
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

In this Lecture:
• Outline:

– Stochastic gradient descent (SGD)
– SGD Convergence
– Minibatch and Distributed SGD
– Practical considerations
– Advancements from SGD.

Much of ML is optimization
Linear Classification Maximum Likelihood

K-Means

argmax
✓

nX

i=1

log p✓(xi)

arg min
µ1,µ2,. . . ,µk

J(µ) =
kX

j=1

X

i2Cj

||xi � µj ||2

argmin
w

nX

i=1

||w||2 + C
nX

i=1

⇠i

s.t. 1� yix
T
i w  ⇠i

⇠i � 0

3

Stochastic optimization

• Goal of machine learning :
– Minimize expected loss

given samples

• This is Stochastic Optimization
– Assume loss function is convex

4

Batch (sub)gradient descent for ML

• Process all examples together in each step

• Entire training set examined at each step
• Very slow when n is very large

5

Stochastic (sub)gradient descent

• “Optimize” one example at a time
• Choose examples randomly (or reorder and

choose in order)
– Learning representative of example distribution

6

Stochastic (sub)gradient descent

• Equivalent to online learning (the weight vector w
changes with every example)

• Convergence guaranteed for convex functions (to local
minimum)

7

Stochastic gradient descent

Stochastic gradient descent

SGD convergence

SGD convergence proof

SGD convergence proof

SGD convergence

Ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

Iterations / updates

SGD - Issues

• Convergence very sensitive to learning rate
() (oscillations near solution due to probabilistic
nature of sampling)
– Might need to decrease with time to ensure the

algorithm converges eventually

• Basically – SGD good for machine learning
with large data sets!

14

Mini-batch SGD
• Stochastic – 1 example per iteration
• Batch – All the examples!
• Mini-batch SGD:

– Sample m examples at each step and perform SGD
on them

• Allows for parallelization, but choice of m
based on heuristics

15

Example: Text categorization
• Example by Leon Bottou:

– Reuters RCV1 document corpus
• Predict a category of a document

– One vs. the rest classification
– n = 781,000 training examples (documents)
– 23,000 test examples
– d = 50,000 features

• One feature per word
• Remove stop-words
• Remove low frequency words

Example: Text categorization
• Questions:

– (1) Is SGD successful at minimizing f(w,b)?
– (2) How quickly does SGD find the min of f(w,b)?
– (3) What is the error on a test set?

17

Training time Value of f(w,b) Test error
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

Optimization “Accuracy”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality
SGD-SVM is super fast

SGD vs. Batch Conjugate Gradient
• SGD on full dataset vs. Conjugate Gradient on a

sample of n training examples

Bottom line: Doing a simple (but fast) SGD update many times is better than
doing a complicated (but slow) CG update a few times

Practical Considerations
• Need to choose learning rate h and t0

• Leon suggests:
– Choose t0 so that the expected initial updates are

comparable with the expected size of the weights
– Choose h:

• Select a small subsample
• Try various rates h (e.g., 10, 1, 0.1, 0.01, …)
• Pick the one that most reduces the cost
• Use h for next 100k iterations on the full dataset

÷
ø
ö

ç
è
æ

¶
¶

+
+

-¬+ w
yxLCw

tt
ww ii

t
t

tt
),(

0
1

h

Practical Considerations
• Sparse Linear SVM:

– Feature vector xi is sparse (contains many zeros)
• Do not do: xi = [0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,…]
• But represent xi as a sparse vector xi=[(4,1), (9,5), …]

– Can we do the SGD update more efficiently?

– Approximated in 2 steps:
cheap: xi is sparse and so few

coordinates j of w will be updated
expensive: w is not sparse, all

coordinates need to be updated

÷
ø
ö

ç
è
æ

¶
¶

+-¬
w
yxLCwww ii),(h

w
yxLCww ii

¶
¶

-¬
),(h

)1(h-¬ ww

Practical Considerations

w
yxLCww ii

¶
¶

-¬
),(h

)1(h-¬ ww

Two step update procedure:

(1)

(2)

Practical Considerations
• Stopping criteria:

How many iterations of SGD?
– Early stopping with cross validation

• Create a validation set
• Monitor cost function on the validation set
• Stop when loss stops decreasing

– Early stopping
• Extract two disjoint subsamples A and B of training data
• Train on A, stop by validating on B
• Number of epochs is an estimate of k
• Train for k epochs on the full dataset

Stochastic gradient descent

• Idea: Perform a parameter update for each
training example x(i) and label y(i)

• Update: ! = ! - " ∙ ∇! J (!; x(i), y(i))

• Performs redundant computations for large datasets

Momentum gradient descent

• Idea: Overcome ravine oscillations by momentum

Update:

•vt = ! vt-1 + " ∙ ∇$ J($)

•$ = $ - vt

SGD

SGD with
momentum

Nesterov accelerated gradient

• Ideas:
1. Big jump in the direction of the
previous accumulated gradient &
measure the gradient

2. Then make a correction.

• Update:

•vt = ! vt-1 + " ∙ ∇$J($-! vt-1)

•$ = $ - vt

RMSprop
• Idea: Use the second moment of gradient vector to

estimate the magnitude of update in a given direction.

Update:

•E[g2]t = 0.9 E[g2]t-1 + 0.1 gt2

•!"t = - # / √ (E[g2]t + ϵ) ⊙ gt

ADAM (Adaptive moment)

• Idea: In addition to storing an exponentially decaying average of
past squared gradients like RMSprop, Adam also keeps an
exponentially decaying average of past gradients.

•

Enhancements comparison

30

References:
• SGD proof by Yuri Nesterov.

• MMDS http://www.mmds.org/

• Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

• Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-
and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

Motivation
• Supervised Learning needs a lot of labelled data.
• Finding labelled examples is
– Difficult – Rumour or not ?
– Expensive – Imagenet cost.

• Humans don’t always need handholding.
– Trained mind finds it easier to learn related concepts.

• Learning is a continuous process, adapting to
changed scenario.

Salvation
• Use unlabeled examples from the same

problem / dataset :
– Semi-supervised learning
– Active learning

• Use labelled examples from other / related
domains / datasets:
– Transfer learning or Multi-task learning.

• Have access to an environment where one can
take some actions and observe rewards :
– Reinforcement learning.

Reinforcement learning
• Access to environment, gives freedom to

“explore” along the boundaries – driving off
the road.

• More “difficult” than standard supervised
learning,
– Non-stationarity (Ad-serving on budget)
– Sequential decision making (planning)
– Interactive scenarios (chatbot).

Active Learning

Semi-supervised + Active learning

• Early methods for semi-supervised learning:
– Transductive / Inductive
– Graph – label propagation vs vector space –

SSSVM.
• Active learning:
– 2 recent approaches – Generalization error based

and model weight distinctiveness based.
• A new direction: estimating accuracy from

unlabeled data.
• Theory: When does label propagation fail ?

Active Learning
• The key idea behind active learning is that a machine learning

algorithm can achieve greater accuracy with fewer training labels
if it is allowed to choose the data from which it learns. An active
learner may pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g., a human annotator).

[Settles, 2012]

• “what is the optimal way to choose data points to label such that
the highest accuracy can be obtained given a fixed labeling

budget.”
[Sener & Savarese, 2018]

List of papers

– Active Learning for Convolutional Neural Networks, ICLR 2018
• Select the optimal set of unlabeled data to annotate within a limited budget

– Cost-effective training of deep CNNs with active model adaptation, KDD
2018
• Perform pre-training using a similar task

2. Cost-effective training of Deep
CNNs actively• Adapting a pretrained model to a new task
• Proposes a general framework of active model

adaptation for deep CNNs
• Actively querying data points to label

• Proposes a novel criterion for selection which best
optimizes the feature representation along with
the classifier performance

• Proposes an algorithm that can actively sellect
instances to achieve better feature representation

Huang et. al, “Cost-effective Training of Deep CNNs with Active Model Adaptation”, KDD 2018

2. Cost-effective training of Deep
CNNs actively

Huang et. al, “Cost-effective Training of Deep CNNs with Active Model Adaptation”, KDD 2018

Multitask Learning

Multi-task & Transfer learning

• Transfer learning: Already learned model is
“adapted” to new task.

• Multi-task learning: The models for multiple
tasks are learned simultaneously. Overall
performance improves.

Introduction & Motivation
● Machine Learning tasks

○ train a single model or an ensemble of models
○ fine -tune / tweak the models

● By being focussed on one task, we ignore information coming
from related tasks, that may be helpful

● By sharing representations between related tasks, we can
enable our model to generalize better on our original task

● “MTL improves generalization by leveraging the domain-
specific information contained in the training signals of related
tasks” [Caruana et.al] 1

[1]Multitask learning: A knowledge-based source of inductive bias, ICML 1993

Introduction
Formal definition :
Given m learning tasks {Ti} 1<=i<=m where all the tasks or a subset of them
are related, multi-task learning aims to help improve the learning of a
model for Ti by using the knowledge contained in all or some of the m
tasks

● When different tasks share the same training data samples, MTL
reduces to multi-label learning or multi-output regression

● Homogeneous-feature MTL è different tasks lie in the same feature
space

● Heterogeneous-feature MTL è different tasks lie in different feature
space

● Heterogeneous MTL è different types of supervised tasks

Introduction
● When to share

à make choices between single-task & multi-task models

à Currently such decision is made by human experts (model selection)

● What to share à feature, instance, parameter

● Feature sharing : learn common features among different tasks as a way to
share knowledge

à based on shallow or deep models

à learned common feature representation can be a subset or a
transformation of the original feature representation

Introduction
● Instance based : identify useful data instances

in a task for other tasks and then shares
knowledge via the identified instances

● Parameter-based MTL : uses model parameters
in a task to help learn model parameters in
other tasks
à lowrank approach
à task clustering approach
à task relation learning approach
à decomposition approach

Introduction
● Lowrank : interprets the relatedness of multiple tasks as the

low rankness of the parameter matrix of these tasks

● Task clustering approach : assumes that all the tasks form a
few clusters where tasks in a cluster are related to each
other

● Task relation learning : learn quantitative relations between
tasks from data automatically

● Decomposition approach : decomposes the model
parameters of all the tasks into two or more components,
which are penalized by different regularizers

Hard Parameter Sharing
● sharing the hidden layers between

all tasks, while keeping several
task-specific output layers

● Reduces the risk of overfitting.
○ The more tasks we are

learning simultaneously
⇒ find a representation that
captures all of the tasks
⇒ less is our chance of
overfitting on our original
task.

Soft Parameter Sharing
● each task has its own model with its own parameters.
● The distance between the parameters of the model are regularized in order to

encourage the parameters to be similar.

Reinforcement Learning

List of landmark papers

• Deep RL:
• DQN paper (2015):

http://www.nature.com/articles/nature14236
• A3C paper (2016):

https://arxiv.org/abs/1602.01783
• AlphaGo paper (2016):

http://www.nature.com/articles/nature16961

• Imitation Learning:
• End to end learning for self-driving cars, Bojarski

et al, 2016

http://www.nature.com/articles/nature14236
https://arxiv.org/abs/1602.01783
http://www.nature.com/articles/nature16961
https://arxiv.org/abs/1604.07316

Value Function

Deep RL

• Use deep neural networks to represent
• Value function
• Policy
• Model

• Optimize loss function by stochastic gradient
descent

Deep RL in Atari

Value-based Deep RL

• An example is Deep Q-Networks (DQN)
• Q-Learning with experience replay
• To remove correlations, build dataset from agent’s

own experience
• Sample experiences from dataset and apply update
• To deal with non-stationarity, target parameters are

held fixed
• DQN paper:

http://www.nature.com/articles/nature14236

http://www.nature.com/articles/nature14236

DQN in Atari
• End-to-end learning of values Q(s; a) from pixels s
• Input state s is stack of raw pixels from last 4 frames
• Output is Q(s; a) for 18 joystick/button positions
• Reward is change in score for that step

•Thanks

