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Support vector machines

* Let {x,, ..., X,} be our data set and let y, € {1,-1} be the class
label of x

For y/:]_ WTXi ‘|‘b Zl
For y=-1 W' X +b<-1
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Large-margin Decision Boundary

* The decision boundary should be as far away from the
data of both classes as possible

* We should maximize the margin, m

2

m =
W]

O
“@ Class 2

w!x +b=1




Finding the Decision Boundary

* The decision boundary should classify all points correctly =
yi(wix;+0)>1, Vi

* The decision boundary can be found by solving the following
constrained optimization problem

1
2

: T :
subject to y;(w x; +b) > 1 Vi

Minimize =||w]|?

e This is a constrained optimization problem. Solving it
requires to use Lagrange multipliers



KKT Conditions

* Problem:
min f(x) sub.to:g;(x) <0 Vi
X

+ Lagrangian: L(x, i) = £ (x) — X 113 (%)
* Conditions:

e Stationarity: I, L(x,u) = 0.

* Primal feasibility: g;(x) <0 V.

* Dual feasibility: u; = 0.

* Complementary slackness: u;g;(x) = 0.



Finding the Decision Boundary

1
Minimize =||w]|?

2
subject to 1—y;(w!x;4+b) <0 fori=1,....n

* The Lagrangian is

1 n

L = EWTW + Z 87 (1 — y@'(WTXZ' + b))
=1

* 0,20

* Note that | |[w]|[2=w'w



The Dual Problem

 Setting the gradient of £ w.r.t. w and b to zero, we
have

-2 ww +Zn“a{1— yi[iwkxik +bD

n: no of examples, m: dimension of the space
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The Dual Problem

T
* If we substitute w = Z oyiX; to £, we have

1 [’ T T
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* This is a function of o only



The Dual Problem

The new objective function is in terms of o, only

It is known as the dual problem: if we know w, we know all o; if we know
all o, we know w

The original problem is known as the primal problem

The objective function of the dual problem needs to be maximized (comes
out from the KKT theory)

The dual problem is therefore:

(1 1 /2
MmaxXx. W(Oﬂ) = Z QU — 5 Z aiajyiijij
i=1 i=1,j=1
T
subject to a; > 0, > oy; =0
A i=1 &
Properties of o, when we introduce The result when we differentiate the
the Lagrange multipliers original Lagrangian w.r.t. b
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The Dual Problem

1 n
max. W(a) = Z Q; — 5 Z oziozjyiiji‘&-rxj
=1 1=1,7=1

n
subject to o; > 0, Y ay; =0
i=1

 This is a quadratic programming (QP) problem
* A global maximum of o, can always be found

* W can be recovered by

n
W= ) oyiX;
i=1

10



Characteristics of the Solution

* Many of the o, are zero
» Complementary slackness: ai(l —y;(wTx; + b)) =0

* Sparse representation: w is a linear combination of a small
number of data points

* x, with non-zero o, are called support vectors (SV)
* The decision boundary is determined only by the SV
* Let ¢, (j=1, ..., s) be the indices of the s support vectors. We
can write — V5 Yt . X+ .
w j=1 %t Yt Xt;
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A Geometrical Interpretation
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Characteristics of the Solution

* For testing with a new data z
. T — T
Compute W*z +b = >.5_1 oyt (thz) —+ b and
classify z as class 1 if the sum is positive, and class 2
otherwise

* Note: w need not be formed explicitly
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Non-linearly Separable Problems

* We allow “error” &, in classification; it is based on the output of
the discriminant function w'x + b

* & approximates the number of misclassified samples

Class 2
. O
[] *
[]
] wlx +b=1
T _
Class 1 WX+ b=
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Soft Margin Hyperplane

* The new conditions become

(wixi+b>1-& y=
wix;+b<-14¢ v
& =0 V1

|

- N
]
|

 —

» & are “slack variables” in optimization
* Note that £=0 if there is no error for x,
& is an upper bound of the number of errors

* We want to minimize 1 5 n
Sl +Ce
i—

subject to y;(wix; +b)>1—-¢, & >0

* (C:tradeoff parameter between error and margin -
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The Optimization Problem

L :%WTW‘FCZn:fi +Zn:0‘i (1_§i —Yi (WTXi +b))_izui§i

With a and p Lagrange multipliers, POSITIVE
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The Dual Problem
L== ZZa yiyjzij+c_zn:§i+

i=1l j=1

+iai£1_§i_yi£znla YiX; X.*‘bD Zn:/uié:i

With Zyiaizo and C:Ocj+,uj
=1
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The Optimization Problem

The dual of this new constrained optimization problem is

Mmax. W(Q{) = Z o — 5 Z OO YiY X, X
=1 1=1,7=1
n
subject to C > ; > 0, > ayy; =0
=1

New constraints derived from C = O; + U since pand a are
positive.

* wisrecoveredas W = 521 Oztjytjxtj

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o, now

Once again, a QP solver can be used to find o
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1 n
i+ ¢
1=1

* The algorithm try to keep ¢ low, maximizing the
margin

* The algorithm does not minimize the number of
error. Instead, it minimizes the sum of distances
from the hyperplane.

* When C increases the number of errors tend to
lower. At the limit of C tending to infinite, the
solution tend to that given by the hard margin
formulation, with O errors

9/3/2015
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Soft margin is more robust to
outliers

Var, Var,
. ] . l
' . 1.:' '
|
Var, i ¥+b=0 Var,
w-x+5b=0
Soft Margin SVM Hard Margin SVM
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Extension to Non-linear Decision
Boundary

* So far, we have only considered large-margin classifier
with a linear decision boundary

* How to generalize it to become nonlinear?

* Key idea: transform x; to a higher dimensional space to
“make life easier”
* Input space: the space the point x; are located
* Feature space: the space of ¢(x;) after transformation

* Why transform?

* Linear operation in the feature space is equivalent to non-
linear operation in input space

 Classification can become easier with a proper
transformation. In the XOR problem, for example, adding a
new feature of x,x, make the problem linearly separable
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Find a feature space
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Transforming the Data .

v

Input space Feature space

Note: feature space is of higher dimension
than the input space in practice

 Computation in the feature space can be costly because
it is high dimensional

* The feature space is typically infinite-dimensional!

* The kernel trick comes to rescue
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The Kernel Trick

e Recall the SVM optirplization probvllem
1
max. W(a) = Z &=~ 5 Z oz@-ajyz-y
i=1 i=1,j=1
T
subject to C > a; >0, Y oy, =0
i=1

* The data points only appear as inner product

* As long as we can calculate the inner product in the
feature space, we do not need the mapping explicitly

* Many common geometric operations (angles,
distances) can be expressed by inner products

* Define the kernel function K by

K (x;,%;) = ¢(x;)" ¢(x;) N



An Example for ¢(.) and K(.,.)

* Suppose ¢(.) is given as follows

s(| 55 ) = (1,V221, V25,22, 23, V22172)

* An inner product in the feature space is

(@[ s o[ D)) = (1 4+ w11 + 222)°

* So, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x,y) = (1 + z1y1 + 2oy2)?

* This use of kernel function to avoid carrying out ¢(.)
explicitly is known as the kernel trick
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Kernels

 Given a mapping: X—>@(x)
a kernel is represented as the inner product

K(x,y) = Zi @i (X)ei (Y)

A kernel must satisfy the Mercer’s condition:

vg(x) [ K(x,y)g(x)g(y)dxdy >0
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Modification Due to Kernel Function

e Change all inner products to kernel functions

* For training,

mn 1 mn
o max. W(a) = Z Qp — — Z aiajyiijiTXj
Original i=1 2 i=1;=1
n
subject to C' > a; >0, > a;y; =0
i=1
With _kernel max. W(Ot) — Z ai—i Z a’éajyiyjK(Xian)
function i=1 i=1,7=1

T
subject to C' > a; >0, > oyy; =0
i=1
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Modification Due to Kernel Function

* For testing, the new data z is classified as class 1 if f >
0, and as class 2 if f <0

S
W — Z atjytjxtj
1=1 S -
— —
f — W Z b= Zl Oatjythth b
J:

Original

S
W = ot Yt P(Xe)
With kernel jgl 7 ’
function 5
f={w,6(2)+b= 3 anyiK(xt;z) +b
j=1
30



More on Kernel Functions

* Since the training of SVM only requires the value of
K(x;, x;), there is no restriction of the form of x; and x,

i7 2
* x. can be a sequence or a tree, instead of a feature vector

* K(x;, x;) is just a similarity measure comparing x; and x;

* For a test object z, the discriminant function
essentially is a weighted sum of the similarity
between z and a pre-selected set of objects (the
support vectors)

f(z) = ) oauK(z,%x;) +b
X;ES
S : the set of support vectors
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Kernel Functions

* |n practical use of SVM, the user specifies the kernel
function; the transformation ¢(.) is not explicitly stated

* Given a kernel function K(x;, x;), the transformation ¢(.)
is given by its eigenfunctions (a concept in functional
analysis)

e Eigenfunctions can be difficult to construct explicitly

* This is why people only specify the kernel function without
worrying about the exact transformation

* Another view: kernel function, being an inner product,
is really a similarity measure between the objects
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A kernel is associated to a

transformation

- Given a kernel, in principle it should be recovered the
transformation in the feature space that originates it.

- K(x,y) = (xy+1)%= x2y?+2xy+1

It corresponds the transformation

9/3/2015
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Examples of Kernel Functions

* Polynomial kernel of degree d
K(u,v) = (u-v)?

* Polynomial kernel up to degree d
K(x,y) = (x'y +1)¢

e Radial basis function kernel with width o
K(x,y) = exp(—|[x — y||?/(20°))

* The feature space is infinite-dimensional
e Sigmoid with parameter k and 0

K(x,y) = tanh(kx!y + 0)

* It does not satisfy the Mercer condition on all Kk and 0
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Building new kernels

* If k,(x,y) and k,(x,y) are two valid kernels then the
following kernels are valid
* Linear Combination
K(X, y) =cik; (X, y) + K, (X, y)
* Exponential
k(x, y) = explk, (x, )]
* Product

K(X, y) =k (X, ¥)- K, (X, y)

* Polynomial transformation (Q: polynomial with non
negative coeffcients)

k(%,y) =Qlk (X, y)]

* Function product (f: any function)

K(X, y) = T(X)K (X Y) T(Y)
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Polynomial kernel

Polysonial Kernel d=2

GC Content Defore "AGY

CC Content Aftar '"AG*

Ben-Hur et al, PLOS computational Biology 4 (2008)

100X

Polysomial Kernel d=6
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Gaussian RBF kernel

c Gaussian Xernel Sigma=0.0%

A Gaussian Xerzel Sigma=20 B Gaussian Xermel Sigza~l e
1

OC Coatent Defore 'AS*

100X

120X

GC Comtent After "AG'

Ben-Hur et al, PLOS computational Biology 4 (2008)
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V-C Theory

* Let there be n training examples, x;,i =1, ..., n.
Vi e {+1, —1}

* Let there be a probability distribution P(x, y), from
which (x;, y;) are drawn.

* Let f(x,a) € {+1,—1}, be a class of functions,
where each function is for a specific a.

* Expectation of test error:

1
R@ = f 5 ly = f(x@)ldP(x,)
e Also called the “total risk”.



V-C Theory

* Empirical Risk: .
1 1
Remp(a) — E ZE |Yi - f(xir (X)|
i=1

. % ly — f(x, @)]| is the error function, and takes
values +1, —1.



V-C Bound

* Forany 0 < n < 1, with probability 1 —n:

h (log (ZT") +1) - log(1/4)

R(a) < Repp(a) + N "

\ }
|

V-C Confidence

* h is a non-negative integer called VC dimension.



VC Dimension

* A set of n points, say D, can be labelled in 2™ ways.

* Function class {f (a)} shatters D, if for every
possible labelling of points in D, there is a function
in {f (@)} which correctly classifies the points.

* VC dimension of a function class {f (a)} is the
maximum number of points which can be shattered
by the function class.



Example




VC confidence
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h/|1=VC Dimension/ Sample Size



V-C dimension of hyperplanes

* Theorem: Consider m points in R". Choose any one
of the points as origin. Then the m points can be
shattered by hyperplanes if and only if the
positions of remaining points are linearly
independent.

* Corollary: VC dimension of hyperplanes in R" is
n + 1.



V-C Dimension of hyperplanes

* Lemma: Two sets of points in R™ may be separated
by a hyperplane if and only if intersection of their
convex hulls is empty.



V-C Dimension of hyperplanes

* Proof: linearly independent => shattering

* Wlog: a point O is the origin, 51, S, two subsets to
be shattered, S; has O.

* Pointin C; and C5:

My M1 ma Mo

X = Z ;515 Z a; =1, a; 20 X = Z 3:89;, Z 4; =1, 3; =0
=1 =1 =1 i=1

. m
* If there was a common point, x: Y.} @;51; =
mo . _
Y. ;=1 Bjs2;j- Hence, linear dependence =>
contradiction.



V-C Dimension of hyperplanes

* Proof: not linearly independent => not shattered
* Assume linearly independent. Y yisi =0

i=1

* All y; are same sign. Origin lies in the convex hull of
points. Hence cannot be shattered.

* Separate ;s in positive and negative ones I, I,:

Z Vilsi = Z [k |sk

jely kela



