Machine Learning

Sourangshu Bhattacharya

Support vector machines

- Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be our data set and let $y_{i} \in\{1,-1\}$ be the class label of x_{i}

$$
\text { For } y=1 \quad w^{T} x_{i}+b \geq 1
$$

For $y_{i}=-1 \quad w^{T} x_{i}+b \leq-1$
So:

$$
y_{i} \cdot\left(w^{T} x_{i}+b\right) \geq 1, \forall\left(x_{i}, y_{i}\right)
$$

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
- We should maximize the margin, m

Finding the Decision Boundary

- The decision boundary should classify all points correctly \Rightarrow

$$
y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1, \quad \forall i
$$

- The decision boundary can be found by solving the following constrained optimization problem

$$
\text { Minimize } \frac{1}{2}\|\mathrm{w}\|^{2}
$$

subject to $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1$

- This is a constrained optimization problem. Solving it requires to use Lagrange multipliers

KKT Conditions

- Problem:

$$
\min _{x} f(x) \text { sub. to: } \mathrm{g}_{\mathrm{i}}(\mathrm{x}) \leq 0 \forall i
$$

- Lagrangian: $L(x, \mu)=f(x)-\sum_{i} \mu_{i} g_{i}(x)$
- Conditions:
- Stationarity: $\nabla_{\mathrm{x}} \mathrm{L}(\mathrm{x}, \mu)=0$.
- Primal feasibility: $g_{i}(x) \leq 0 \quad \forall i$.
- Dual feasibility: $\mu_{i} \geq 0$.
- Complementary slackness: $\mu_{i} g_{i}(x)=0$.

Finding the Decision Boundary

Minimize $\frac{1}{2}\|\mathrm{w}\|^{2}$
subject to $1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \leq 0 \quad$ for $i=1, \ldots, n$

- The Lagrangian is

$$
\mathcal{L}=\frac{1}{2} \mathbf{w}^{T} \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right)\right)
$$

- $\alpha_{i} \geq 0$
- Note that $\|\mathbf{w}\|^{2}=\mathbf{w}^{\top} \mathbf{w}$

The Dual Problem

- Setting the gradient of \mathcal{L} w.r.t. \mathbf{w} and b to zero, we have

$$
\begin{aligned}
& L=\frac{1}{2} w^{T} w+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(w^{T} x_{i}+b\right)\right)= \\
& =\frac{1}{2} \sum_{k=1}^{m} w^{k} w^{k}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\sum_{k=1}^{m} w^{k} x_{i}^{k}+b\right)\right)
\end{aligned}
$$

n : no of examples, m: dimension of the space

$$
\left\{\begin{array}{lr}
\frac{\partial L}{\partial w^{k}}=0, \forall k & \mathbf{w}+\sum_{i=1}^{n} \alpha_{i}\left(-y_{i}\right) \mathbf{x}_{i}=0 \quad \Rightarrow \quad \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial L}{\partial b}=0 & \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

The Dual Problem

- If we substitute $\mathbf{w}=\sum^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$ to \mathcal{L}, we have

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i}+b\right)\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{T} \mathbf{x}_{i}-b \sum_{i=1}^{n} \alpha_{i} y_{i} \\
& =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

Since $\quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

- This is a function of α_{i} only

The Dual Problem

- The new objective function is in terms of α_{i} only
- It is known as the dual problem: if we know \mathbf{w}, we know all α_{i}; if we know all α_{i}, we know w
- The original problem is known as the primal problem
- The objective function of the dual problem needs to be maximized (comes out from the KKT theory)
- The dual problem is therefore:

Properties of α_{i} when we introduce the Lagrange multipliers

The result when we differentiate the original Lagrangian w.r.t. b

The Dual Problem

$\max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$
subject to $\alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

- This is a quadratic programming (QP) problem
- A global maximum of α_{i} can always be found
- w can be recovered by

$$
\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

Characteristics of the Solution

- Many of the α_{i} are zero
- Complementary slackness: $\alpha_{i}\left(1-y_{i}\left(w^{T} x_{i}+b\right)\right)=0$
- Sparse representation: \mathbf{w} is a linear combination of a small number of data points
- \mathbf{x}_{i} with non-zero α_{i} are called support vectors (SV)
- The decision boundary is determined only by the SV
- Let $t_{\mathrm{j}}(j=1, \ldots, s)$ be the indices of the s support vectors. We can write $\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}$

A Geometrical Interpretation

Characteristics of the Solution

- For testing with a new data \mathbf{z}
- Compute $\mathbf{w}^{T} \mathbf{z}+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}}\left(\mathbf{x}_{t_{j}}^{T} \mathbf{z}\right)+b$ and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise
- Note: w need not be formed explicitly

Non-linearly Separable Problems

- We allow "error" ξ_{i} in classification; it is based on the output of the discriminant function $\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}+b$
- ξ_{i} approximates the number of misclassified samples

Soft Margin Hyperplane

- The new conditions become

$$
\begin{cases}\mathbf{w}^{T} \mathbf{x}_{i}+b \geq 1-\xi_{i} & y_{i}=1 \\ \mathbf{w}^{T} \mathbf{x}_{i}+b \leq-1+\xi_{i} & y_{i}=-1 \\ \xi_{i} \geq 0 & \forall i\end{cases}
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{\mathrm{i}}=0$ if there is no error for \mathbf{x}_{i}
- ξ_{i} is an upper bound of the number of errors
- We want to minimize

$$
\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to $y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0$

- c : tradeoff parameter between error and margin

The Optimization Problem

$$
L=\frac{1}{2} w^{T} w+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(w^{T} x_{i}+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
$$

With a and μ Lagrange multipliers, POSITIVE

$$
\begin{aligned}
\frac{\partial L}{\partial w_{j}} & =w_{j}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i j}=0 \\
\frac{\partial L}{\partial \xi_{j}} & =C-\alpha_{j}-\mu_{j}=0 \\
\frac{\partial L}{\partial b} & =\sum_{i=1}^{n} y_{i} \alpha_{i} \alpha_{i} y_{i} \vec{x}_{i}=0
\end{aligned}
$$

The Dual Problem

$$
\begin{aligned}
& L=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{T} \vec{x}_{j}+C \sum_{i=1}^{n} \xi_{i}+ \\
& +\sum_{i=1}^{n} \alpha_{i}\left(1-\xi_{i}-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i}+b\right)\right)-\sum_{i=1}^{n} \mu_{i} \xi_{i}
\end{aligned}
$$

With $\sum_{i=1}^{n} y_{i} \alpha_{i}=0 \quad$ and $\quad C=\alpha_{j}+\mu_{j}$

$$
L=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i}^{T} \vec{x}_{j}+\sum_{i=1}^{n} \alpha_{i}
$$

The Optimization Problem

- The dual of this new constrained optimization problem is

$$
\begin{aligned}
& \max . W(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- New constraints derived from $C=\alpha_{j}+\mu_{j}$ since μ and α are positive.
- \mathbf{w} is recovered as $\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}$
- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_{i} now
- Once again, a QP solver can be used to find α_{i}

$$
\frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i}
$$

- The algorithm try to keep ξ low, maximizing the margin
- The algorithm does not minimize the number of error. Instead, it minimizes the sum of distances from the hyperplane.
- When C increases the number of errors tend to lower. At the limit of C tending to infinite, the solution tend to that given by the hard margin formulation, with 0 errors

Soft margin is more robust to outliers

Soft Margin SVM
Hard Margin SVM

Extension to Non-linear Decision
 Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform \mathbf{x}_{i} to a higher dimensional space to "make life easier"
- Input space: the space the point \mathbf{x}_{i} are located
- Feature space: the space of $\phi\left(\mathbf{x}_{\mathrm{i}}\right)$ after transformation
- Why transform?
- Linear operation in the feature space is equivalent to nonlinear operation in input space
- Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of $x_{1} x_{2}$ make the problem linearly separable

Extension to Non-linear Decision
 Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform \mathbf{x}_{i} to a higher dimensional space to "make life easier"
- Input space: the space the point \mathbf{x}_{i} are located
- Feature space: the space of $\phi\left(\mathbf{x}_{\mathrm{i}}\right)$ after transformation
- Why transform?
- Linear operation in the feature space is equivalent to nonlinear operation in input space
- Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of $x_{1} x_{2}$ make the problem linearly separable

	X_{x}	Y
	0	0
	0	1
	1	0
	1	1
\mathbf{x}	Y	X
0	0	0
0	1	0
1	0	0
1	1	1

Find a feature space

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
- The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

The Kernel Trick

- Recall the SVM optimization problem

$$
\begin{aligned}
& \operatorname{max.} W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)
$$

An Example for $\phi($.$) and K(...)$

- Suppose $\phi($.$) is given as follows$

$$
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
$$

- An inner product in the feature space is

$$
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)\right\rangle=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- So, if we define the kernel function as follows, there is no need to carry out $\phi($.$) explicitly$

$$
K(\mathbf{x}, \mathbf{y})=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- This use of kernel function to avoid carrying out $\phi($. explicitly is known as the kernel trick

Kernels

- Given a mapping: $\quad \mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})$
a kernel is represented as the inner product

$$
K(\mathbf{x}, \mathbf{y}) \rightarrow \sum_{i} \varphi_{i}(\mathbf{x}) \varphi_{i}(\mathbf{y})
$$

A kernel must satisfy the Mercer's condition:

$$
\forall g(\mathbf{x}) \int K(\mathbf{x}, \mathbf{y}) g(\mathbf{x}) g(\mathbf{y}) d \mathbf{x} d \mathbf{y} \geq 0
$$

Modification Due to Kernel Function

- Change all inner products to kernel functions
- For training,

Original

$$
\begin{aligned}
& \max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

With kernel max. $W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
function
subject to $C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

Modification Due to Kernel Function

- For testing, the new data \mathbf{z} is classified as class 1 if $f \geq$ 0 , and as class 2 if $f<0$

Original

$$
\begin{aligned}
\mathbf{w} & =\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}} \\
f & =\mathbf{w}^{I^{\prime}} \mathbf{z}+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}^{T} \mathbf{z}+b
\end{aligned}
$$

With kernel

$$
\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \phi\left(\mathbf{x}_{t_{j}}\right)
$$

$$
f=\langle\mathbf{w}, \phi(\mathbf{z})\rangle+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} K\left(\mathbf{x}_{t_{j}}, \mathbf{z}\right)+b
$$

More on Kernel Functions

- Since the training of SVM only requires the value of $K\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)$, there is no restriction of the form of \mathbf{x}_{i} and \mathbf{x}_{j}
- x_{i} can be a sequence or a tree, instead of a feature vector
- $K\left(\mathbf{x}_{i}, \mathbf{x}_{\mathrm{j}}\right)$ is just a similarity measure comparing \mathbf{x}_{i} and \mathbf{x}_{j}
- For a test object \mathbf{z}, the discriminant function essentially is a weighted sum of the similarity between z and a pre-selected set of objects (the support vectors)

$$
f(\mathbf{z})=\sum_{\mathbf{x}_{i} \in \mathcal{S}} \alpha_{i} y_{i} K\left(\mathbf{z}, \mathbf{x}_{i}\right)+b
$$

\mathcal{S} : the set of support vectors

Kernel Functions

- In practical use of SVM, the user specifies the kernel function; the transformation $\phi($.$) is not explicitly stated$
- Given a kernel function $K\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)$, the transformation $\phi($. is given by its eigenfunctions (a concept in functional analysis)
- Eigenfunctions can be difficult to construct explicitly
- This is why people only specify the kernel function without worrying about the exact transformation
- Another view: kernel function, being an inner product, is really a similarity measure between the objects

A kernel is associated to a transformation

- Given a kernel, in principle it should be recovered the transformation in the feature space that originates it.
- $K(x, y)=(x y+1)^{2}=x^{2} y^{2}+2 x y+1$

It corresponds the transformation

$$
x \rightarrow\left(\begin{array}{c}
x^{2} \\
\sqrt{2} x \\
1
\end{array}\right)
$$

Examples of Kernel Functions

- Polynomial kernel of degree d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomial kernel up to degree d

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}+1\right)^{d}
$$

- Radial basis function kernel with width σ

$$
K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)\right)
$$

- The feature space is infinite-dimensional
- Sigmoid with parameter κ and θ

$$
K(\mathbf{x}, \mathbf{y})=\tanh \left(\kappa \mathbf{x}^{T} \mathbf{y}+\theta\right)
$$

- It does not satisfy the Mercer condition on all κ and θ

Building new kernels

- If $k_{1}(x, y)$ and $k_{2}(x, y)$ are two valid kernels then the following kernels are valid
- Linear Combination

$$
k(x, y)=c_{1} k_{1}(x, y)+c_{2} k_{2}(x, y)
$$

- Exponential

$$
k(x, y)=\exp \left[k_{1}(x, y)\right]
$$

- Product $k(x, y)=k_{1}(x, y) \cdot k_{2}(x, y)$
- Polynomial transformation (Q : polynomial with non negative coeffcients)

$$
k(x, y)=Q\left[k_{1}(x, y)\right]
$$

- Function product (f: any function)

$$
k(x, y)=f(x) k_{1}(x, y) f(y)
$$

Polynomial kernel

C

Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)

V-C Theory

- Let there be n training examples, $x_{i}, i=1, \ldots, n$. $y_{i} \in\{+1,-1\}$.
- Let there be a probability distribution $P(x, y)$, from which $\left(x_{i}, y_{i}\right)$ are drawn.
- Let $f(x, \alpha) \in\{+1,-1\}$, be a class of functions, where each function is for a specific α.
- Expectation of test error:

$$
R(\alpha)=\int \frac{1}{2}|y-f(x, \alpha)| d P(x, y)
$$

- Also called the "total risk".

V-C Theory

- Empirical Risk:

$$
R_{e m p}(\alpha)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left|y_{i}-f\left(x_{i}, \alpha\right)\right|
$$

- $\frac{1}{2}|y-f(x, \alpha)|$ is the error function, and takes values $+1,-1$.

V-C Bound

- For any $0 \leq \eta \leq 1$, with probability $1-\eta$:

$$
R(\alpha) \leq R_{\text {emp }}(\alpha)+\underbrace{\sqrt{\frac{h\left(\log \left(\frac{2 n}{h}\right)+1\right)-\log (\eta / 4)}{n}}}_{\text {V-C Confidence }}
$$

- h is a non-negative integer called VC dimension.

VC Dimension

- A set of n points, say \mathcal{D}, can be labelled in 2^{n} ways.
- Function class $\{f(\alpha)\}$ shatters \mathcal{D}, if for every possible labelling of points in \mathcal{D}, there is a function in $\{f(\alpha)\}$ which correctly classifies the points.
- VC dimension of a function class $\{f(\alpha)\}$ is the maximum number of points which can be shattered by the function class.

Example

VC confidence

V-C dimension of hyperplanes

- Theorem: Consider m points in R^{n}. Choose any one of the points as origin. Then the m points can be shattered by hyperplanes if and only if the positions of remaining points are linearly independent.
- Corollary: VC dimension of hyperplanes in R^{n} is $n+1$.

V-C Dimension of hyperplanes

- Lemma: Two sets of points in R^{n} may be separated by a hyperplane if and only if intersection of their convex hulls is empty.

V-C Dimension of hyperplanes

- Proof: linearly independent => shattering
- Wlog: a point O is the origin, S_{1}, S_{2} two subsets to be shattered, S_{1} has 0 .
- Point in C_{1} and C_{2} :
$\mathrm{x}=\sum_{i=1}^{m_{1}} \alpha_{i} \mathrm{~s}_{1 i}, \sum_{i=1}^{m_{1}} \alpha_{i}=1, \alpha_{i} \geq 0 \quad \mathrm{x}=\sum_{i=1}^{m_{2}} \beta_{i} \mathrm{~s}_{2 i}, \sum_{i=1}^{m_{2}} \beta_{i}=1, \beta_{i} \geq 0$
- If there was a common point, $\mathrm{x}: \sum_{i=1}^{m_{1}} \alpha_{i} s_{1 i}=$ $\sum_{j=1}^{m_{2}} \beta_{j} s_{2 j}$. Hence, linear dependence => contradiction.

V-C Dimension of hyperplanes

- Proof: not linearly independent => not shattered
- Assume linearly independent. $\sum_{i=1}^{m-1} \gamma_{i} s_{i}=0$
- All γ_{i} are same sign. Origin lies in the convex hull of points. Hence cannot be shattered.
- Separate γ_{i} s in positive and negative ones I_{1}, I_{2} :

$$
\sum_{j \in I_{1}}\left|\gamma_{j}\right| \mathbf{s}_{j}=\sum_{k \in I_{2}}\left|\gamma_{k}\right| \mathbf{s}_{k}
$$

