Introduction to

CS60092: Information Retrieval

SVM and Ranking

Sourangshu Bhattacharya

Linear classifiers: Which Hyperplane?

- Lots of possible choices for *a*, *b*, *c*.
- Some methods find a separating hyperplane, but not the optimal one [according to some criterion of expected goodness]
 - E.g., perceptron
- A Support Vector Machine (SVM) finds an optimal* solution.
 - Maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
 - One intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary: ax + by - c = 0

Another intuition

 If you have to place a fat separator between classes, you have less choices, and so the capacity of the model has been decreased

Support Vector Machine (SVM)

- SVMs maximize the *margin* around the separating hyperplane.
 - A.k.a. large margin classifiers
- The decision function is fully specified by a subset of training samples, the support vectors.
- Solving SVMs is a *quadratic* programming problem
- Seen by many as the most successful current text classification method*

Sec. 15.1

*but other discriminative methods often perform very similarly

Maximum Margin: Formalization

- w: decision hyperplane normal vector
- **x**_i: data point i
- y_i: class of data point *i* (+1 or -1) NB: Not 1/0
- Classifier is: $f(\mathbf{x}_i) = sign(\mathbf{w}^T\mathbf{x}_i + b)$
- Functional margin of \mathbf{x}_i is: $y_i (\mathbf{w}^T \mathbf{x}_i + \mathbf{b})$
- The functional margin of a dataset is twice the minimum functional margin for any point
 - The factor of 2 comes from measuring the whole width of the margin
- **Problem:** we can increase this margin simply by scaling **w**, **b**....

Geometric Margin

Distance from example to the separator is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

- Examples closest to the hyperplane are *support vectors*.
- Margin ρ of the separator is the width of separation between support vectors of classes.

Derivation of finding r: Dotted line $\mathbf{x'} - \mathbf{x}$ is perpendicular to decision boundary so parallel to \mathbf{w} . Unit vector is $\mathbf{w}/|\mathbf{w}|$, so line is $r\mathbf{w}/|\mathbf{w}|$. $\mathbf{x'} = \mathbf{x} - yr\mathbf{w}/|\mathbf{w}|$. $\mathbf{x'}$ satisfies $\mathbf{w}^T\mathbf{x'} + \mathbf{b} = 0$. So $\mathbf{w}^T(\mathbf{x} - yr\mathbf{w}/|\mathbf{w}|) + \mathbf{b} = 0$ Recall that $|\mathbf{w}| = sqrt(\mathbf{w}^T\mathbf{w})$. So $\mathbf{w}^T\mathbf{x} - yr|\mathbf{w}| + \mathbf{b} = 0$ So, solving for r gives: $r = y(\mathbf{w}^T\mathbf{x} + \mathbf{b})/|\mathbf{w}|$

Linear SVM Mathematically

The linearly separable case

Assume that the functional margin of each data item is at least 1, then the following two constraints follow for a training set {(x_i, y_i)}

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{i}} + b \ge 1 \quad \text{if } y_{i} = 1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{\mathrm{i}} + b \le -1 \quad \text{if } y_{i} = -1$$

- For support vectors, the inequality becomes an equality
- Then, since each example's distance from the hyperplane is

$$r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$$

• The margin is:

$$\rho = \frac{2}{\|\mathbf{w}\|}$$

- Hyperplane $\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$
- Extra scale constraint: min_{i=1,...,n} |w^Tx_i + b| = 1
- This implies: $w^{T}(x_{a}-x_{b}) = 2$ $\rho = ||x_{a}-x_{b}||_{2} = 2/||w||_{2}$

Sec. 15.1

Worked example: Geometric margin

Worked example: Functional margin

- Let's minimize w given that $y_i(w^Tx_i + b) \ge 1$
- Constraint has = at SVs;
 w = (a, 2a) for some a
- a+2a+b = -1 2a+6a+b = 1
- So, a = 2/5 and b = -11/5
 Optimal hyperplane is: w = (2/5, 4/5) and b = -11/5
- Margin ρ is 2/|w|= $2/\sqrt{4/25+16/25}$ = $2/(2\sqrt{5}/5) = \sqrt{5}$

Linear SVMs Mathematically (cont.)

• Then we can formulate the *quadratic optimization problem:*

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized; and for all $\{(\mathbf{x}_i, y_i)\}$
 $\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b \ge 1$ if $y_i = 1$; $\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b \le -1$ if $y_i = -1$

A better formulation (min ||w|| = max 1/||w||):

```
Find w and b such that

\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} \text{ is minimized};
and for all \{(\mathbf{x}_{\mathbf{i}}, y_{i})\}: y_{i}(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\mathbf{i}} + b) \ge 1
```

Solving the Optimization Problem

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized; and for all $\{(\mathbf{X}_{\mathbf{i}}, y_{i})\}: y_{i}(\mathbf{w}^{\mathrm{T}} \mathbf{X}_{\mathbf{i}} + b) \ge 1$

- This is now optimizing a *quadratic* function subject to *linear* constraints
- Quadratic optimization problems are a well-known class of mathematical programming problem, and many (intricate) algorithms exist for solving them (with many special ones built for SVMs)
- The solution involves constructing a *dual problem* where a *Lagrange* multiplier α_i is associated with every constraint in the primary problem:

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

The Optimization Problem Solution

• The solution has the form:

$$\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$$
 $b = y_k - \mathbf{w}^T \mathbf{x}_k$ for any \mathbf{x}_k such that $\alpha_k \neq 0$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function will have the form:

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point x and the support vectors x_i
 - We will return to this later.
- Also keep in mind that solving the optimization problem involved computing the inner products x_i^Tx_j between all pairs of training points.

Soft Margin Classification

- If the training data is not linearly separable, *slack variables* ξ_i can be added to allow misclassification of difficult or noisy examples.
- Allow some errors
 - Let some points be moved to where they belong, at a cost
- Still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Introduction to Information Retrieval

Soft Margin Classification Mathematically

The old formulation:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$ is minimized and for all $\{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + \mathbf{b}) \ge 1$

• The new formulation incorporating slack variables:

Find w and b such that $\Phi(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \Sigma \xi_{i} \quad \text{is minimized and for all } \{(\mathbf{x}_{i}, y_{i})\}$ $y_{i} (\mathbf{w}^{\mathrm{T}} \mathbf{x}_{i} + b) \ge 1 - \xi_{i} \quad \text{and} \quad \xi_{i} \ge 0 \text{ for all } i$

- Parameter C can be viewed as a way to control overfitting
 - A regularization term

Soft Margin Classification – Solution

The dual problem for soft margin classification:

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

- Neither slack variables ξ_i nor their Lagrange multipliers appear in the dual problem!
- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

 $\mathbf{w} = \sum \alpha_i y_i \mathbf{x}_i$ $b = y_k (1 - \xi_k) - \mathbf{w}^{\mathrm{T}} \mathbf{x}_k \text{ where } k = \underset{k'}{\operatorname{argmax}} \alpha_{k'}$ **w** is not needed explicitly for classification!

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + b$$

Classification with SVMs

- Given a new point x, we can score its projection onto the hyperplane normal:
 - I.e., compute score: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}}\mathbf{x} + b$
 - Decide class based on whether < or > 0
 - Can set confidence threshold t.

Else: don't know

Linear SVMs: Summary

- The classifier is a *separating hyperplane*.
- The most "important" training points are the support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points x_i are support vectors with non-zero Lagrangian multipliers α_i.
- Both in the dual formulation of the problem and in the solution, training points appear only inside inner products:

Find $\alpha_1 \dots \alpha_N$ such that $\mathbf{Q}(\boldsymbol{\alpha}) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j}$ is maximized and (1) $\sum \alpha_i y_i = 0$ (2) $0 \le \alpha_i \le C$ for all α_i

$$f(\mathbf{x}) = \sum \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x} + b$$

Non-linear SVMs

Datasets that are linearly separable (with some noise) work out great:

But what are we going to do if the dataset is just too hard?

How about ... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

 General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on an inner product between vectors K(x_i,x_j)=x_i^Tx_j
- If every datapoint is mapped into high-dimensional space via some transformation Φ : $\mathbf{x} \rightarrow \phi(\mathbf{x})$, the inner product becomes:

$$\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i)^{\mathsf{T}} \boldsymbol{\varphi}(\mathbf{x}_j)$$

- A *kernel function* is some function that corresponds to an inner product in some expanded feature space.
- Example:

2-dimensional vectors $\mathbf{x} = [x_1 \ x_2]$; let $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2$, Need to show that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^2 = 1 + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{j1} x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1 + x_{i1}^2 x_{i1}^2 + 2 x_{i2} x_{i2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1 + x_{i1}^2 x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} + x_{i2}^2 x_{i2}^2 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} \sqrt{2} x_{i2} = 1 + x_{i1}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2}^2 \sqrt{2} x_{i1} x_{i2} - x_{i2} \sqrt{2} x_{i1} x_{i2} - x_{$

Kernels

- Why use kernels?
 - Make non-separable problem separable.
 - Map data into better representational space
- Common kernels
 - Linear
 - Polynomial K(x,z) = (1+x^Tz)^d
 - Gives feature conjunctions
 - Radial basis function (infinite dimensional space)

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{X}_i - \mathbf{X}_j\|^2 / 2\sigma^2}$$

Haven't been very useful in text classification

Multi-class SVM

Intuitive formulation: without
regularization / for the separable
$$\max_{W} \left[\sum_{i} w_{yi}^{\top} x^{i} - \max_{j} (\mathbf{1}\{j \neq y^{i}\} + w_{j}^{\top} x^{i}) \right]$$

Primal problem: QP
$$\min_{w_{1},...,w_{K}} \quad \frac{1}{2} \| (w_{1},...,w_{K}) \|^{2} + C \sum_{ik} \xi_{ik}$$

s.t. $\forall (i,k), \quad w_{yi}^{\top} x^{i} - w_{k}^{\top} x^{i} \ge \mathbf{1}\{k \neq y^{i}\} - \xi_{ik}$

Solved in the dual formulation, also Quadratic Program

Main advantage: Sparsity (but not systematic)

- \cdot Speed with SMO (heuristic use of sparsity)
- · Sparse solutions

Drawbacks:

- \cdot Need to recalculate or store $x_i{}^{\mathsf{T}}x_j$
- · Outputs not probabilities

Evaluation: Classic Reuters-21578 Data Set

- Most (over)used data set
- 21578 documents
- 9603 training, 3299 test articles (ModApte/Lewis split)
- 118 categories
 - An article can be in more than one category
 - Learn 118 binary category distinctions
- Average document: about 90 types, 200 tokens
- Average number of classes assigned
 - 1.24 for docs with at least one category
- Only about 10 out of 118 categories are large

Common categories (#train, #test)

- Earn (2877, 1087)
- Acquisitions (1650, 179)
- Money-fx (538, 179)
- Grain (433, 149)
- Crude (389, 189)

- Trade (369,119)
- Interest (347, 131)
- Ship (197, 89)
- Wheat (212, 71)
- Corn (182, 56)

Sec. 15.2.4

Reuters Text Categorization data set (Reuters-21578) document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the industry, the NPPC added. Reuter

</BODY></TEXT></REUTERS>

Per class evaluation measures

Recall: Fraction of docs in class *i* classified correctly:

Precision: Fraction of docs assigned class *i* that are actually about class *i*:

 Accuracy: (1 - error rate) Fraction of docs classified correctly:

Micro- vs. Macro-Averaging

- If we have more than one class, how do we combine multiple performance measures into one quantity?
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Cla	ass 1		Cla	iss 2		Micro /	Ave. Ta	able
	Truth	Truth		Truth	Truth		Truth	Truth

	Truth:	Truth:		Truth:	Truth:		Truth:	Truth:
	yes	no		yes	no		yes	no
Classifi er: yes	10	10	Classifi er: yes	90	10	Classifier: yes	100	20
Classifi er: no	10	970	Classifi er: no	10	890	Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes

Introduction to Information Retrieval

Sec. 15.2.4

(a)		NB	Rocchio	kNN		SVM	
	micro-avg-L (90 classes)	80	85	86		89	
	macro-avg (90 classes)	47	59	60		60	
		•					
(b)		NB	Rocchio	kNN	trees	SVM	
	earn	96	93	97	98	98	
	acq	88	65	92	90	94	
	money-fx	57	47	78	66	75	
	grain	79	68	82	85	95	
	crude	80	70	86	85	89	
	trade	64	65	77	73	76	
	interest	65	63	74	67	78	
	ship	85	49	79	74	86	
	wheat	70	69	77	93	92	
	corn	65	48	78	92	90	
	micro-avg (top 10)	82	65	82	88	92	
	micro-avg-D (118 classes)	75	62	n/a	n/a	87	
Evalu	Evaluation measure: F_1						

Precision-recall for category: Crude

Precision-recall for category: Ship

Yang&Liu: SVM vs. Other Methods

Table 1: Performance summary of classifiers									
method	miR	miP	miF1	maF1	error				
SVM	.8120	.9137	.8599	.5251	.00365				
KNN	.8339	.8807	.8567	.5242	.00385				
LSF	.8507	.8489	.8498	.5008	.00414				
NNet	.7842	.8785	.8287	.3765	.00447				
NB	.7688	.8245	.7956	.3886	.00544				
miR = n	nicro-avg	g recall;	miP = micro-avg prec.;						
miF1 = 1	micro-av	m vg~F1;	maF1 = macro-avg F1.						

Good practice department: Make a confusion matrix

This (*i*, *j*) entry means 53 of the docs actually in class *i* were put in class *j* by the classifier.

- In a perfect classification, only the diagonal has non-zero entries
- Look at common confusions and how they might be addressed

The Real World

- Gee, I'm building a text classifier for real, now!
- What should I do?
- How much training data do you have?
 - None
 - Very little
 - Quite a lot
 - A huge amount and its growing

Manually written rules

- No training data, adequate editorial staff?
- Never forget the hand-written rules solution!
 - If (wheat or grain) and not (whole or bread) then
 - Categorize as grain
- In practice, rules get a lot bigger than this
 - Can also be phrased using tf or tf.idf weights
- With careful crafting (human tuning on development data) performance is high:
 - Construe: 94% recall, 84% precision over 675 categories (Hayes and Weinstein 1990)
- Amount of work required is huge
 - Estimate 2 days per class ... plus maintenance

Very little data?

- If you're just doing supervised classification, you should stick to something high bias
 - There are theoretical results that Naïve Bayes should do well in such circumstances (Ng and Jordan 2002 NIPS)
- The interesting theoretical answer is to explore semisupervised training methods:
 - Bootstrapping, EM over unlabeled documents, ...
- The practical answer is to get more labeled data as soon as you can
 - How can you insert yourself into a process where humans will be willing to label data for you??
A reasonable amount of data?

- Perfect!
- We can use all our clever classifiers
- Roll out the SVM!
- But if you are using an SVM/NB etc., you should probably be prepared with the "hybrid" solution where there is a Boolean overlay
 - Or else to use user-interpretable Boolean-like models like decision trees
 - Users like to hack, and management likes to be able to implement quick fixes immediately

A huge amount of data?

- This is great in theory for doing accurate classification...
- But it could easily mean that expensive methods like SVMs (train time) or kNN (test time) are quite impractical
- Naïve Bayes can come back into its own again!
 - Or other advanced methods with linear training/test complexity like regularized logistic regression (though much more expensive to train)

Accuracy as a function of data size

- With enough data the choice of classifier may not matter much, and the best choice may be unclear
 - Data: Brill and Banko on context-sensitive spelling correction
- But the fact that you have to keep doubling your data to improve performance is a little unpleasant

Sec. 15.3.1

Summary

- Support vector machines (SVM)
 - Choose hyperplane based on support vectors
 - Support vector = "critical" point close to decision boundary
 - (Degree-1) SVMs are linear classifiers.
 - Kernels: powerful and elegant way to define similarity metric
 - Perhaps best performing text classifier
 - But there are other methods that perform about as well as SVM, such as regularized logistic regression (Zhang & Oles 2001)
 - Partly popular due to availability of good software
 - SVMlight is accurate and fast and free (for research)
 - Now lots of good software: libsvm, TinySVM,
- Comparative evaluation of methods
- Real world: exploit domain specific structure!

Resources for today's lecture

- Christopher J. C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recognition
- S. T. Dumais. 1998. Using SVMs for text categorization, IEEE Intelligent Systems, 13(4)
- S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive learning algorithms and representations for text categorization. *CIKM '98*, pp. 148-155.
- Yiming Yang, Xin Liu. 1999. A re-examination of text categorization methods. 22nd Annual International SIGIR
- Tong Zhang, Frank J. Oles. 2001. Text Categorization Based on Regularized Linear Classification Methods. Information Retrieval 4(1): 5-31
- Trevor Hastie, Robert Tibshirani and Jerome Friedman. *Elements of Statistical Learning: Data Mining, Inference and Prediction*. Springer-Verlag, New York.
- T. Joachims, *Learning to Classify Text using Support Vector Machines*. Kluwer, 2002.
- Fan Li, Yiming Yang. 2003. A Loss Function Analysis for Classification Methods in Text Categorization. ICML 2003: 472-479.
- Tie-Yan Liu, Yiming Yang, Hao Wan, et al. 2005. Support Vector Machines Classification with Very Large Scale Taxonomy, SIGKDD Explorations, 7(1): 36-43.
- 'Classic' Reuters-21578 data set: http://www.daviddlewis.com/resources/testcollections/reuters21578/

Machine learning for IR ranking

- There's some truth to the fact that the IR community wasn't very connected to the ML community
- But there were a whole bunch of precursors:
 - Wong, S.K. et al. 1988. Linear structure in information retrieval. SIGIR 1988.
 - Fuhr, N. 1992. Probabilistic methods in information retrieval. *Computer Journal.*
 - Gey, F. C. 1994. Inferring probability of relevance using the method of logistic regression. *SIGIR 1994.*
 - Herbrich, R. et al. 2000. Large Margin Rank Boundaries for Ordinal Regression. Advances in Large Margin Classifiers.

Why weren't early attempts very successful/influential?

- Sometimes an idea just takes time to be appreciated...
- Limited training data
 - Especially for real world use (as opposed to writing academic papers), it was very hard to gather test collection queries and relevance judgments that are representative of real user needs and judgments on documents returned
 - This has changed, both in academia and industry
- Poor machine learning techniques
- Insufficient customization to IR problem
- Not enough features for ML to show value

Why wasn't ML much needed?

- Traditional ranking functions in IR used a very small number of features, e.g.,
 - Term frequency
 - Inverse document frequency
 - Document length
- It was easy to tune weighting coefficients by hand
 - And people did
 - You guys did in PA3
 - Some of you even grid searched a bit

Why is ML needed now?

- Modern systems especially on the Web use a great number of features:
 - Arbitrary useful features not a single unified model
 - Log frequency of query word in anchor text?
 - Query word in color on page?
 - # of images on page?
 - # of (out) links on page?
 - PageRank of page?
 - URL length?
 - URL contains "~"?
 - Page edit recency?
 - Page length?
- The New York Times (2008-06-03) quoted Amit Singhal as saying Google was using over 200 such features.

Simple example: Using classification for ad hoc IR

- Collect a training corpus of (q, d, r) triples
 - Relevance r is here binary (but may be multiclass, with 3–7 values)
 - Document is represented by a feature vector
 - $\mathbf{x} = (\alpha, \omega)$ α is cosine similarity, ω is minimum query window size
 - ω is the the shortest text span that includes all query words
 - Query term proximity is a very important new weighting factor
 - Train a machine learning model to predict the class r of a documentquery pair

example	docID	query	cosine score	ω	judgment
Φ_1	37	linux operating system	0.032	3	relevant
Φ_2	37	penguin logo	0.02	4	nonrelevant
Φ_3	238	operating system	0.043	2	relevant
Φ_4	238	runtime environment	0.004	2	nonrelevant
Φ_5	1741	kernel layer	0.022	3	relevant
Φ_6	2094	device driver	0.03	2	relevant
Φ_7	3191	device driver	0.027	5	nonrelevant

Simple example: Using classification for ad hoc IR

A linear score function is then

 $Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c$

And the linear classifier is

Decide relevant if $Score(d, q) > \theta$

... just like when we were doing text classification

Simple example: Using classification for ad hoc IR

More complex example of using classification for search ranking [Nallapati 2004]

- We can generalize this to classifier functions over more features
- We can use methods we have seen previously for learning the linear classifier weights

An SVM classifier for information retrieval [Nallapati 2004]

- Let $g(r|d,q) = \mathbf{w} \cdot f(d,q) + b$
- SVM training: want g(r|d,q) ≤ -1 for nonrelevant documents and g(r|d,q) ≥ 1 for relevant documents
- SVM testing: decide relevant iff $g(r|d,q) \ge 0$
- Features are not word presence features (how would you deal with query words not in your training data?) but scores like the summed (log) tf of all query terms
- Unbalanced data (which can result in trivial always-saynonrelevant classifiers) is dealt with by undersampling nonrelevant documents during training (just take some at random) [there are other ways of doing this – cf. Cao et al. later]

An SVM classifier for information retrieval

[Nallapati 2004]

• Experiments:

- 4 TREC data sets
- Comparisons with Lemur, a state-of-the-art open source IR engine (Language Model (LM)-based – see *IIR* ch. 12)
- Linear kernel normally best or almost as good as quadratic kernel, and so used in reported results
- 6 features, all variants of tf, idf, and tf.idf scores

An SVM classifier for information retrieval [Nallapati 2004]

Train \ Test		Disk 3	Disk 4-5	WT10G (web)
Disk 3	LM	0.1785	0.2503	0.2666
	SVM	0.1728	0.2432	0.2750
Disk 4-5	LM	0.1773	0.2516	0.2656
	SVM	0.1646	0.2355	0.2675

- At best the results are about equal to LM
 - Actually a little bit below
- Paper's advertisement: Easy to add more features
 - This is illustrated on a homepage finding task on WT10G:
 - Baseline LM 52% success@10, baseline SVM 58%
 - SVM with URL-depth, and in-link features: 78% S@10

"Learning to rank"

- Classification probably isn't the right way to think about approaching ad hoc IR:
 - Classification problems: Map to a unordered set of classes
 - Regression problems: Map to a real value [Start of PA4]
 - Ordinal regression problems: Map to an *ordered* set of classes
 - A fairly obscure sub-branch of statistics, but what we want here
- This formulation gives extra power:
 - Relations between relevance levels are modeled
 - Documents are good versus other documents for query given collection; not an absolute scale of goodness

"Learning to rank"

- Assume a number of categories C of relevance exist
 - These are totally ordered: $c_1 < c_2 < ... < c_J$
 - This is the ordinal regression setup
- Assume training data is available consisting of documentquery pairs represented as feature vectors ψ_i and relevance ranking c_i
- We could do *point-wise* learning, where we try to map items of a certain relevance rank to a subinterval (e.g, Crammer et al. 2002 Prank, 2005 Chu and Keerthi)
- But most work does *pair-wise* learning, where the input is a pair of results for a query, and the class is the relevance ordering relationship between them

Pointwise learning

[Chu and Keerthi 2005]

- Given r ranks and and n_i examples for the jth rank.
- Let the training examples be x_i, i=1,...,n_i
- Parameters w and b_i can be learned by solving:

$$\min_{\boldsymbol{w},\boldsymbol{b},\boldsymbol{\xi},\boldsymbol{\xi}^*} \frac{1}{2} \langle \boldsymbol{w} \cdot \boldsymbol{w} \rangle + C \sum_{j=1}^r \sum_{i=1}^{n^j} \left(\xi_i^j + \xi_i^{*j} \right)$$

subject to

$$\begin{split} \langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x_i^j) \rangle &- b_j \leq -1 + \xi_i^j, \quad \xi_i^j \geq 0, \, \forall i, j; \\ \langle \boldsymbol{w} \cdot \boldsymbol{\phi}(x_i^j) \rangle &- b_{j-1} \geq +1 - \xi_i^{*j}, \quad \xi_i^{*j} \geq 0, \, \forall i, j; \\ b_{j-1} \leq b_j, \, \forall j. \end{split}$$

Pointwise learning

[Chu and Keerthi 2005]

• Given a new example x, its rank can be predicted as: $rank = argmin_j w^T x < b_j$

Pointwise learning

[Chu and Keerthi 2005]

Goal is to learn a threshold to separate each rank

Pairwise learning: The Ranking SVM

[Herbrich et al. 1999, 2000; Joachims et al. 2002]

- Aim is to classify instance pairs as correctly ranked or incorrectly ranked
 - This turns an ordinal regression problem back into a binary classification problem
- We want a ranking function f such that

 $c_i > c_k \text{ iff } f(\psi_i) > f(\psi_k)$

- ... or at least one that tries to do this with minimal error
- Suppose that f is a linear function

 $f(\psi_i) = \mathbf{w} \bullet \psi_i$

The Ranking SVM

[Herbrich et al. 1999, 2000; Joachims et al. 2002]

• Ranking Model: $f(\Psi_i)$

The Ranking SVM

[Herbrich et al. 1999, 2000; Joachims et al. 2002]

Then (combining the two equations on the last slide):

$$c_i > c_k \text{ iff } \mathbf{w} \bullet (\psi_i - \psi_k) > 0$$

Let us then create a new instance space from such pairs:

$$\Phi_u = \Phi(d_i, d_j, q) = \psi_i - \psi_k$$

 $z_u = +1, 0, -1 \text{ as } c_i >, =, < c_k$

- We can build model over just cases for which $z_u = -1$
- From training data $S = \{\Phi_u\}$, we train an SVM

The Ranking SVM

[Herbrich et al. 1999, 2000; Joachims et al. 2002]

- The SVM learning task is then like other examples that we saw before
- Find **w** and $\xi_u \ge 0$ such that
 - $\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} + \mathsf{C} \Sigma \xi_{u}$ is minimized, and
 - for all Φ_u such that $z_u < 0$, $\mathbf{w} \cdot \Phi_u \ge 1 \xi_u$
- We can just do the negative z_u, as ordering is antisymmetric
- You can again use SVMlight (or other good SVM libraries) to train your model (SVMrank specialization)

Two queries in the original space

Two queries in the pairwise space

Aside: The SVM loss function

The minimization

 $\min_{\mathbf{w}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \Sigma \xi_{u}$ and for all Φ_{u} such that $z_{u} < 0$, $\mathbf{w} \cdot \Phi_{u} \ge 1 - \xi_{u}$ can be rewritten as $\min_{\mathbf{w}} (1/2C) \mathbf{w}^{\mathsf{T}} \mathbf{w} + \Sigma \xi_{u}$ and for all Φ_{u} such that $z_{u} < 0$, $\xi_{u} \ge 1 - (\mathbf{w} \cdot \Phi_{u})$

• Now, taking $\lambda = 1/2C$, we can reformulate this as min_w $\Sigma [1 - (\mathbf{w} \cdot \Phi_u)]_+ + \lambda \mathbf{w}^T \mathbf{w}$

Where []₊ is the positive part (0 if a term is negative)

Aside: The SVM loss function

- The reformulation Hinge loss Regularizer of $\|w\|$ min_w $\Sigma [1 - (\mathbf{w} \cdot \Phi_u)]_+ + \lambda \mathbf{w}^T \mathbf{w}$
- shows that an SVM can be thought of as having an empirical "hinge" loss combined with a weight regularizer

Two Problems with Direct Application of the Ranking SVM

 Cost sensitiveness: negative effects of making errors on top ranked documents

> d: *definitely relevant*, p: *partially relevant*, n: *not relevant* ranking 1: p d p n n n n ranking 2: d p n p n n n

 Query normalization: number of instance pairs varies according to query

```
q1: d p p n n n n
q2: d d p p p n n n n n
q1 pairs: 2*(d, p) + 4*(d, n) + 8*(p, n) = 14
q2 pairs: 6*(d, p) + 10*(d, n) + 15*(p, n) = 31
```

Adapting the Ranking SVM for (successful) Information Retrieval

[Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, Hsiao-Wuen Hon SIGIR 2006]

- A Ranking SVM model already works well
 - Using things like vector space model scores as features
 - As we shall see, it outperforms them in evaluations
- But it does not model important aspects of practical IR well
- This paper addresses two customizations of the Ranking SVM to fit an IR utility model

The ranking SVM fails to model the IR problem well ...

- 1. Correctly ordering the most relevant documents is crucial to the success of an IR system, while misordering less relevant results matters little
 - The ranking SVM considers all ordering violations as the same
- 2. Some queries have many (somewhat) relevant documents, and other queries few. If we treat all pairs of results for a query equally, queries with many results will dominate the learning
 - But actually queries with few relevant results are at least as important to do well on

These problems are solved with a new Loss function

$$\min_{\vec{w}} L(\vec{w}) = \sum_{i=1}^{l} \tau_{k(i)} \mu_{q(i)} \left[1 - z_i \left\langle \vec{w}, \vec{x}_i^{(1)} - \vec{x}_i^{(2)} \right\rangle \right]_+ + \lambda \left\| \vec{w} \right\|^2$$

τ weights for type of rank difference

1

- Estimated empirically from effect on NDCG
- μ weights for size of ranked result set
 - Linearly scaled versus biggest result set

Alternative: Optimizing Rank-Based Measures [Yue et al. SIGIR 2007]

- If we think that MAP is a good approximation of the user's utility function from a result ranking
- Then, let's directly optimize this measure
 - As opposed to some proxy (weighted pairwise prefs)
- But, there are problems ...
 - Objective function no longer decomposes
 - Pairwise prefs decomposed into each pair
 - Objective function is flat or discontinuous

MAP vs ROC score

Given two ranked lists p and p-hat:

$$MAP(p, \hat{p}) = \frac{1}{rel} \sum_{j: p_j = 1} Prec@j,$$

$$\operatorname{ROC}(p, \hat{p}) = \frac{1}{\operatorname{rel} \cdot (|\mathcal{C}| - \operatorname{rel})} \sum_{i: p_i = 1} \sum_{j: p_j = 0} \mathbf{1}_{[\hat{p}_i > \hat{p}_j]},$$

MAP vs ROC score

Different:

Hypothesis	MAP	ROCArea
$h_1(\mathbf{x})$	0.59	0.47
$h_2(\mathbf{x})$	0.51	0.53
MAP vs Accuracy

• Example:

Doc ID	1	2	3	4	5	6	7	8	9	10	11
p	1	0	0	0	0	1	1	1	1	0	0
$rank(h_1(\mathbf{x}))$	11	10	9	8	7	6	5	4	3	2	1
$rank(h_2(\mathbf{x}))$	1	2	3	4	5	6	7	8	9	10	11

Hypothesis	MAP	Best Acc.
$h_1(q)$	0.56	0.64
$h_2(q)$	0.51	0.73

Structural SVMs [Tsochantaridis et al., 2005]

- Structural SVMs are a generalization of SVMs where the output classification space is not binary or one of a set of classes, but some complex object (such as a sequence or a parse tree)
- Here, it is a complete (weak) ranking of documents for a query
- The Structural SVM attempts to predict the complete ranking for the input query and document set
- The true labeling is a ranking where the relevant documents are all ranked in the front, e.g.,

An incorrect labeling would be any other ranking, e.g.,

There are an intractable number of rankings, thus an intractable number of constraints!

Structured classification

Local Classification

Classify using local information \Rightarrow lgnores correlations!

Local Classification

[[]thanks to Ben Taskar for sli

Structured Classification

- Use local information
- Exploit correlations

Structured Classification

Structured Classification

- Structured classification : direct approaches
 - Generative approach: Markov Random Fields (Bayesian modeling with graphical models)
 - Linear classification:
 - Structured Perceptron
 - Conditional Random Fields (counterpart of logistic regression)
 - Large-margin structured classification

Structured classification

Simple example HMM:

Structured Model

• Main idea: define scoring function which decomposes as sum of features scores k on "parts" p:

$$score(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \Phi(\mathbf{x}, \mathbf{y}) = \sum_{k, p} w_k^{\top} \phi_k(\mathbf{x}_p, \mathbf{y}_p)$$

• Label examples by looking for max score:

$$prediction(\mathbf{x}, \mathbf{w}) = \arg\max score(\mathbf{x}, \mathbf{y}, \mathbf{w})$$
$$\mathbf{y} \in \mathcal{Y}(\mathbf{x})$$
 space of feasible Parts = nodes, edges, etc. outputs

Decoding and Learning

Three important operations on a general structured (e.g. graphical) model: $\operatorname{argmax} p(y_1, ..., y_n | x)$

- **Decoding:** find the right label sequence $\forall j, p(y_i|x)$
- · Inference: compute probabilities of labels

• Learning: find model + parameters w so that decoding works

е

HMM example:

- **Decoding:** Viterbi algorithm
- Inference: forward-backward algorithm

• **Learning:** e.g. transition and emission counts (case of learning a generative model from fully labeled training data)

Decoding and Learning

- Decoding: algorithm on the graph (eg. max-product) Use dynamic
 Inference: algorithm on the graph programming to (eg. sum-product, belief propagation, junction tree, takeping)antage of the structure
- **Learning:** inference + optimization
- 1. Focus of graphical model class
- 2. Need 2 essential concepts:
 - 1. cliques: variables that directly depend on one another
 - 2. features (of the cliques): some functions of the cliques

Introduction to Information Retrieval

Our favorite (discriminative) algorithms

Perceptron:
$$\max_{\mathbf{w}} \sum_{i} \left[\mathbf{w}^{\top} \Phi(x^{i}, y^{i}) - \max_{y} \mathbf{w}^{\top} \Phi(x^{i}, y) \right]$$

$$CRF: \max_{\mathbf{w}} \sum_{i} \left[\mathbf{w}^{\top} \Phi(x^{i}, y^{i}) - \operatorname{softmax} \mathbf{w}^{\top} \Phi(x^{i}, y) \right]$$
(Conditional Random Field)
$$Cmax \text{ conditional Highwood }$$

$$M^{3} \text{net:} \max_{\mathbf{w}} \sum_{i} \left[\mathbf{w}^{\top} \Phi(x^{i}, y^{i}) - \max_{y} (\ell(y, y^{i}) + \mathbf{w}^{\top} \Phi(x^{i}, y)) \right]$$

$$Cmax. magin \}$$

The devil is the details......

(Averaged) Perceptron

 \mathbf{x}^i

For each datapoint

Predict:
$$\hat{\mathbf{y}}_i = rg\max_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}_t^{ op} \Phi(\mathbf{x}^i, \mathbf{y})$$

Update:
$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \underbrace{\left(\Phi(\mathbf{x}, \mathbf{y}^i) - \Phi(\mathbf{x}^i, \hat{\mathbf{y}}_i) \right)}_{\text{update if } \hat{\mathbf{y}}_i \neq \mathbf{y}^i}$$

Averaged perceptron:

$$\bar{\mathbf{w}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{w}_t$$

Example: multiclass setting

Predic
$$\hat{y}_i = \arg \max_y w_y^\top x^i$$
 t:

Updat if
$$\hat{y}_i \neq y^i$$
 then
e:
 $w_{y^i,t+1} = w_{y^i,t} + \alpha x^i$
 $w_{\hat{y}_i,t+1} = w_{\hat{y}_i,t} - \alpha x^i$

Feature encoding:

$$\Phi(\mathbf{x}^{i}, y = 1)^{\top} = [\mathbf{x}^{i^{\top}} 0 \dots 0]$$

$$\Phi(\mathbf{x}^{i}, y = 2)^{\top} = [0 \mathbf{x}^{i^{\top}} \dots 0]$$

$$\vdots$$

$$\Phi(\mathbf{x}^{i}, y = K)^{\top} = [0 0 \dots \mathbf{x}^{i^{\top}}]$$

$$\mathbf{w}^{\top} = [w_{1}^{\top} w_{2}^{\top} \dots w_{K}^{\top}]$$

Predict:
$$\hat{\mathbf{y}}_i = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{arg max}} \mathbf{w}_t^{\top} \Phi(\mathbf{x}^i, \mathbf{y})$$

Update: $\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \underbrace{\left(\Phi(\mathbf{x}, \mathbf{y}^i) - \Phi(\mathbf{x}^i, \hat{\mathbf{y}}_i)\right)}_{\operatorname{update}}$ if $\hat{\mathbf{y}}_i \neq \mathbf{y}^i$

CRF

Z difficult to
compute
with $exp w^{\top} \Phi(y^i | x^i)$
 $\sum_y exp w^{\top} \Phi(y | x^i)$ complicated
graphsf(x) = f(x) + f(y) + f(y)

Conditioned on all the observations

http://www.inference.phy.cam.ac.uk/hmw26/crf/

MEMM & CRF, Mayssam Sayyadian, Rob McCann

anhai.cs.uiuc.edu/courses/498ad-fall04/local/my-slides/crf-students.pdf

M³net

No Z ... The margin penalt(y, yⁱ) can "factorize" according to the problem IntroductionsbycSimon Lacoste-Julien

http://www.cs.berkeley.edu/~slacoste/school/cs281a/project_report. html

Experiments

- OHSUMED (from LETOR)
- Features:
 - 6 that represent versions of tf, idf, and tf.idf factors
 - BM25 score (*IIR* sec. 11.4.3)
 - A scoring function derived from a probabilistic approach to IR, which has traditionally done well in TREC evaluations, etc.

Experimental Results (OHSUMED)

Experimental Results (MSN search)

Other machine learning methods for learning to rank

- Of course!
- I've only presented the use of SVMs for machine learned relevance, but other machine learning methods have also been used successfully
 - Boosting: RankBoost
 - Ordinal Regression loglinear models
 - Neural Nets: RankNet
 - (Gradient-boosted) Decisision Trees

The Limitations of Machine Learning

- Everything that we have looked at (and most work in this area) produces *linear* models of features by weighting different base features
- This contrasts with most of the clever ideas of traditional IR, which are *nonlinear* scalings and combinations of basic measurements
 - Iog term frequency, idf, pivoted length normalization
- At present, ML is good at weighting features, but not at coming up with nonlinear scalings
 - Designing the basic features that give good signals for ranking remains the domain of human creativity

Resources

- *IIR* secs 6.1.2–3 and 15.4
- LETOR benchmark datasets
 - Website with data, links to papers, benchmarks, etc.
 - http://research.microsoft.com/users/LETOR/
 - Everything you need to start research in this area!
- Nallapati, R. Discriminative models for information retrieval. SIGIR 2004.
- Cao, Y., Xu, J. Liu, T.-Y., Li, H., Huang, Y. and Hon, H.-W. Adapting Ranking SVM to Document Retrieval, SIGIR 2006.
- Y. Yue, T. Finley, F. Radlinski, T. Joachims. A Support Vector Method for Optimizing Average Precision. SIGIR 2007.