min-Hashing

Imagine the rows of the boolean matrix permuted under
random permutation &

Define a “hash” function h_(C) = the index of the first (in the
permuted order ;) row in which column C has value 1:

h_(C) = min_n(C)

Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Permutation®

Min-Hashing Example

2nd element of the permutation

is the first to map to a 1

Input matrix (Shinglesx-Documents)

1

2((4]13] [17|0 |1 |oO
sll2lla1-]1 [0 [0 Tu
71121l7] O T3_10 |1
6/(3]|2] [0 |1 |01
1||e6|l6| [0 |1 |0 |1
5((7|(2] |2 [0 |1 |O
4(15([5] |1 [0 |10

Signature matrix M

2 |11 (2 |1
2 |1 |4 |1
1 12 41 |2

<

4 element of the permutation
is the first to map to a 1



The Min-Hash Property

* Choose a random permutation &

* Claim: Pr[h_(C,) = h_(C,)] = sim(C,, C,)

e Why?
— Let X be a doc (set of shingles), yEXis a shingle

R OO | = O O
O, | O|mR=» | O| O

— Then: Pr[m(y) = min(x(X))] = 1/| X|
* ltis equally likely that any y&E X is mapped to the min element
— Lety be s.t. w(y) = min(xt(C,UC,))
— Then either:  =w(y) = min(w(C,)) ifyEeC,, or
n(y) = min(m(C,)) ify € C,
— So the prob. that both are true is the prob. y €C, N C, One of the two

] ] ] cols had to have
- Pr[m|n(Jt(C1))=m|n(n(C2))]= I ClﬂC2|/|C1UC2|= S’m(cy Cz) 1 at position y

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 23
www.mmds.org



Four Types of Rows

* Given cols C, and C,, rows may be classified as:

C, G
A 1 1
B 1 O
C 0 1
D 0 O

— a=#rows of type A, etc.
* Note: sim(C,, C,) =a/(a +b +c)
* Then: Pr[h(C,) = h(C,)] = Sim(C,, C,)
— Look down the cols C; and C, until we seea 1

— If it’s a type-A row, then h(C,) = h(C,)
If a type-B or type-C row, then not

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] =sim(C,, C,)
Now generalize to multiple hash functions

The similarity of two signatures is the fraction of
the hash functions in which they agree

Note: Because of the Min-Hash property, the
similarity of columns is the same as the expected
similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 25
www.mmds.org



Permutation &

Min-Hashing Example

Input matrix (Shingles x Documents)

2(14((3|] (1 |0 (1 |O
3(121](4] |1 |0 |0 |1
711tz 10 |1 |0 |1
6(/3](2] |0 |1 |0 |1
1/1161]|6] [0 |1 |0 |1
5//7]|2] |1 |0 |1 |O
41(515]1 |1 |0 |1 |O

2 |1 1
2 |1 1
: 1 (2 2
Similarities:
1-3 1-2 3-
Col/Col| 0.75 0.75 O 0
Sig/Sig |0.67 1.00 O 0

Signature matrix M




Min-Hash Sighatures

Pick K=100 random permutations of the rows
Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the index of the first
row that hasa 1l in column C

sig(C)[i] = min (7,(C))
Note: The sketch (signature) of document Cis small ~100 bytes!

We achieved our goal! We “compressed”
long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 27
www.mmds.org



Implementation Trick

* Permuting rows even once is prohibitive

 Row hashing!
— Pick K =100 hash functions k;

— Ordering under k; gives a random row permutation!

* One-pass implementation

— For each column € and hash-func. k; keep a “slot” for the min-

hash value
— Initialize all sig(C)[i] = o°

— Scan rows looking for 1s
e Suppose row jhas1in columnC
* Then for each k;:

— If kj) < sig(C)[i], then sig(C)[i] < kij)

J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http://
www.mmds.org

How to pick a random

hash function h(x)?
Universal hashing:
h,v(x)=((a-x+b) mod p) mod N
where:

a,b ... random integers

p ... prime number (p > N)

28
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LSH: First Cut

* Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

* LSH — General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

e For Min-Hash matrices:

— Hash columns of signature matrix M to many buckets

— Each pair of documents that hashes into the
same bucket is a candidate pair

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 30
www.mmds.org



Candidates from Min-Hash

* Pick a similarity threshold s (0 <s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of

their rows:
M (i, x) = M (i, y) for at least frac. s values of i

— We expect documents x and y to have the same
(Jaccard) similarity as their signatures



LSH for Min-Hash

* Big idea: Hash columns of
signature matrix M several times

* Arrange that (only) similar columns are
likely to hash to the same bucket, with

high probability

e Candidate pairs are those that hash to
the same bucket

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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b bands

Partition M into b Bands

AN

). \Signatureimatrix Uvan:
Mining of Massive Datasets, http://

www.mmds.org

r rows
per band

One
signature

33



Partition M into Bands

Divide matrix M into b bands of r rows

For each band, hash its portion of each
column to a hash table with k buckets

— Make k as large as possible

Candidate column pairs are those that hash
to the same bucket for = 1 band

Tune b and r to catch most similar pairs,
but few non-similar pairs



Hashing Bands

Buc

athix M\

J. Leskovec, A. Rajd
Mining of Massive

raman, J. Ullman:
Datasets, http:// v

WWW.MmM

nds.org

Columns 2 and 6

kEtf\ / j¢---—"7 are probably identical
\

(candidate pair)

Columns 6 and 7 are

,,,, surely different.

r rOwWs b bands

35



Simplifying Assumption

 There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

* Assumption needed only to simplify analysis,
not for correctness of algorithm

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Example of Bands

Assume the following case:

e Suppose 100,000 columns of M (100k docs)

Signatures of 100 integers (rows)
Therefore, signatures take 40Mb
Choose b = 20 bands of r =5 integers/band

Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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C,, C, are 80% Similar

Find pairs of = s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) =0.8

— Since sim(C,, C,) = s, we want C;, C, to be a candidate
pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

Probability C,, C, identical in one particular
band: (0.8)°> = 0.328

Probability C,, C, are not similar in all of the 20
bands: (1-0.328)%° = 0.00035

— i.e., about 1/3000th of the 80%-similar column pairs
are false negatives (we miss them)

— We would find 99.965% pairs of truly similar documents

Mining of Massive Datasets, http://
www.mmds.org



C,, C, are 30% Similar

Find pairs of = s=0.8 similarity, set b=20, r=5
Assume: sim(C,, C,) = 0.3

— Since sim(C,, C,) <s we want C, C, to hash to NO
common buckets (all bands should be different)

Probability C,, C, identical in one particular
band: (0.3)°> =0.00243

Probability C;, C, identical in at least 1 of 20
bands: 1-(1-0.00243)%° =0.0474

— In other words, approximately 4.74% pairs of docs
with similarity 0.3% end up becoming candidate pairs

* They are false positives since we will have to examine them
(they are candidate pairs) but then it will turn out their
. . . . J. Leskovec, A. Rajaraman, J. Ullman:
similarity is below. threshold:€: iy 39

www.mmds.org



LSH Involves a Tradeoff

* Pick:
— The number of Min-Hashes (rows of M)
— The number of bands b, and

— The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up



Analysis of LSH — What We Want

/

Probability = 1
@ ift>s
O
o
0
Probability O
of sharing Nﬁc ?f";ce S
a bucket =
©
£
0p)

Similarity t =sim(C,, C,) of two sets ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



What 1 Band of 1 Row Gives You

Probability Remember:
of sharing Probability of
a bucket equal hash-values
= similarity

Similarity t =sim(C,, C,) of two sets ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org



b bands, r rows/band

Columns C, and C, have similarity t

Pick any band (r rows)
— Prob. that all rows in band equal =t
— Prob. that some row in band unequal =1 -t

Prob. that no band identical = (1 - t)*

Prob. that at least 1 band identical =
1-(1-t)°



What b Bands of r Rows Gives You

Probability
of sharing
a bucket

s ~ (1/b)l/r

H./

_/

—

Similarity t=sim(C,, C,) of two sets ——

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org

'g‘:]éeg:] g No bands
identical

identical /

\

1-(1-tr)°

All rows
S0me roW  of 5 pand

of a band

are equal
unequal
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Example: b =20;r =5

e Similarity threshold s
* Prob. that at least 1 band is identical:

1-(1-s")P
.006
047
.186
470
.802
975

eskagvec, A. 9@96 Ullman:
ning of Ma$sive Datasets, http://

www.mmds.org
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Picking r and b: The S-curve

* Picking r and b to get the best S-curve
— 50 hash-functions (r=5, b=10)

Prob. sharing a bucket

0.9}

0.8}

0.7}

0.6}

0.5}

0.4}

0.3}

0.2}

0.1}

1.

Blue area: False Negative rate
Green area: False Positive rate

Oi-1 02 03 04 05 06 0.r7 O.rS O.rQ 1
Similarity
J. Leskovec, A. Rajaraman, J. Ullman:

Mining of Massive Datasets, http:// 46
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LSH Summary

* Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

* Check in main memory that candidate pairs
really do have similar signatures

* Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://
www.mmds.org
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Summary: 3 Steps

Shingling: Convert documents to sets
— We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while
preserving similarity

— We used similarity preserving hashing to generate signatures with

property Pr[h_(C,) = h_(C,)] = sim(C,, C,)

— We used hashing to get around generating random permutations
Locality-Sensitive Hashing: Focus on pairs of signatures likely to
be from similar documents

— We used hashing to find candidate pairs of similarity = s

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http:// 48
www.mmds.org



GENERALIZATION OF LSH



LSH: Locality Sensitive Hashing C’02

U = Universe of objects
S: U x U — [0, 1] = Similarity function

An LSH for a similarity S 1s a probability
distribution over a set H of hash functions such
that

Pry, o5, [0(A) = h(B)] = S(A, B)
foreach A, Be U



LSH: Gap definition IMRS’97, IM’98, GIM’99

S: U x U— [0, 1] = Similarity function over a
universe U of objects

An (r, R, p, P)-LSH for a similarity S 1s a probability
distribution over a set A of hash functions such that

S(A, B) > R = Pr, .4 [h(A) =h(B)] > P
S(A, B) <r = Pr, .4, [n(A) =h(B)] <p
foreach A,B€ U; here,r<Rand P> p

Original definition implies an (r, R, r, R) gap version



Eg 1. Hamming similarity

G1iven two n-bit vectors X and y
HS(x yy=t{i:% =y 1/n

Eg, disjoint vectors have similarity 0 and
HS(x, x) =1

x = 01001, y = 10011, HS(x, y) = 2/5

1 — HS(x, y) 1s the Hamming distance metric



Sampling hash M98

H = {hy, ..., h }, where h(x) = x,
e The i1-th hash function outputs the i-th bit of x

Claim. Sampling hash forms an LSH for
Hamming similarity

Prlh(x) = h(y)] = Pr;[hy(x) = hy(y)] = H3(x, y)



Eg 2. Jaccard similarity

Given two sets A and B
JA,B)=|ANB| / |AUB|
Eg, disjoint sets have similarity 0 and J(A, A) =1
A={1,2},B={2,3},J(A,B)=1/3
1 —J(A, B) 1s a metric

Used extensively in many scientific and sociological
applications

Paul Jaccard introduced this similarity in 1901 for
comparing and clustering fields of flowers on the Alps



MinHash B’97, BCFM’00

Given a universe U, pick a permutation 7 on U
uniformly at random

Hash each subset S C U to the minimum value it
contains according to 7

BEg A =A172¢ B =123
r=(1<2<3),h(A)=1,hB)=2 7=(2<3<1),h(A)=2,h(B)=2

r=(1<3<2),h(A)=1,h(B)=3 7=(3<1<2),h(A)=1,h(B)=3
r=2<1<3),h(A)=2,h(B)=2 7w=(3<2<1),h(A)=2, h(B)=3



Claim. MinHash forms an LSH for Jaccard
similarity

Pr[h(A) = h(B)] = |ANB| / |AUB| = J(A, B)



Eg 3. Angle similarity

Given two unit vectors X and y
0(x, y) = angle between x and y

Natural measure of similarity for high-dimensional
vectors

Eg, 0(x, x) = 0 and 6(x, y) maximum aty = X
x=(3/2,1/2),y = (1/N2, 1/2), 6(x, y) = 7/12

Used extensively in text processing, machine learning
applications



SimHash C’02

Pick a random unit vector r
Hash each vector x by computing sgn(x, r)
Eg, x = (N3/2, 1/2), r = (0.41, -0.91), h(x) = -0.1

Can also pick each entry of r from N(O, 1) and
normalize



Claim. SimHash forms an LSH for angle
similarity

Pr[h(x) = h(y)] = 1 -0(x, y)/=

A different set similarity measure: if x and
characteristic vectors 6 = arccos(| ANB | /(

arc
AVB))



A metric condition co2

Theorem. S i1s LSHable = 1 — S 1s a metric
Proof. Fix a hash function h and define
A(A, B) = [h(A) = h(B))
1-S(A, B) =Pr, ., A,(A, B)
A, (A, B) satisfies the triangle inequality
Ai(A, B) + Ay(B, ©) > AA, C)



