CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya

Supervised Learning

Example: Spam filtering

	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($	1	0	1	0	0)	$y_1 = 1$
$\vec{x}_2 = ($	0	1	1	0	0)	$y_2 = -1$
$\vec{x}_3 = ($	0	0	0	0	1)	$y_3 = 1$

- Instance space $x \in X (|X| = n \text{ data points})$
 - Binary or real-valued feature vector x of word occurrences
 - d features (words + other things, d~100,000)
- Class y ∈ Y
 - **y**: Spam (+1), Ham (-1)
- Goal: Estimate a function f(x) so that y = f(x)

More generally: Supervised Learning

- Would like to do prediction:
 estimate a function f(x) so that y = f(x)
- Where y can be:
 - Real number: Regression
 - Categorical: Classification
 - Complex object:
 - Ranking of items, Parse tree, etc.
- Data is labeled:
 - Have many pairs {(x, y)}
 - **x** ... vector of binary, categorical, real valued features
 - **y** ... class ({+1, -1}, or a real number)

Supervised Learning

Task: Given data (X,Y) build a model f() to predict Y' based on X'

- Strategy: Estimate y = f(x)**Training** on (X, Y). Hope that the same f(x) also works to predict unknown Y'
 - The "hope" is called generalization
 - Overfitting: If f(x) predicts well Y but is unable to predict Y'
 - We want to build a model that generalizes well to unseen data
 - But Jure, how can we well on data we have never seen before?!?

X

X'

data

Test

data

Supervised Learning

Idea: Pretend we do not know the data/labels we actually do know

 Build the model f(x) on the training data
 See how well f(x) does on the test data

- If it does well, then apply it also to X'
- Refinement: Cross validation
 - Splitting into training/validation set is brutal
 - Let's split our data (X,Y) into 10-folds (buckets)
 - Take out 1-fold for validation, train on remaining 9
 - Repeat this 10 times, report average performance

Linear models for classification

Binary classification:

$$f(x) = \begin{cases} +1 & \text{if } \mathbf{w}^{(1)} \mathbf{x}^{(1)} + \mathbf{w}^{(2)} \mathbf{x}^{(2)} + \dots \mathbf{w}^{(d)} \mathbf{x}^{(d)} \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

- Input: Vectors \mathbf{x}_{j} and labels \mathbf{y}_{j}
 - Vectors x_i are real valued where $||x||_2 = 1$
- Goal: Find vector $w = (w^{(1)}, w^{(2)}, \dots, w^{(d)})$

Decision boundary is **linear**

Note:

$$\mathbf{x} \rightarrow \langle \mathbf{x}, 1 \rangle \quad \forall \mathbf{x}$$

$$\mathbf{w} \rightarrow \langle \mathbf{w}, -\theta \rangle$$

SVM: How to estimate w?

$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \forall i, y_{i} \cdot (x_{i} \cdot w + b) \ge 1 - \xi_{i}$$

- Want to estimate w and b!
 - Standard way: Use a solver!
 - Solver: software for finding solutions to "common" optimization problems
- Use a quadratic solver:
 - Minimize quadratic function
 - Subject to linear constraints
- Problem: Solvers are inefficient for big data!

SVM: How to estimate w?

- Want to estimate w, b!
- Alternative approach:
 - Want to minimize f(w,b):

$$\min_{w,b} \ \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i$$

$$s.t. \forall i, y_i \cdot (x_i \cdot w + b) \ge 1 - \xi_i$$

- $f(w,b) = \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max \left\{ 0, 1 y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$
- Side note:
 - How to minimize convex functions g(z)?
 - Use gradient descent: min, g(z)
 - Iterate: $\mathbf{z}_{\mathsf{t+1}} \leftarrow \mathbf{z}_{\mathsf{t}} \eta \ \nabla \mathbf{g}(\mathbf{z}_{\mathsf{t}})$

What is Optimization?

Find the minimum or maximum of an objective function given a set of constraints:

$$\arg \min_{x} f_0(x)$$
s.t. $f_i(x) \le 0, i = \{1, \dots, k\}$

$$h_j(x) = 0, j = \{1, \dots l\}$$

9

Why Do We Care?

Linear Classification Maximum Likelihood

$$\arg\min_{w} \sum_{i=1}^{n} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$
s.t.
$$1 - y_{i} x_{i}^{T} w \leq \xi_{i}$$

$$\xi_{i} \geq 0$$

$$\arg\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

K-Means

$$\arg \min_{\mu_1, \mu_2, \dots, \mu_k} J(\mu) = \sum_{j=1}^k \sum_{i \in C_j} ||x_i - \mu_j||^2$$

Prefer Convex Problems

Local (non global) minima and maxima:

Convex Functions and Sets

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \text{dom} f$ and any $a \in [0, 1]$, $f(ax + (1 - a)y) \leq af(x) + (1 - a)f(y)$

$$\alpha f(x) + (1 - \alpha)f(y)$$

f(y)

f(x)

A set $C \subseteq \mathbb{R}^n$ is convex if for $x, y \in C$ and any $a \in [0, 1]$,

$$ax + (1-a)y \in C$$

Important Convex Functions

SVM loss:

$$f(w) = \left[1 - y_i x_i^T w\right]_+$$

Binary logistic loss:

$$f(w) = \log \left(1 + \exp(-y_i x_i^T w)\right)$$

Convex Optimization Problem

minimize
$$f_0(x)$$
 (Convex function) s.t. $f_i(x) \leq 0$ (Convex sets) $h_j(x) = 0$ (Affine)

Lagrangian Dual

Start with optimization problem:

minimize
$$f_0(x)$$

s.t. $f_i(x) \leq 0, \ i = \{1,\ldots,k\}$
 $h_j(x) = 0, \ j = \{1,\ldots,l\}$

Form Lagrangian using Lagrange multipliers $\lambda_i \geq 0$, $\nu_i \in \mathbb{R}$

$$\mathcal{L}(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^k \lambda_i f_i(x) + \sum_{j=1}^l \nu_j h_j(x)$$

Form dual function

$$g(\lambda, \nu) = \inf_{x} \mathcal{L}(x, \lambda, \nu) = \inf_{x} \left\{ f_0(x) + \sum_{i=1}^k \lambda_i f_i(x) + \sum_{j=1}^l \nu_j h_j(x) \right\}$$

Gradient Descent

The simplest algorithm in the world (almost). Goal:

$$\underset{x}{\text{minimize}} \ f(x)$$

Just iterate

$$x_{t+1} = x_t - \eta_t \nabla f(x_t)$$

where η_t is stepsize.

Single Step Illustration

Full Gradient Descent Illustration

Newton's Method

Idea: use a second-order approximation to function.

$$f(x + \Delta x) \approx f(x) + \nabla f(x)^T \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(x) \Delta x$$

Choose Δx to minimize above:

$$\Delta x = -\left[\nabla^2 f(x)\right]^{-1} \nabla f(x)$$
 Inverse Hessian Gradient

Newton's Method Picture

 \hat{f} is 2^{nd} -order approximation, f is true function.

Subgradient Descent Motivation

Lots of non-differentiable convex functions used in machine learning:

The subgradient set, or subdifferential set, $\partial f(x)$ of f at x is

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x) \text{ for all } y\}.$$

Subgradient Descent – Algorithm

Really, the simplest algorithm in the world. Goal:

$$\underset{x}{\text{minimize}} f(x)$$

Just iterate

$$x_{t+1} = x_t - \eta_t g_t$$

where η_t is a stepsize, $g_t \in \partial f(x_t)$.

Online learning and optimization

- Goal of machine learning :
 - Minimize expected loss

given samples
$$\lim_{h \to \infty} L(h) = \mathbf{E} \left[\operatorname{loss}(h(x), y) \right]$$

- This is Stochastic Optimization
 - Assume loss function is convex

Batch (sub)gradient descent for ML

Process all examples together in each step

$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \left(\frac{1}{n} \sum_{i=1}^n \frac{\partial L(w, x_i, y_i)}{\partial w} \right)$$

- where L is the regularized loss function Entire training set examined at each step
- Very slow when n is very large

Stochastic (sub)gradient descent

- "Optimize" one example at a time
- Choose examples randomly (or reorder and choose in order)
 - Learning representative of example distribution

for
$$i = 1$$
 to n :
$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

where L is the regularized loss function

Stochastic (sub)gradient descent

for
$$i = 1$$
 to n :
$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$$

- where L is the regularized loss function
 Equivalent to online learning (the weight vector w changes with every example)
- Convergence guaranteed for convex functions (to local minimum)

SVM: How to estimate w?

Gradient descent:

Iterate until convergence:

- For j = 1 ... d
 - Evaluate: $\nabla f^{(j)} = \frac{\partial f(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 - Update:

$$\mathbf{w}^{(j)} \leftarrow \mathbf{w}^{(j)} - \eta \nabla \mathbf{f}^{(j)}$$

η...learning rate parameterC... regularization parameter

Problem:

- Computing $\nabla f^{(j)}$ takes O(n) time!
 - **n** ... size of the training dataset

SVM: How to estimate w?

We just had:

Stochastic Gradient Descent

$$\nabla f^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

 Instead of evaluating gradient over all examples evaluate it for each individual training example

$$\nabla f^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

Notice: no summation over *i* anymore

Stochastic gradient descent:

Iterate until convergence:

- For i = 1 ... n
 - For j = 1 ... d
 - Compute: $\nabla f^{(j)}(x_i)$
 - Update: $\mathbf{w}^{(j)} \leftarrow \mathbf{w}^{(j)} \eta \nabla \mathbf{f}^{(j)}(\mathbf{x}_i)$

SGD - Issues

- Convergence very sensitive to learning rate (η_t) (oscillations near solution due to probabilistic nature of sampling)
 - Might need to decrease with time to ensure the algorithm converges eventually
- Basically SGD good for machine learning with large data sets!

Hybrid!

- Stochastic 1 example per iteration
- Batch All the examples!
- Sample Average Approximation (SAA):
 - Sample m examples at each step and perform SGD on them
- Allows for parallelization, but choice of m based on heuristics

Example: Text categorization

- Example by Leon Bottou:
 - Reuters RCV1 document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - $\mathbf{n} = 781,000$ training examples (documents)
 - 23,000 test examples
 - d = 50,000 features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Example: Text categorization

• Questions:

- (1) Is SGD successful at minimizing f(w,b)?
- (2) How quickly does SGD find the min of f(w,b)?
- (3) What is the error on a test set?

	Training time	Value of f(w,b)	Test error
Standard SVM	23,642 secs	0.2275	6.02%
"Fast SVM"	66 secs	0.2278	6.03%
SGD SVM	1.4 secs	0.2275	6.02%

- (1) SGD-SVM is successful at minimizing the value of *f(w,b)*
- (2) SGD-SVM is super fast
- (3) SGD-SVM test set error is comparable

Optimization "Accuracy"

For optimizing *f*(*w*,*b*) *within reasonable* quality *SGD-SVM* is super fast

SGD vs. Batch Conjugate Gradient

 SGD on full dataset vs. Conjugate Gradient on a sample of n training examples

Bottom line: Doing a simple (but fast) SGD update many times is better than doing a complicated (but slow) CG update a few times

k... condition number

Need to choose learning rate η and t₀

$$w_{t+1} \leftarrow w_t - \frac{\eta_t}{t+t_0} \left(w_t + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$$

- Leon suggests:
 - Choose \mathbf{t}_0 so that the expected initial updates are comparable with the expected size of the weights
 - Choose η:
 - Select a small subsample
 - Try various rates η (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset

Sparse Linear SVM:

- Feature vector x_i is sparse (contains many zeros)
 - Do not do: $\mathbf{x}_i = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,0]$
 - But represent x_i as a sparse vector $x_i = [(4,1), (9,5), ...]$
- Can we do the SGD update more efficiently?

$$w \leftarrow w - \eta \left(w + C \frac{\partial L(x_i, y_i)}{\partial w} \right)$$

Approximated in 2 steps:

$$w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$

$$w \leftarrow w(1-\eta)$$

cheap: x_i is sparse and so few $w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$ cneap: x_i is sparse and so lew coordinates j of w will be updated

> **expensive**: w is not sparse, all coordinates need to be updated

- Solution 1: $w = s \cdot v$
 - Represent vector w as the product of scalar s and vector v
 - Then the update procedure is:

• (1)
$$v = v - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$

• (2) $s = s(1 - \eta)$

Solution 2:

- Perform only step (1) for each training example
- Perform step (2) with lower frequency and higher η

Two step update procedure:

(1)
$$w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w}$$

(2)
$$w \leftarrow w(1-\eta)$$

Stopping criteria:

How many iterations of SGD?

- Early stopping with cross validation
 - Create a validation set
 - Monitor cost function on the validation set
 - Stop when loss stops decreasing

Early stopping

- Extract two disjoint subsamples A and B of training data
- Train on A, stop by validating on B
- Number of epochs is an estimate of k
- Train for k epochs on the full dataset

Stochastic gradient descent

- Reference: http://alex.smola.org/teaching/10-701-15/math.html
- Given dataset $D = \{(x_1, y_1), ..., (x_m, y_m)\}$
- Loss function: $L(\theta, D) = \frac{1}{N} \sum_{i=1}^{N} l(\theta; x_i, y_i)$
- For linear models: $l(\theta; x_i, y_i) = l(y_i, \theta^T \phi(x_i))$
- Assumption D is drawn IID from some distribution \mathcal{P} .
- Problem:

$$\min_{\theta} L(\theta, D)$$

Stochastic gradient descent

- Input: D
- Output: $\bar{\theta}$

Algorithm:

- Initialize θ^0
- For t=1,...,T $\theta^{t+1}=\theta^t-\eta_t\nabla_\theta l(y_t,\theta^T\phi(x_t))$
- $\bar{\theta} = \frac{\sum_{t=1}^{T} \eta_t \theta^t}{\sum_{t=1}^{T} \eta_t}.$

SGD convergence

- Expected loss: $s(\theta) = E_{\mathcal{P}}[l(y, \theta^T \phi(x))]$
- Optimal Expected loss: $s^* = s(\theta^*) = \min_{\theta} s(\theta)$
- Convergence:

$$E_{\overline{\theta}}[s(\overline{\theta})] - s^* \le \frac{R^2 + L^2 \sum_{t=1}^T \eta_t^2}{2 \sum_{t=1}^T \eta_t}$$

- Where: $R = \|\theta^0 \theta^*\|$
- $L = \max \nabla l(y, \theta^T \phi(x))$

SGD convergence proof

- Define $r_t = \|\theta^t \theta^*\|$ and $g_t = \nabla_{\theta} l(y_t, \theta^T \phi(x_t))$
- $r_{t+1}^2 = r_t^2 + \eta_t^2 \|g_t\|^2 2\eta_t (\theta^t \theta^*)^T g_t$
- Taking expectation w.r.t $\mathcal{P}, \bar{\theta}$ and using $s^* s(\theta^t) \ge g_t^T(\theta^* \theta^t)$, we get: $E_{\overline{\theta}}[r_{t+1}^2 r_t^2] \le \eta_t^2 L^2 + 2\eta_t(s^* E_{\overline{\theta}}[s(\theta^t)])$
- Taking sum over t = 1, ..., T and using

$$E_{\overline{\theta}}[r_{t+1}^{2} - r_{0}^{2}]$$

$$\leq L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2} + 2 \sum_{t=0}^{T-1} \eta_{t}(s^{*} - E_{\overline{\theta}}[s(\theta^{t})])$$

SGD convergence proof

Using convexity of s:

$$\left(\sum_{t=0}^{T-1} \eta_t\right) E_{\bar{\theta}}\left[s(\bar{\theta})\right] \leq E_{\bar{\theta}}\left[\sum_{t=0}^{T-1} \eta_t s(\theta^t)\right]$$

 $\sqrt{t=0}$ / Substituting in the expression from previous slide:

$$E_{\overline{\theta}}[r_{t+1}^{2} - r_{0}^{2}]$$

$$\leq L^{2} \sum_{t=0}^{T-1} \eta_{t}^{2} + 2 \sum_{t=0}^{T-1} \eta_{t}(s^{*} - E_{\overline{\theta}}[s(\overline{\theta})])$$

Rearranging the terms proves the result.