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Linear classifiers: Which Hyperplane?

§ Lots of possible choices for a, b, c.
§ Some methods find a separating hyperplane, 

but not the optimal one [according to some 
criterion of expected goodness]

§ E.g., perceptron

§ A Support Vector Machine (SVM) finds an 
optimal* solution.
§ Maximizes the distance between the 

hyperplane and the “difficult points” close to 
decision boundary

§ One intuition: if there are no points near the 
decision surface, then there are no very 
uncertain classification decisions

This line 
represents the 

decision 
boundary:

ax + by � c = 0

Ch. 15
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Another intuition
§ If you have to place a fat separator between classes, 

you have less choices, and so  the capacity of the 
model has been decreased

Sec. 15.1
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Support Vector Machine (SVM)
Support vectors

Maximizes
margin

§ SVMs maximize the margin around 
the separating hyperplane.

§ A.k.a. large margin classifiers

§ The decision function is fully 
specified by a subset of training 
samples, the support vectors.

§ Solving SVMs is a quadratic 
programming problem

§ Seen by many as the most 
successful current text 
classification method*

*but other discriminative methods 
often perform very similarly

Sec. 15.1

Narrower
margin
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§ w: decision hyperplane normal vector

§ xi: data point i
§ yi: class of data point i (+1 or -1)     NB: Not 1/0

§ Classifier is: f(xi) = sign(wTxi + b)

§ Functional margin of xi is: yi (wTxi + b)

§ The functional margin of a dataset is twice the minimum 

functional margin for any point

§ The factor of 2 comes from measuring the whole width of the 

margin

§ Problem: we can increase this margin simply by scaling w, b….

Maximum Margin: Formalization

Sec. 15.1
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Geometric Margin

§ Distance from example to the separator is 

§ Examples closest to the hyperplane are support vectors. 

§ Margin ρ of the separator is the width of separation between support vectors 
of classes.

w
xw byr
T +

=

r

ρx

x′

w

Derivation of finding r:
Dotted line x’ − x is perpendicular to
decision boundary so parallel to w.
Unit vector is w/|w|, so line is rw/|w|.
x’ = x – yrw/|w|. 
x’ satisfies wTx’ + b = 0.
So wT(x –yrw/|w|) + b = 0
Recall that |w| = sqrt(wTw).
So wTx –yr|w| + b = 0
So, solving for r gives:
r = y(wTx + b)/|w|

Sec. 15.1
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Linear SVM Mathematically
The linearly separable case

§ Assume that the functional margin of each data item is at least 1, then the 
following two constraints follow for a training set {(xi ,yi)} 

§ For support vectors, the inequality becomes an equality

§ Then, since each example’s distance from the hyperplane is

§ The margin is:

wTxi + b ≥ 1    if yi= 1

wTxi + b ≤ −1   if yi= −1

w
2

=ρ

w
xw byr
T +

=

Sec. 15.1
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Linear Support Vector Machine (SVM)

§ Hyperplane
wT x + b = 0

§ Extra scale constraint:
mini=1,…,n |wTxi + b| = 1

§ This implies:
wT(xa–xb) = 2
ρ = ‖xa–xb‖2 = 2/‖w‖2 wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

Sec. 15.1
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Extra margin

§ Maximum margin weight 
vector is parallel to line 
from (1, 1) to (2, 3). So 
weight vector is (1, 2).

§ Decision boundary is 
normal (“perpendicular”) 
to it halfway between.

§ It passes through (1.5, 2)
§ So y = x1 +2x2 − 5.5
§ Geometric margin is √5
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§ Let’s minimize w given that
yi(wTxi + b) ≥ 1

§ Constraint has = at SVs;
w = (a, 2a) for some a

§ a+2a+b = −1      2a+6a+b = 1

§ So, a = 2/5 and b = −11/5
Optimal hyperplane is:
w = (2/5, 4/5) and b = −11/5

§ Margin ρ is 2/|w| 
= 2/√(4/25+16/25)
= 2/(2√5/5) = √5
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Linear SVMs Mathematically (cont.)
§ Then we can formulate the quadratic optimization problem: 

§ A better formulation (min ‖w‖= max 1/‖w‖ ): 

Find w and b such that

is maximized; and for all {(xi , yi)}
wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi= -1

w
2

=ρ

Find w and b such that

Φ(w) =½ wTw is minimized; 

and for all {(xi ,yi)}:    yi (wTxi + b) ≥ 1

Sec. 15.1
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Solving the Optimization Problem

§ This is now optimizing a quadratic function subject to linear constraints

§ Quadratic optimization problems are a well-known class of mathematical 
programming problem, and many (intricate) algorithms exist for solving them 
(with many special ones built for SVMs)

§ The solution involves constructing a dual problem where a Lagrange 
multiplier αi is associated with every constraint in the primary problem:

Find w and b such that
Φ(w) =½ wTw is minimized; 
and for all {(xi ,yi)}:  yi (wTxi + b) ≥ 1

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2) αi ≥ 0 for all αi

Sec. 15.1
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The Optimization Problem Solution
§ The solution has the form: 

§ Each non-zero αi indicates that corresponding xi is a support vector.
§ Then the classifying function will have the form:

§ Notice that it relies on an inner product between the test point x and the 
support vectors xi
§ We will return to this later.

§ Also keep in mind that solving the optimization problem involved 
computing the inner products xi

Txj between all pairs of training points.

w =Σαiyixi             b= yk- wTxk for any xk such that αk¹ 0

f(x) = Σαiyixi
Tx + b

Sec. 15.1
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Soft Margin Classification  
§ If the training data is not 

linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

§ Allow some errors
§ Let some points be moved 

to where they belong, at a 
cost

§ Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi

Sec. 15.2.1
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Soft Margin Classification 
Mathematically
§ The old formulation:

§ The new formulation incorporating slack variables:

§ Parameter C can be viewed as a way to control overfitting
§ A regularization term

Find w and b such that
Φ(w) =½ wTw is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1

Find w and b such that
Φ(w) =½ wTw + CΣξi is minimized and for all {(xi ,yi)}
yi (wTxi + b) ≥ 1- ξi and    ξi ≥ 0 for all i

Sec. 15.2.1
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Soft Margin Classification – Solution
§ The dual problem for soft margin classification:

§ Neither slack variables ξi nor their Lagrange multipliers appear in the dual 
problem!

§ Again, xi with non-zero αi will be support vectors.
§ Solution to the dual problem is:

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi = 0
(2)  0 ≤ αi ≤ C for all αi

w = Σαiyixi             
b = yk(1- ξk) - wTxk where k = argmax αk�

k� f(x) = Σαiyixi
Tx + b

w is not needed explicitly 
for classification!

Sec. 15.2.1
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Classification with SVMs
§ Given a new point x, we can score its projection 

onto the hyperplane normal:
§ I.e., compute score: wTx + b = Σαiyixi

Tx + b
§ Decide class based on whether < or > 0

§ Can set confidence threshold t.

-1
0
1

Score > t: yes

Score < -t: no

Else: don’t know

Sec. 15.1
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Linear SVMs:  Summary
§ The classifier is a separating hyperplane.

§ The most “important” training points are the support vectors; they define 
the hyperplane.

§ Quadratic optimization algorithms can identify which training points xi are 
support vectors with non-zero Lagrangian multipliers αi.

§ Both in the dual formulation of the problem and in the solution, training 
points appear only inside inner products: 

Find α1…αN such that
Q(α) =Σαi - ½ΣΣαiαjyiyjxi

Txj is maximized and 
(1) Σαiyi= 0
(2)  0 ≤ αi≤ C for all αi

f(x) = Σαiyixi
Tx + b

Sec. 15.2.1
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Non-linear SVMs
§ Datasets that are linearly separable (with some noise) work out great:

§ But what are we going to do if the dataset is just too hard? 

§ How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x

Sec. 15.2.3
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Non-linear SVMs:  Feature spaces
§ General idea:   the original feature space can always 

be mapped to some higher-dimensional feature 
space where the training set is separable:

Φ:  x→ φ(x)

Sec. 15.2.3
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The “Kernel Trick”

§ The linear classifier relies on an inner product between vectors K(xi,xj)=xi
Txj

§ If every datapoint is mapped into high-dimensional space via some 
transformation Φ:  x → φ(x), the inner product becomes:

K(xi,xj)= φ(xi) Tφ(xj)

§ A kernel function is some function that corresponds to an inner product in 
some expanded feature space.

§ Example: 

2-dimensional vectors x=[x1   x2];  let K(xi,xj)=(1 + xi
Txj)2

,

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2=

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj)    where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

Sec. 15.2.3
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Kernels
§ Why use kernels?

§ Make non-separable problem separable.
§ Map data into better representational space

§ Common kernels
§ Linear
§ Polynomial K(x,z) = (1+xTz)d

§ Gives feature conjunctions
§ Radial basis function (infinite dimensional space)

§ Haven’t been very useful in text classification
22

Sec. 15.2.3



Introduction to Information Retrieval

Multi-class SVM
Intuitive formulation: without 
regularization / for the separable 
case

Primal problem: QP

Solved in the dual formulation,  also Quadratic Program

Main advantage: Sparsity (but not 
systematic) 

• Speed with SMO (heuristic use of 
sparsity)

• Sparse solutions

Drawbacks:

• Need to recalculate or store 
xi

Txj

• Outputs not probabilities
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§ Most (over)used data set

§ 21578 documents

§ 9603 training, 3299 test articles (ModApte/Lewis split)

§ 118 categories

§ An article can be in more than one category

§ Learn 118 binary category distinctions

§ Average document: about 90 types, 200 tokens

§ Average number of classes assigned

§ 1.24 for docs with at least one category

§ Only about 10 out of 118 categories are large

Common categories
(#train, #test)

Evaluation: Classic Reuters-21578 Data Set 

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Sec. 15.2.4
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Reuters Text Categorization data set 
(Reuters-21578) document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" 
OLDID="12981" NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress 
kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 
member states determining industry positions on a number of issues, according to the National Pork 
Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, 
including the future direction of farm policy and the tax law as it applies to the agriculture sector. 
The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) 
control and eradication program, the NPPC said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all 
areas of the industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

Sec. 15.2.4
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Per class evaluation measures

§ Recall: Fraction of docs in class i
classified correctly:

§ Precision: Fraction of docs assigned 
class i that are actually about class i:

§ Accuracy: (1 - error rate) Fraction of 
docs classified correctly:

€ 

cii
i
∑

cij
i
∑

j
∑

€ 

cii
c ji

j
∑

€ 

cii
cij

j
∑

Sec. 15.2.4
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Micro- vs. Macro-Averaging
§ If we have more than one class, how do we combine 

multiple performance measures into one quantity?
§ Macroaveraging: Compute performance for each 

class, then average.
§ Microaveraging: Collect decisions for all classes, 

compute contingency table, evaluate.

Sec. 15.2.4
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Micro- vs. Macro-Averaging: Example

Truth: 
yes

Truth: 
no

Classifi
er: yes

10 10

Classifi
er: no

10 970

Truth: 
yes

Truth: 
no

Classifi
er: yes

90 10

Classifi
er: no

10 890

Truth: 
yes

Truth: 
no

Classifier: 
yes

100 20

Classifier: 
no

20 1860

Class 1 Class 2 Micro Ave. Table

n Macroaveraged precision: (0.5 + 0.9)/2 = 0.7

n Microaveraged precision: 100/120 = .83

n Microaveraged score is dominated by score 
on common classes

Sec. 15.2.4
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Sec. 15.2.4
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Precision-recall for category: Crude
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Precision-recall for category: Ship

Precision

Recall

Sec. 15.2.4
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Yang&Liu: SVM vs. Other Methods

Sec. 15.2.4



Introduction to Information Retrieval

33

Good practice department:
Make a confusion matrix

§ In a perfect classification, only the diagonal has non-zero entries
§ Look at common confusions and how they might be addressed

53

Class assigned by classifier
A

ct
ua

l C
la

ss

This (i, j) entry means 53 of the docs actually in

class i were put in class j by the classifier.

Sec. 15.2.4
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The Real World
§ Gee, I’m building a text classifier for real, now!
§ What should I do?

§ How much training data do you have?
§ None
§ Very little
§ Quite a lot
§ A huge amount and its growing

Sec. 15.3.1
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Manually written rules
§ No training data, adequate editorial staff?
§ Never forget the hand-written rules solution!

§ If (wheat or grain) and not (whole or bread) then
§ Categorize as grain

§ In practice, rules get a lot bigger than this
§ Can also be phrased using tf or tf.idf weights

§ With careful crafting (human tuning on development 
data) performance is high:
§ Construe: 94% recall, 84% precision over 675 categories 

(Hayes and Weinstein 1990)
§ Amount of work required is huge

§ Estimate 2 days per class … plus maintenance

Sec. 15.3.1
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Very little data?
§ If you’re just doing supervised classification, you 

should stick to something high bias
§ There are theoretical results that Naïve Bayes should do 

well in such circumstances (Ng and Jordan 2002 NIPS)
§ The interesting theoretical answer is to explore semi-

supervised training methods:
§ Bootstrapping, EM over unlabeled documents, …

§ The practical answer is to get more labeled data as 
soon as you can
§ How can you insert yourself into a process where humans 

will be willing to label data for you??

Sec. 15.3.1



Introduction to Information Retrieval

37

A reasonable amount of data?
§ Perfect!
§ We can use all our clever classifiers
§ Roll out the SVM!

§ But if you are using an SVM/NB etc., you should 
probably be prepared with the “hybrid” solution 
where there is a Boolean overlay
§ Or else to use user-interpretable Boolean-like models like 

decision trees
§ Users like to hack, and management likes to be able to 

implement quick fixes immediately

Sec. 15.3.1
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A huge amount of data?
§ This is great in theory for doing accurate 

classification…
§ But it could easily mean that expensive methods like 

SVMs (train time) or kNN (test time) are quite 
impractical

§ Naïve Bayes can come back into its own again!
§ Or other advanced methods with linear training/test 

complexity like regularized logistic regression (though 
much more expensive to train)

Sec. 15.3.1
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Accuracy as a function of data size

§ With enough data the choice 
of classifier may not matter 
much, and the best choice 
may be unclear
§ Data: Brill and Banko on 

context-sensitive spelling 
correction

§ But the fact that you have to 
keep doubling your data to 
improve performance is a 
little unpleasant

Sec. 15.3.1
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Summary

§ Support vector machines (SVM)
§ Choose hyperplane based on support vectors

§ Support vector = “critical” point close to decision boundary

§ (Degree-1) SVMs are linear classifiers.
§ Kernels: powerful and elegant way to define similarity metric
§ Perhaps best performing text classifier

§ But there are other methods that perform about as well as SVM, such 
as regularized logistic regression (Zhang & Oles 2001)

§ Partly popular due to availability of good software
§ SVMlight is accurate and fast – and free (for research)
§ Now lots of good software: libsvm, TinySVM, ….

§ Comparative evaluation of methods
§ Real world: exploit domain specific structure!
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Resources for today’s lecture
§ Christopher J. C. Burges. 1998. A Tutorial on Support Vector Machines for Pattern Recognition
§ S. T. Dumais. 1998. Using SVMs for text categorization, IEEE Intelligent Systems, 13(4)
§ S. T. Dumais, J. Platt, D. Heckerman and M. Sahami. 1998. Inductive learning algorithms and 

representations for text categorization. CIKM ’98, pp. 148-155. 
§ Yiming Yang, Xin Liu. 1999. A re-examination of text categorization methods. 22nd Annual 

International SIGIR
§ Tong Zhang, Frank J. Oles. 2001. Text Categorization Based on Regularized Linear 

Classification Methods. Information Retrieval 4(1): 5-31 
§ Trevor Hastie, Robert Tibshirani and Jerome Friedman. Elements of Statistical Learning: Data 

Mining, Inference and Prediction. Springer-Verlag, New York. 
§ T. Joachims, Learning to Classify Text using Support Vector Machines. Kluwer, 2002.
§ Fan Li, Yiming Yang. 2003. A Loss Function Analysis for Classification Methods in Text 

Categorization. ICML 2003: 472-479.
§ Tie-Yan Liu, Yiming Yang, Hao Wan, et al. 2005. Support Vector Machines Classification with 

Very Large Scale Taxonomy, SIGKDD Explorations, 7(1): 36-43.
§ ‘Classic’ Reuters-21578 data set: 

http://www.daviddlewis.com/resources/testcollections/reuters21578/

Ch. 15
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Machine learning for IR ranking
§ There’s some truth to the fact that the IR community 

wasn’t very connected to the ML community
§ But there were a whole bunch of precursors:

§ Wong, S.K. et al. 1988. Linear structure in information 
retrieval. SIGIR 1988.

§ Fuhr, N. 1992. Probabilistic methods in information 
retrieval. Computer Journal.

§ Gey, F. C. 1994. Inferring probability of relevance using the 
method of logistic regression. SIGIR 1994.

§ Herbrich, R. et al. 2000. Large Margin Rank Boundaries for 
Ordinal Regression. Advances in Large Margin Classifiers.
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Why weren’t early attempts very 
successful/influential?

§ Sometimes an idea just takes time to be appreciated…
§ Limited training data

§ Especially for real world use (as opposed to writing 
academic papers), it was very hard to gather test collection 
queries and relevance judgments that are representative of 
real user needs and judgments on documents returned
§ This has changed, both in academia and industry

§ Poor machine learning techniques
§ Insufficient customization to IR problem
§ Not enough features for ML to show value
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Why wasn’t ML much needed?
§ Traditional ranking functions in IR used a very small 

number of features, e.g.,
§ Term frequency
§ Inverse document frequency
§ Document length

§ It was easy to tune weighting coefficients by hand
§ And people did
§ You guys did in PA3 

§ Some of you even grid searched a bit
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Why is ML needed now?
§ Modern systems – especially on the Web – use a great 

number of features:
§ Arbitrary useful features – not a single unified model

§ Log frequency of query word in anchor text?
§ Query word in color on page?
§ # of images on page?
§ # of (out) links on page?
§ PageRank of page?
§ URL length?
§ URL contains �~�?
§ Page edit recency?
§ Page length?

§ The New York Times (2008-06-03) quoted Amit Singhal as 
saying Google was using over 200 such features.
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Simple example:
Using classification for ad hoc IR

§ Collect a training corpus of (q, d, r) triples

§ Relevance r is here binary (but may be multiclass, with 3–7 values)

§ Document is represented by a feature vector

§ x = (α, ω) α is cosine similarity, ω is minimum query window size

§ ω is the the shortest text span that includes all query words

§ Query term proximity is a very important new weighting factor

§ Train a machine learning model to predict the class r of a document-
query pair 

Sec. 15.4.1
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Simple example:
Using classification for ad hoc IR

§ A linear score function is then 
Score(d, q) = Score(α, ω) = aα + bω + c

§ And the linear classifier is
Decide relevant if Score(d, q) > θ

§ … just like when we were doing text classification

Sec. 15.4.1
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Simple example:
Using classification for ad hoc IR
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Sec. 15.4.1
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More complex example of using classification for 
search ranking  [Nallapati 2004]

§ We can generalize this to classifier functions over 
more features

§ We can use methods we have seen previously for 
learning the linear classifier weights
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An SVM classifier for information retrieval  
[Nallapati 2004]

§ Let  g(r|d,q) = w�f(d,q) + b
§ SVM training: want g(r|d,q) ≤ −1 for nonrelevant 

documents and g(r|d,q) ≥ 1 for relevant documents
§ SVM testing: decide relevant iff g(r|d,q) ≥ 0

§ Features are not word presence features (how would you 
deal with query words not in your training data?) but 
scores like the summed (log) tf of all query terms

§ Unbalanced data (which can result in trivial always-say-
nonrelevant classifiers) is dealt with by undersampling 
nonrelevant documents during training (just take some at 
random)     [there are other ways of doing this – cf. Cao et al. later]
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An SVM classifier for information retrieval  
[Nallapati 2004]

§ Experiments:
§ 4 TREC data sets
§ Comparisons with Lemur, a state-of-the-art open source IR 

engine (Language Model (LM)-based – see IIR ch. 12)

§ Linear kernel normally best or almost as good as quadratic 
kernel, and so used in reported results

§ 6 features, all variants of tf, idf, and tf.idf scores
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An SVM classifier for information retrieval  
[Nallapati 2004]

Train \ Test Disk 3 Disk 4-5 WT10G (web)
Disk 3 LM 0.1785 0.2503 0.2666

SVM 0.1728 0.2432 0.2750
Disk 4-5 LM 0.1773 0.2516 0.2656

SVM 0.1646 0.2355 0.2675

§ At best the results are about equal to LM
§ Actually a little bit below

§ Paper’s advertisement: Easy to add more features
§ This is illustrated on a homepage finding task on 

WT10G:
§ Baseline LM 52% success@10, baseline SVM 58%
§ SVM with URL-depth, and in-link features: 78% S@10
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“Learning to rank”

§ Classification probably isn’t the right way to think 

about approaching ad hoc IR:

§ Classification problems: Map to a unordered set of classes

§ Regression problems: Map to a real value [Start of PA4]

§ Ordinal regression problems: Map to an ordered set of 

classes

§ A fairly obscure sub-branch of statistics, but what we want here

§ This formulation gives extra power:

§ Relations between relevance levels are modeled

§ Documents are good versus other documents for query 

given collection; not an absolute scale of goodness

Sec. 15.4.2
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“Learning to rank”
§ Assume a number of categories C of relevance exist

§ These are totally ordered: c1 < c2 < … < cJ
§ This is the ordinal regression setup

§ Assume training data is available consisting of document-
query pairs represented as feature vectors ψi and 
relevance ranking ci

§ We could do point-wise learning, where we try to map 
items of a certain relevance rank to a subinterval (e.g, 
Crammer et al. 2002 Prank, 2005 Chu and Keerthi)

§ But most work does pair-wise learning, where the input 
is a pair of results for a query, and the class is the 
relevance ordering relationship between them
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Pointwise learning
[Chu and Keerthi 2005]

§ Given r ranks and and nj examples for the jth rank.
§ Let the training examples be xi, i=1,…,nj

§ Parameters w and bj can be learned by solving:
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Pointwise learning
[Chu and Keerthi 2005]

§

56



Introduction to Information Retrieval

§ Goal is to learn a threshold to separate each rank

Pointwise learning
[Chu and Keerthi 2005]
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Pairwise learning: The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

§ Aim is to classify instance pairs as correctly ranked or 

incorrectly ranked

§ This turns an ordinal regression problem back into a binary 

classification problem

§ We want a ranking function f such that

ci > ck iff f(ψi) > f(ψk)

§ … or at least one that tries to do this with minimal 

error

§ Suppose that f is a linear function 

f(ψi) = w�ψi

Sec. 15.4.2
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The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

§ Ranking Model: f�ψi�

€ 

f (ψi)

Sec. 15.4.2
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The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

§ Then (combining the two equations on the last slide):

ci > ck iff w�(ψi − ψk) > 0

§ Let us then create a new instance space from such 

pairs:

Φu = Φ(di, dj, q) = ψi − ψk

zu = +1, 0, −1 as ci >,=,< ck

§ We can build model over just cases for which zu = −1

§ From training data S = {Φu}, we train an SVM

Sec. 15.4.2
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The Ranking SVM 
[Herbrich et al. 1999, 2000; Joachims et al. 2002]

§ The SVM learning task is then like other examples 
that we saw before

§ Find w and ξu ≥ 0 such that
§ ½wTw + C Σ ξu is minimized, and
§ for all Φu such that  zu < 0,   w�Φu ≥ 1 − ξu

§ We can just do the negative zu, as ordering is 
antisymmetric

§ You can again use SVMlight (or other good SVM 
libraries) to train your model (SVMrank specialization)

Sec. 15.4.2
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Two queries in the original space
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Two queries in the pairwise space
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Aside: The SVM loss function
§ The minimization

minw ½wTw + C Σ ξu
and for all Φu such that  zu < 0, w�Φu ≥ 1 − ξu

§ can be rewritten as
minw (1/2C)wTw + Σ ξu

and for all Φu such that  zu < 0,   ξu ≥ 1 − (w�Φu)

§ Now, taking λ = 1/2C, we can reformulate this as 
minw Σ [1 − (w�Φu)]+ + λwTw

§ Where []+ is the positive part (0 if a term is negative)
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Aside: The SVM loss function
§ The reformulation

minw Σ [1 − (w�Φu)]+ + λwTw
§ shows that an SVM can be thought of as having an 

empirical “hinge” loss combined with a weight 
regularizer

Loss

1            w�Φu

Hinge loss Regularizer of‖w‖
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Two Problems with Direct Application of the 
Ranking SVM

§ Cost sensitiveness: negative effects of making errors on top 
ranked documents 

d: definitely relevant, p: partially relevant, n: not relevant
ranking 1: p d p n n n n
ranking 2: d p n p n n n

§ Query normalization: number of instance pairs varies according to 
query

q1: d p p n n n n
q2: d d p p p n n n n n
q1 pairs: 2*(d, p) + 4*(d, n) + 8*(p, n) = 14
q2 pairs: 6*(d, p) + 10*(d, n) + 15*(p, n) = 31
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Adapting the Ranking SVM for (successful) 
Information Retrieval

[Yunbo Cao, Jun Xu, Tie-Yan Liu, Hang Li, Yalou Huang, Hsiao-
Wuen Hon SIGIR 2006]

§ A Ranking SVM model already works well
§ Using things like vector space model scores as features 

§ As we shall see, it outperforms them in evaluations

§ But it does not model important aspects of practical 
IR well 

§ This paper addresses two customizations of the 
Ranking SVM to fit an IR utility model
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The ranking SVM fails to model the IR problem 
well …

1. Correctly ordering the most relevant documents is 
crucial to the success of an IR system, while 
misordering less relevant results matters little
§ The ranking SVM considers all ordering violations as the 

same
2. Some queries have many (somewhat) relevant 

documents, and other queries few.  If we treat all 
pairs of results for a query equally, queries with 
many results will dominate the learning
§ But actually queries with few relevant results are at least 

as important to do well on
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These problems are solved with a new Loss 
function

§ τ weights for type of rank difference
§ Estimated empirically from effect on NDCG

§ μ weights for size of ranked result set
§ Linearly scaled versus biggest result set 

minw L( w) = τ k (i )µq(i ) 1− zi
w, xi

(1) −

xi
(2)!

"
#
$

i=1

l

∑
+

+λ
w
2
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Alternative: Optimizing Rank-Based Measures
[Yue et al. SIGIR 2007]

§ If we think that MAP is a good approximation of the 
user’s utility function from a result ranking

§ Then, let’s directly optimize this measure
§ As opposed to some proxy (weighted pairwise prefs)

§ But, there are problems …
§ Objective function no longer decomposes

§ Pairwise prefs decomposed into each pair

§ Objective function is flat or discontinuous
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MAP vs ROC score
§ Given two ranked lists p and p-hat:
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MAP vs ROC score
§ Different:

72
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MAP vs Accuracy
§ Example:

73
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Structural SVMs    [Tsochantaridis et al., 2005]
§ Structural SVMs are a generalization of SVMs where the output 

classification space is not binary or one of a set of classes, but some 
complex object (such as a sequence or a parse tree)

§ Here, it is a complete (weak) ranking of documents for a query
§ The Structural SVM attempts to predict the complete ranking for 

the input query and document set
§ The true labeling is a ranking where the relevant documents are all 

ranked in the front, e.g.,

§ An incorrect labeling would be any other ranking, e.g.,

§ There are an intractable number of rankings, thus an intractable 
number of constraints!
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Structured classification
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Local Classification

Classify using local information
Þ Ignores correlations!

b r ea r

[thanks to Ben Taskar for slide!]
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Local Classification
building
tree
shrub
ground

[thanks to Ben Taskar for slide!]
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Structured Classification

§ Use local information 
§ Exploit correlations

b r ea c

[thanks to Ben Taskar for slide!]
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Structured Classification
building
tree
shrub
ground

[thanks to Ben Taskar for slide!]
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Structured Classification
§ Structured classification : direct approaches

§ Generative approach: Markov Random Fields (Bayesian modeling with 
graphical models)

§ Linear classification:
§ Structured Perceptron
§ Conditional Random Fields (counterpart of logistic regression) 
§ Large-margin structured classification
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Structured classification
Simple example HMM:

“Label sequence”

“Observation 
sequence”

b  r  a  c  e
Optical 
Character 
Recognition
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Structured Model

• Main idea: define scoring function which 
decomposes as sum of features scores k on “parts” p:

• Label examples by looking for max score:

• Parts = nodes, edges, etc.
space of feasible 

outputs
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Decoding and Learning

b  r  a  c  e

Three important operations on a general structured (e.g. 
graphical) model:

• Decoding: find the right label sequence

• Inference: compute probabilities of labels

• Learning: find model + parameters w so that decoding 
works

HMM example:

• Decoding: Viterbi algorithm

• Inference: forward-backward algorithm

• Learning: e.g. transition and emission counts                                     
(case of learning a generative model from fully labeled 
training data)
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Decoding and Learning
• Decoding: algorithm on the graph (eg. max-product)

• Inference: algorithm on the graph                                                           
(eg. sum-product, belief propagation, junction tree, sampling)

• Learning: inference + optimization

1. Focus of graphical model class

2. Need 2 essential concepts:

1. cliques: variables that directly depend on one another

2. features (of the cliques): some functions of the cliques

Use dynamic 
programming to 

take advantage of 
the structure
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Our favorite (discriminative) 
algorithms

The devil is the details...……
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(Averaged) Perceptron 
For each 
datapoint

Averaged perceptron:

Predict:

Update:
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Example: multiclass setting

Predic
t:

Updat
e:

Feature encoding:

Predict:

Update:
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CRF

http://www.inference.phy.cam.ac.uk/hmw26/crf/

M3net

Introduction by Hannah M.Wallach

Introduction by Simon Lacoste-Julien
http://www.cs.berkeley.edu/~slacoste/school/cs281a/project_report.
html

anhai.cs.uiuc.edu/courses/498ad-fall04/local/my-slides/crf-students.pdf 
MEMM & CRF, Mayssam Sayyadian, Rob McCann

Z difficult to 
compute 
with 
complicated 
graphs

Conditioned on all 
the observations

No Z … The margin penalty                can 
“factorize” according to the problem 
structure
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Experiments

§ OHSUMED (from LETOR) 

§ Features:
§ 6 that represent versions of tf, idf, and tf.idf factors

§ BM25 score (IIR sec. 11.4.3)
§ A scoring function derived from a probabilistic approach to IR, 

which has traditionally done well in TREC evaluations, etc.
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Experimental Results (OHSUMED)
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Experimental Results (MSN search)



Introduction to Information Retrieval

Other machine learning methods for learning to 
rank

§ Of course!
§ I’ve only presented the use of SVMs for machine 

learned relevance, but other machine learning 
methods have also been used successfully
§ Boosting: RankBoost
§ Ordinal Regression loglinear models
§ Neural Nets: RankNet
§ (Gradient-boosted) Decisision Trees
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The Limitations of Machine Learning
§ Everything that we have looked at (and most work in 

this area) produces linear models of features by 
weighting different base features

§ This contrasts with most of the clever ideas of 
traditional IR, which are nonlinear scalings and 
combinations of basic measurements
§ log term frequency, idf, pivoted length normalization

§ At present, ML is good at weighting features, but not 
at coming up with nonlinear scalings
§ Designing the basic features that give good signals for 

ranking remains the domain of human creativity
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Resources
§ IIR secs 6.1.2–3 and 15.4
§ LETOR benchmark datasets

§ Website with data, links to papers, benchmarks, etc.
§ http://research.microsoft.com/users/LETOR/
§ Everything you need to start research in this area!

§ Nallapati, R. Discriminative models for information 
retrieval. SIGIR 2004.

§ Cao, Y., Xu, J. Liu, T.-Y., Li, H., Huang, Y. and Hon, H.-W. 
Adapting Ranking SVM to Document Retrieval, SIGIR 
2006. 

§ Y. Yue, T. Finley, F. Radlinski, T. Joachims. A Support 
Vector Method for Optimizing Average Precision. SIGIR 
2007.


