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Supervised Learning

Example: Spam filtering

viagra learning the dating nigeria | spam?

= 1 0 1 0 0) | y=1
Tn» = ( 0 1 1 0 0 ) s = —1
Fa=( O 0 0 0O 1) | y3=1

Instance space x € X (| X|= n data points)

Binary or real-valued feature vector x of
word occurrences

d features (words + other things, d~100,000)
ClassyeY

y: Spam (+1), Ham (-1)
Goal: Estimate a function f(x) so that y = f(x)
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More generally: Supervised Learning

Would like to do prediction:
estimate a function f(x) so that y = f(x)

Where y can be:
Real number: Regression
Categorical: Classification

Complex object:
Ranking of items, Parse tree, etc.

Data is labeled:

Have many pairs {(x, y)}

X ... vector of binary, categorical, real valued features
y ... class ({+1, -1}, or a real number)
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Supervised Learning

Task: Given data (X,Y) build a model f() to
predict Y’ based on X’
Strategy: Estimatey = f(x)
on (X,Y). Tt
Hope that the same f(x) also

works to predict unknown Y’ Zﬁf}:l

The “hope” is called generalization
Overfitting: If f(x) predicts well Y but is unable to predict Y’

We want to build a model that generalizes
well to unseen data

But Jure, how can we well on data we have
never seen before?!?
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Supervised Learning

Idea: Pretend we do not know the data/labels
we actually do know

Build the model f(x) on Tras‘;‘:r‘g
the training data Validation
See how well f(x) does on set

the test data Teft{:I
If it does well, then apply it also to X’ =€

Refinement: Cross validation

Splitting into training/validation set is brutal

Let’s split our data (X,Y) into 10-folds (buckets)
Take out 1-fold for validation, train on remaining 9
Repeat this 10 times, report average performance
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Linear models for classification

Binary classification:

Hif wO x® 4 w® x® +, | W@ x@ > 9
f(x)= .

-1 otherwise

Input: Vectors x; and labels y;

Vectors x; are real valued where ||x|[; = 1
Goal: Find vector w = W@, w?@ ... , w@)

i .
Each wi is a real number SR R
. o e o o boundary
is linear
. ° Note:
X —> <x, 1> VX
w— <W, — 6?>
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SVM: How to estimate w?

w.,b

n
min Lw-w+C-) &
i=1

stNLy (x,-w+b)=21-¢,
Want to estimate w and b!

Standard way: Use a solver!

Solver: software for finding solutions to
“common” optimization problems

Use a quadratic solver:
Minimize quadratic function

Subject to linear constraints
Problem: Solvers are inefficient for big data!
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SVM: How to estimate w?

Want to estimate w, b! min yww+C4
Alternative approach: ANy WA B 21— &

Want to minimize f(w,b):

-

n d
f(w,b) = %w-w—l—C-Zmaﬂ O,l—yi(Zw(j)xl.(j) +b)
i=1

L J=1

Side note:
How to minimize convex functions g(z)
Use gradient descent: min, g(z) g
lterate: z,,, <z, — M Vg(z,)
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What is Optimization?

Find the minimum or maximum of an objective function given a
set of constraints:

arg min fo ()
s.t.fi(x) < 0,0 ={1,...,k}
hj(x) =0,5 ={1,...1}



Why Do We Care?

Linear Classification
Maximum Likelihood

. mn
argmmz w]|* + C’Z&
w — arg méa,x Z:l log po(x;)
s.t. 1 — yzxZTw <&; =
& >0
K-Means

k
. J — T; — s 2
g, T =2 2 Hlei = gl

71=1 iECj
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Prefer Convex Problems

Local (non global) minima and maxima:
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Convex Functions and Sets

A function f:R" — R is convex if for x,y € domfand any a € [0, 1],

flaz+ (1 —a)y) <af(x)+ (1 —a)f(y)

A set C' C R" is convex if for x,y € C and any a € [0, 1],

ar+ (1 —a)y e C
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Important Convex Functions

SVM loss:

flw) = [1 -y w],
Binary logistic loss:

f(w) = log (1 + exp(—yzlw)) | 81+
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Convex Optimization Problem

mmlmlze fo(x) (Convex function)

fi(z) <0 (Convex sets)
h](a:') =0 (Afflne)



Lagrangian Dual

Start with optimization problem:
minimize fo(x)
T

s.t. fi(z) <0, i={1,...,k}
hj(x) =0, J={ 1}

Form Lagrangian using Lagrange multipliers A\; > 0, v; € R

[
L(z,\,v) +Z/\ fi(z) + > vihj(x)
j=1

Form dual function

k !
g()‘a I/) — 1I$f£(:1:, >‘7V) — H;;f {fO(x) + Zszz(x) + Zyjhj(x)}
i=1 j=1
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Gradient Descent

The simplest algorithm in the world (almost). Goal:

minimize f(x)
T

Just iterate
Tir1 = 2 — eV f(24)

where 1, Is stepsize.
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Single Step lllustration

f(x)

flxe) - nV f(z)" (x - )



Full Gradient Descent lllustration
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Newton’s Method

|dea: use a second-order approximation to function.
1
flz+ Az) = f(x) + Vfx) Az + §Aa:TV2 f(x)Ax

Choose Ax to minimize above:

Az =—[V2f(z)] " Vf(z)

Inverse Hessian Gradient
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Newton’s Method Picture

(x + Ax, f(x + Ax))

f is 2°d_order approximation, f is true function.
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Subgradient Descent Motivation

Lots of non-differentiable convex functions used in machine learning:

The subgradient set, or subdifferential set, 0f(x) of f at x is

Of (@) ={g: fly) = f(z)+g" (y—=) forally}.
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Subgradient Descent — Algorithm

Really, the simplest algorithm in the world. Goal:

minimize f(x)
T

Just iterate
Tt+1 = Tt — TGt

where 1) is a stepsize, g; € Of(x¢).
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Online learning and optimization

Goal of machine learning :

Minimize expected loss

min L(h) = E [loss(h(x),y)]

given samples " |
x;, ) 1 =1,2..m

This is Stochastic Optimization

Assume loss function is convex



Batch (sub)gradient descent for ML

Process all examples together in each step

1 <= OL(w, 4, 7;)
(k+1) (k) _ - iy I
w —w ul (nz )

: ow
1=1

. where I, is the regularized loss functjon
Entire training set examined at each step

Very slow when n is very large



Stochastic (sub)gradient descent

“Optimize” one example at a time
Choose examples randomly (or reorder and
choose in order)

Learning representative of example distribution

for 2 =1 to n:

8[/(?1], Li, yz)
— T
ow

wk+D (k)

where L is the regularized loss function
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Stochastic (sub)gradient descent

for 2 =1 to n:
aL(waxzayz)

ow

Wk ) _

~ where L is the regularized loss function
Equivalent to online learning (the weight

vector w changes with every example)
Convergence guaranteed for convex functions
(to local minimum)



SVM: How to estimate w?

Gradient descent:

Iterate until convergence:
* Forj=1...d )
» Evaluate:vf\/) = 8f(v¥;)b) =) + CZ 8L(xl.(,j)yl.)
. Update: ow o ow
wi) « whi) - an(j)

n...learning rate parameter
C... regularization parameter

Problem:
Computing Vfl takes O(n) time!

n ... size of the training dataset
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SVM: How to estimate w?

We just had:

Stochastic Gradient Descent v = w4 CY Lx, )

1 8W(j)

Instead of evaluating gradient over all examples
evaluate it for each individual training example
VFO(x) = w +C- OL(x;, ;)
: aw(j) \Notic_e: no summation
Stochastic gradient descent: OVEr anymoere

Iterate until convergence:
* Fori=1...n
* Forj=1...d
« Compute: Vi)(x)
« Update: wl) « wl) - 1 Vi)(x.)
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SGD - Issues

Convergence very sensitive to learning rate

(7:) (oscillations near solution due to probabilistic
nature of sampling)

Might need to decrease with time to ensure the
algorithm converges eventually
Basically — SGD good for machine learning

with large data sets!
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Stochastic — 1 example per iteration
Batch — All the examples!
Sample Average Approximation (SAA):

Sample m examples at each step and perform SGD
on them

Allows for parallelization, but choice of m
based on heuristics



Example: Text categorization

Example by Leon Bottou:

Reuters RCV1 document corpus
Predict a category of a document

One vs. the rest classification
n =781,000 training examples (documents)
23,000 test examples
d = 50,000 features

One feature per word
Remove stop-words
Remove low frequency words
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Example: Text categorization

Questions:

(1) Is SGD successful at minimizing f(w,b)?

(2) How quickly does SGD find the min of f(w,b)?
(3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
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Optimization “Accuracy”

Training time (secs)
100 |
| SGD SVM
50 | B
| i, - - - Conventional
/---——""“"" SVM

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Optimization quality: | f(w,b) — f(w°Pt b°oP!) |

For optimizing f(w,b) within reasonable quality
SGD-SVM is super fast
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SGD vs. Batch Conjugate Gradient

SGD on full dataset vs. Conjugate Gradient on

a sample of n training examples

Average Test Loss

04 1 ‘ .
_ n=10000 \ n=1ooooo\ n=781265

‘ n=300000
0.35 |

03 stochastic
025 |

02 !

0.15 1

01 t t t t t i
0.001 0.01 0.1 1 10 100 1000
Time (seconds)

Bottom line: Doing a simple (but fast) SGD update
many times is better than doing a complicated (but
slow) CG update a few times

Theory says: Gradient
— descent converges in
linear time k. Conjugate

gradient converges in Vk.

k... condition number
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Need to choose learning rate n and t,

OL(x..v.
W, < W, — I (WI-I-C (xl’y’)j

t+1, ow
Leon suggests:

Choose t, so that the expected initial updates are
comparable with the expected size of the weights
Choose n:

Select a small subsample

Try various rates n (e.g., 10, 1, 0.1, 0.01, ...)
Pick the one that most reduces the cost

Use n for next 100k iterations on the full dataset
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Practical Considerations

Sparse Linear SVM.:

Feature vector x; is sparse (contains many zeros)
Do not do: x;=[0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,...]
But represent x:as a sparse vector x;=[(4,1), (9,5), ...]
Can we do the SGD update more efficiently?

e,
M M=\ M+ —
Cw(%' )

Approximated in 2 steps:

OL(x,,y,) cheap: x;is sparse and so few
ow coordinates j of w will be updated

w<«—w—nC

expensive: w is not sparse, all

1_
ww(l-1n) coordinates need to be updated
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Practical Considerations

Solutionl:w =s-v Two step update procedure:

Represent vector w as the () w < w—nC OL(x;,¥;)

product of scalar s and vector v ow
(2) wew(l-n)

Then the update procedure is:

OL(x;,y;)
ow

(1)v = v —nC

(2)s =s(1—mn)
Solution 2:

Perform only step (1) for each training example

Perform step (2) with lower frequency
and higher n
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Practical Considerations

Stopping criteria:
How many iterations of SGD?

Early stopping with cross validation
Create a validation set
Monitor cost function on the validation set

Stop when loss stops decreasing

Early stopping
Extract two disjoint subsamples A and B of training data
Train on A, stop by validating on B
Number of epochs is an estimate of k
Train for k epochs on the full dataset

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

38



Stochastic gradient descent

Reference: http://alex.smola.org/teaching/10-
701-15/math.html|

Given dataset D = {(x1, V1), «.., (X, Vir) }
Loss function: L(8,D) = %Zli\,:l [(6; x;,¥;)

For linear models: 1(8; x;, v;) = L(y;, 8T ¢p(x;))
Assumption D is drawn IID from some

distribution P.
Problem:

mgn L(68,D)



Stochastic gradient descent

Input: D
Output: 6

Algorithm:
Initialize 8°
Fort=1,..,T
0t = 0" — 0 Vpl(ye, 07 P (x))
g — Zr=17:6"
ZZ;=177t .




SGD convergence

Expected loss: s(0) = Ep[l(y, 0" ¢p(x)]
Optimal Expected loss: s* = s(0*) =
mgin s(6)
Convergence:

R® + L7 t i

Zzt 1 Mt

Ez[s(0)] —s* <

Where: R = [|8° — 6%|]
L = maxVIi(y, 8" ¢(x))



SGD convergence proof

Definery, = ||8% — 8*|| and g, =

Vol(ye, 6" p(xt))

réa =17 +0¢llgell? — 2n.(6° — 697 g,
Taking expectatlon w.r.t P, 0 and using s* —
s(0Y) = g; (0* 0Y), we get:

Eglréy, —ré]l S nil® + 277t(5 — Ee[s(gt)])
Takmg sumovert =1, ..,T and using

[Tti.k_ 75 ]
<1? Ent + 22m<s - Egls(69)])



SGD convergence proof

Using convexity of s:

T
(2 nt)Ee [s(0)] < Eg] Z’?tS(et)

t=0
Substituting in the expressmn from previous
sllde

[Tt;:_ 5]

< Lzzﬂt + 22%(5 — Eg[s(®)])

Rearranglng the terms proves the result.



