CS60020: Foundations of
Algorithm Design and Machine
Learning

In this Lecture:

e OQutline:
— Stochastic gradient descent (SGD)
— SGD Convergence
— Minibatch and Distributed SGD
— Practical considerations
— Advancements from SGD.

Much of ML is optimization

Linear Classification Maximum Likelihood
n mn
argminz ||w]|? + C’Z&
w
i=1 i=1 arg max Z log po(x;)
st 1 — gzl w <& i=1

& >0

K-Means

H1,12,. -

k
arg min Z Z ||2; — Mj||2
j=1lieC}

Stochastic optimization

* Goal of machine learning :
— Minimize expected loss

mhin L(h) = E [loss(h(x),y)]

given samples (z;,¥y;) i =1,2..m

* This is Stochastic Optimization

— Assume loss function is convex

Batch (sub)gradient descent for ML

* Process all examples together in each step

n

wk D) gy ® _ (1 Z 8L(w,a:z',yi)>

n 4 ow
1=1

where L is the regularized loss function

* Entire training set examined at each step

* Very slow when nis very large

Stochastic (sub)gradient descent

 “Optimize” one example at a time

* Choose examples randomly (or reorder and
choose in order)
— Learning representative of example distribution
for 2 =1 to n:

8[1(’(1], Ly, y’L)
ow

where L is the regularized loss function

Stochastic (sub)gradient descent

for 2 =1 to n:
aL(waxwyZ>

ow

where L is the regularized loss function

e Equivalent to online learning (the weight vector w
changes with every example)

* Convergence guaranteed for convex functions (to local
minimum)

Stochastic gradient descent

» Given dataset D = {(x1, V1), -, (X1, Yim)}
* Loss function: L(0,D) = %Z{'V:ll(g; Xi, Vi)

* For linear models: 1(6; x;,y;) = L(y;, 9T¢(xi))

* Assumption D is drawn IID from some distribution
P.

* Problem:
mgin L(6,D)

Stochastic gradient descent

* |nput: D
 Qutput: 6

Algorithm:
e |nitialize 6°
e Fort=1,..,T
0t = 0" —nVpl(ye, 0" P (x1))
~ Z'{:l Tltgt
6 = :
ZZ=1 Nt

SGD convergence

* Expected loss: s(8) = Ep[l(y,0T ¢ (x)]
Optimal Expected loss: s* = s(0%) = mgin s(0)

Convergence:
R? + 12 ¥ {_1nf

2 Z’ll;zl Nt

Egls(8)] —s* <

Where: R = ||0° — 6*||
L = maxVi(y, 0T ¢(x))

SGD convergence proof

Definery = ||0¢ — 6*|| and g, = Vol(y:, 0T Pp(xr))
ré =18 +nellgell? — 2ne (08 — 0)7 g,

Taking expectation w.r.t P, 0 and using s* — s(8%) >
gl (6* —8Y), we get:

E?[Tt2+1 —1f] S EL* + 2n(s™ — Egls(69])

Taking sumovert = 1,...,T and using

T—1 T—-1
Eglré —rg] < L? Z ng + 2 Z ne(s* — Eg[s(89)])
t=0 t=0

SGD convergence proof

e Using copv$X|ty of s:

(2 Ut)Ee [5(0)] < Z 1es(0)]

t=0

e Substituting in the expre55|on frTon11 previous slide:

Eglré, — 15l < L? Z N + 2 Z ne(s* — Egls(@)])
t=0 t=0

* Rearranging the terms proves the result.

SGD convergence

-5
)
=
©
> B
c
i)
(3]
c r
S
g—
PR Wi bl
S g
o) 9} j‘m_‘_m_._ |
O

-10
0

1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500

lterations / updates

SGD - Issues

* Convergence very sensitive to learning rate

(1) (oscillations near solution due to probabilistic
nature of sampling)

— Might need to decrease with time to ensure the
algorithm converges eventually

* Basically —SGD good for machine learning
with large data sets!

14

Mini-batch SGD

e Stochastic—1 example per iteration
e Batch — All the examples!
* Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

* Allows for parallelization, but choice of m
based on heuristics

15

Example: Text categorization

 Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n =781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words

 Remove low frequency words

Example: Text categorization

e Questions:

— (1) Is SGD successful at minimizing f(w,b)?
— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

17

Optimization “Accuracy”

Training time (secs)
SGD SVM
100 1
SGD
50 ¢+ _—
: . Conventional
LibLinear SVM

L ey e ey
041 001 0001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Optimization quality: | f(w,b) — f (wort bort) |

For optimizing f(w,b) within reasonable quality
SGD-SVM is super fast

SGD vs. Batch Conjugate Gradient

* SGD on full dataset vs. Conjugate Gradient on a

sample of n training examples Theory says: Gradient descent
— converges in linear time k. Conjugate

Average Test Loss gradient converge¢/in Vk.

04 ¢ ' . ' k... condition number

n=10000 | n=100000 | n=781265

035 n=30000 n=300000

03+ stochastic
0.25 ¢

0.2 +
015 |

01 t t t - } |

0.001 0.01 0.1 1 10 100 1000

Time (seconds)

Bottom line: Doing a simple (but fast) SGD update many times is better than
doing a complicated (but slow) CG update a few times

Practical Considerations

* Need to choose learning rate n and t,

Wt+1 < Wt T / ntt (Wt + C 8L(axljyl)j
+1, W

* Leon suggests:

— Choose t,so that the expected initial updates are
comparable with the expected size of the weights
— Choosen:
e Select a small subsample
* Try various rates n (e.g., 10, 1, 0.1, 0.01, ...)
* Pick the one that most reduces the cost
* Use n for next 100k iterations on the full dataset

Practical Considerations
* Sparse Linear SVM:

— Feature vector x; is sparse (contains many zeros)
 Donotdo: x;=1[0,0,0,1,0,0,0,0,5,0,0,0,0,0,0,...]

* But represent x;as a sparse vector x;=[(4,1), (9,9), ...

— Can we do the SGD update more efficiently?
oM

R | —
Conee)

— Approximated in 2 steps:

L(x.,y. X
w<—w—77Ca (x;,,) | chea!a. X; is sparse and so few
ow coordinates j of w will be updated
expensive: w is not sparse, all

w<w(l=17) coordinates need to be updated

Practical Considerations

= Solutionl:w=s"-7v

— Represent vector w as the Two step update procedure:
product of scalar s and vectc?r v (1)W<_W_77C8L(xi,yi)
— Then the update procedure is: ow

. (2) we<w(l-n)
. (1)17 — v _nCaL(xerJ

ow
* (2)s=s(1—-m)
* Solution 2:
— Perform only step (1) for each training example

— Perform step (2) with lower frequency
and higher n

Practical Considerations

* Stopping criteria:
How many iterations of SGD?

— Early stopping with cross validation
* Create a validation set
* Monitor cost function on the validation set
* Stop when loss stops decreasing

— Early stopping

Extract two disjoint subsamples A and B of training data
Train on A, stop by validating on B

Number of epochs is an estimate of k

Train for k epochs on the full dataset

Stochastic gradient descent

- ldea: Perform a parameter update for each
training example x(i) and label y(i)

. Update: &= 6-7- Vad (6 x(i), y(i))

- Performs redundant computations for large datasets

Momentum gradient descent

. ldea: Overcome ravine oscillations by momentum

SGD

SGD with
momentum

Update:
wvt=y v+ - Ved(6)

4 =60-V

A

A

Y Y

Nesterov accelerated gradient

- ldeas:
1. Big jump in the direction of the

previous accumulated gradient &
measure the gradient

2. Then make a correction.

Update:

Vt=y Vi1 + 1 - Vad(0-y Vi-1)

0 =06 -Vt

RMSprop

* ldea: Use the second moment of gradient vector to
estimate the magnitude of update in a given direction.

Update:

‘E[g2]: = 0.9 E[g2]:1+ 0.1 ge2

A0t= -1 [V (E[g2li+ €) O gt

ADAM (Adaptive moment)

- ldea: In addition to storing an exponentially decaying average of
past squared gradients like RMSprop, Adam also keeps an
exponentially decaying average of past gradients.

Updates:

« my=6m,,+(1-6,) g,
o Vi=6,v 1+ (1-6;) g
« my=m/(1- 6,

e Vi=v¢/(1-86,Y

. 19t+1=19t_(’7/(\/‘7_t+5))mt

Enhancements comparison

Comparing Model Accuracy

0.75

accuracy om validation set

— Constant Ir

e Time-based

— Step decay

- Exponential decay
— Adagrad

— Adadelta

e RMSprop

e Adam

0 2 40 60 80 100
epochs

References:

e SGD proof by Yuri Nesterov.

e MMDS http://www.mmds.org/

* Blog of Sebastian Ruder http://ruder.io/optimizing-gradient-descent/

* Learning rate comparison https://towardsdatascience.com/learning-rate-schedules-

and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d 1

30

http://www.mmds.org/
http://ruder.io/optimizing-gradient-descent/
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1

Motivation

Supervised Learning needs a lot of labelled data.

Finding labelled examples is
— Difficult = Rumour or not ?
— Expensive — Imagenet cost.

Humans don’t always need handholding.
— Trained mind finds it easier to learn related concepts.

Learning is a continuous process, adapting to
changed scenario.

Salvation

* Use unlabeled examples from the same
problem / dataset :

— Semi-supervised learning
— Active learning

* Use labelled examples from other / related
domains / datasets:
— Transfer learning or Multi-task learning.

e Have access to an environment where one can
take some actions and observe rewards :

— Reinforcement learning.

Reinforcement learning

* Access to environment, gives freedom to

“explore” along the boundaries — driving off
the road.

* More “difficult” than standard supervised
learning,
— Non-stationarity (Ad-serving on budget)
— Sequential decision making (planning)
— Interactive scenarios (chatbot).

Active Learning

Semi-supervised + Active learning

Early methods for semi-supervised learning:
— Transductive / Inductive

— Graph — label propagation vs vector space —
SSSVM.

Active learning:

— 2 recent approaches — Generalization error based
and model weight distinctiveness based.

A new direction: estimating accuracy from
unlabeled data.

Theory: When does label propagation fail ?

Active Learning

* The key idea behind active learning is that a machine learning
algorithm can achieve greater accuracy with fewer training labels
if it is allowed to choose the data from which it learns. An active
learner may pose queries, usually in the form of unlabeled data
instances to be labeled by an oracle (e.g., a human annotator).

[Settles, 2012]

* “what is the optimal way to choose data points to label such that
the highest accuracy can be obtained given a fixed labeling
budget.”

[Sener & Savarese, 2018]

* Select the optimal set of unlabeled data to annotate within a limited budget

* Perform pre-training using a similar task

2. Cost-effective training of Deep
CMNﬁtiagiﬁiyelyained model to a new task

Proposes a general framework of active model

adaptation for deep CNNs
. Actively querying data points to label

Proposes a novel criterion for selection which best

optimizes the feature representation along with

Hung ez 3. “Cor @ TGRS SH O P RITOI RGN R 110

Proposes an algorithm that can actively sellect

metranrcac A arhiovie hatrtrar fantiira ranracantatiAn

2. Cost-effective training of Deep

Py = [py, - Pg’]

CH

target
image x

v

Uncertainty(x)
Kr

=-), npilogpi

i=1

Si—SE =S8

center images
C = [Cl; ...;CK]

- . pre-trained
‘ : ' model

Huang et. al, “Cost-effective Training of Deep CNNs with Active Model Adaptation”, KDD 2018

J

\ 4

Distinctiveness(x)
= ©(5{~2, 54-)

= [p1, -, Pk]

Multitask Learning

Multi-task & Transfer learning

* Transfer learning: Already learned model is
“adapted” to new task.

* Multi-task learning: The models for multiple
tasks are learned simultaneously. Overall
performance improves.

Introduction & Motivation

« Machine Learning tasks

o train a single model or an ensemble of models
o fine -tune / tweak the models

e By being focussed on one task, we ignore information coming
from related tasks, that may be helpful

e By sharing representations between related tasks, we can
enable our model to generalize better on our original task

e “MTL improves generalization by leveraging the domain-
specific information contained in the training signals of related
tasks” [Caruana et.al] 1

[1]Multitask learning: A knowledge-based source of inductive bias, ICML 1993

Introduction

Formal definition :

Given m learning tasks {T.} ;._...,, Where all the tasks or a subset of them
are related, multi-task learning aims to help improve the learning of a
model for T, by using the knowledge contained in all or some of the m
tasks

e When different tasks share the same training data samples, MTL
reduces to multi-label learning or multi-output regression

e Homogeneous-feature MTL = different tasks lie in the same feature
space

e Heterogeneous-feature MTL = different tasks lie in different feature
space

e Heterogeneous MTL = different types of supervised tasks

Introduction

e When to share

- make choices between single-task & multi-task models
— Currently such decision is made by human experts (model selection)
e What to share - feature, instance, parameter

e Feature sharing : learn common features among different tasks as a way to
share knowledge

- based on shallow or deep models

- learned common feature representation can be a subset or a
transformation of the original feature representation

Introduction

« Instance based : identify useful data instances
in a task for other tasks and then shares
knowledge via the identified instances

« Parameter-based MTL : uses model parameters
in a task to help learn model parameters in
other tasks
- lowrank approach
—> task clustering approach

- task relation learning approach
- decomposition approach

Introduction

Lowrank : interprets the relatedness of multiple tasks as the
low rankness of the parameter matrix of these tasks

Task clustering approach : assumes that all the tasks form a
few clusters where tasks in a cluster are related to each
other

Task relation learning : learn quantitative relations between
tasks from data automatically

Decomposition approach : decomposes the model
parameters of all the tasks into two or more components,
which are penalized by different regularizers

Hard Parameter Sharing

e sharing the hidden layers between
Task Al |Task Bl |Task C| Task- all tasks, while keeping several
‘ specific task-specific output layers
layers

. e Reduces the risk of overfitting.
o The more tasks we are
learning simultaneously
= find a representation that
I captures all of the tasks
Shared = less is our chance of
overfitting on our original
‘ layers task.

Soft Parameter Sharing

e each task has its own model with its own parameters.
e The distance between the parameters of the model are regularized in order to

encourage the parameters to be similar.

Task A
f

Task B

f

i

i

Task C

v

i

i

A4

Constrained
layers

Reinforcement Learning

List of landmark papers

* Deep RL:

 DQN paper (2015):
http://www.nature.com/articles/nature14236

e A3C paper (2016):
https://arxiv.org/abs/1602.01783

* AlphaGo paper (2016):
http://www.nature.com/articles/nature16961

* Imitation Learning:

* End to end learning for self-driving cars, Bojarski
et al, 2016

http://www.nature.com/articles/nature14236
https://arxiv.org/abs/1602.01783
http://www.nature.com/articles/nature16961
https://arxiv.org/abs/1604.07316

What is Reinforcement Learning?

e Agent-oriented learning—Ilearning by interacting with an
environment to achieve a goal

more realistic and ambitious than other kinds of machine
learning

e Learning by trial and error, with only delayed evaluative
feedback (reward)

the kind of machine learning most like natural learning

learning that can tell for itself when it is right or wrong

e The beginnings of a science of mind that is neither natural
science nor applications technology

Computer Science

' Neuroscience

Reward

Engineering

Psychology

David Silver 2015

The RL Interface

Agent
A
| State, Reward, Action,
Stimulus, Gain, Payoff, Response,
Situation Cost Control

Environment
(world)

« Environment may be unknown, nonlinear, stochastic and complex
 Agent learns a policy mapping states to actions

Seeking to maximize its cumulative reward in the long run

Some RL Successes

Learned the world’s best player of Backgammon (Tesauro 1995) ~p

Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al
2006+)

Widely used in the placement and selection of advertisements and
pages on the web (e.g., A-B tests)

Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)
Achieved human-level performance on Atari games from pixel-level
visual input, in conjunction with deep learning (Google Deepmind

2015)

In all these cases, performance was better than could be obtained
by any other method, and was obtained without human instruction

Example: TD-Gammon Tesauro, 1992-1995

estimated state value
(= prob of winning)

Action selection
by a shallow search

M O L 2 € PG 9 /L 8 6 0L LLZLELYLGL OLZLGL BLOT LZZTET YT ST 4edgd

Start with a random Network

Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

Signature challenges of RL

e Evaluative feedback (reward)

e Sequentiality, delayed consequences

e Need for trial and error, to explore as well as exploit
¢ Non-stationarity

e The fleeting nature of time and online data

Howard, 1960

The Environment:
A Finite Markov Decision Process (MDP)

@

Discretetime t =1,2,3, ...
A finite set of states

A finite set of actions 100%

+40,80%

A finite set of rewards

+40,20%

+20,80%

Life is a trajectory:

R Sta At7 Rt‘—l—la St—l—la At—I—lv Rt—|—27 St—l—27 s
With arbitrary Markov (stochastic, state-dependent) dynamics:

p(r,s'|s,a) = Prob[RtH =r,S41=5 |5 =5A = a]

Policies oY

A —— 2

B— 1

e Deterministic policy

a=rml(s
) The number of
deterministic policies
IS exponential in the
number of states

e An agent following a policy

Ar = (5;)

e Informally the agent’s goal is to choose each action so as to
maximize the discounted sum of future rewards,

to choose each A; to maximize Riy1 + YRij2 + Y°Rey3 + -

e We are searching for a policy

Example MDP: Gridworld

An MDP is defined by:

= Set of states §

= Set of actions 4

= Transition function P(s’

s, a)

= Reward function R(s, a, s’)

= Startstate s,

t=0

= Discount factor y

« Horizon H TC.

Value Function

V*(S) = max [Z’YtR(St:at: 8t+1) | T,50 = S

m

Value Iteration

Algorithm:
Start with V7 (s) =0 foralls.
Fork=1, ..., H:

For all states s in S:

Vi (s) « ma.xz P(s'[s,a) (R(s,a,s") +~+V,_(s"))

7L(s) « arg ma.xz P(s'|s,a) (R(s,a,s") +yV;_1(s"))

This is called a value update or Bellman update/back-up

Policy Evaluation

= Recall value iteration:
Vii(s) < ma,xz P(s'|s,a) (R(s,a,s") +yV,_1(s"))
a
8/
= Policy evaluation for a given 7(s) :

VT (s) Z P(s'|s,m(s))(R(s,7(s),s") +vVi"_,(s))

At convergence:

Vs VT(s) « Z P(s'|s, m(s))(R(s,m(s),s") +yV7(s))

Policy Iteration

One iteration of policy iteration:

m Policy evaluation for current policy 7Tk :

= Iterate until convergence

VK (8) < Z P(s'|s, mx(s)) [R(s,m(s),s") + V™ (s)]

s Policy improvement: find the best action according to one-step
look-ahead

Tr41(8) < arg max Z P(s'|s,a) [R(s,a,s") + V™ (s")]
l _O,"

= Repeat until policy converges

= At convergence: optimal policy; and converges faster than value iteration under some conditions

1. Initialization value function
v(s) € R and 7(s) € A(s) arbitrarily for all s € 8

|
Initialize array v arbitrarilyf(e.g., v(s) = 0 for all s € 8T)
2. Policy Evaluation

Repeat Repeat
A« 0 A+0
For each s € 8: For each s € 8:
temp v(s) temp < v(s)
v(s) « Yoo p(s'|s,m(s)) [r(s, 7(s),s") + 'yv(s')] v(s) < max, y_, p(s'|s,a)[r(s,a,s") +yv(s)]
A + max(A, |[temp — v(s)|) A + max(A, [temp — v(s)|)
until A < 6 (a small positive number) until A < 6 (a small positive number)

Output a deterministic policy, . such that

3. Policy Improvement

policy-stable < true 7(s) = argmax, y_, p(s'|s,a) [r(s, a,s’) + 'yv(s’)]
For each s € 8:
temp < 7(s) Figure 4.5: Value iteration. R
7(s) «— argmax, y_ . p(s'|s. a) [r(s, a,s') + 'yv(s’)] one policy

If temp # 7(s), then policy-stable + false

If policy-stable, then stop and return v and 7; else go to 2 QPQQI@ (gxtrggt»

Figure 4.3: Policy iteration (using iterative policy evaluation) for v,. This optimal value
algorithm has a subtle bug, in that it may never terminate if the policy con- I
tinually switches between two or more policies that are equally good. The bug
can be fixed by adding additional flags, but it makes the pseudocode so ugly
that it is not worth it. :-)

function

Action-value functions

e An action-value function says how good it is to be in a state,
take an action, and thereafter follow a policy:

r(s,a) = E[Rt+1 +YRes2 + Y Repz + -+ | Se=s, At:aaAt—l-l:ooNT"]

Action-value function
for the optimal policy and y=0.9

State Action Value

A 1 130.39 0

A 2 13377 e

B 1 166.23 e
B 2 146.23 2050%

Q-Values

Q'(s, a) = expected utility starting in s, taking action a, and (thereafter)
acting optimally

Bellman Equation:
Q*(s,a) = Z P(s'|s,a)(R(s,a,s") + ymax Q*(s',a’))
s’ ¢
Q-Value Iteration:

Qi (5,) < 30 P(s'ls,a)(R(s,a,) +y max Qi (s', "))

Optimal policies

e Apolicy 7« is optimal if it maximizes the action-value function:
gr. (s, a) = max g-(s,a) = g«(s, a)

e Thus all optimal policies share the same optimal value function

e Given the optimal value function, it is easy to act optimally:

T«(S) = arg max q«(s, a) “greedification”
a

e We say that the optimal policy is greedy with respect to the
optimal value function

e There is always at least one deterministic optimal policy

Q-learning, the simplest RL algorithm

1. Initialize an array Q(s, a) arbitrarily

2.Choose actions in any way, perhaps based on @, such that all
actions are taken in all states (infinitely often in the limit)

3.0On each time step, change one element of the array:

AQ(St, Ar) = aRey1 +7max Q(Se41,3) - Q(St, Ar)

4. If desired, reduce the step-size parameter a over time

e Theorem: For appropriate choice of 4, () converges to g, and
its greedy policy to an optimal policy 7. (Watkins & Dayan 1992)

e This is kind of amazing — learning long-term optimal behavior
without any model of the environment, for arbitrary MDPs!

Policy improvement theorem

e Given the value function for any policy

g-(s, a) for all s, a
e It can always be greedified to obtain a better policy.
n'(s) = arg max g-(s, a) (7 is not unique)
e where better means:

Gr'(5,a) > qr(s,a) foralls,a

e Wwith equality only if both policies are optimal

The dance of policy and value (Policy lteration)

Any policy evaluates to a unique value

T
W function (soon we will see how to learn it)
dm1
AM which can be greedified to produce a
D better policy

—_— evaluate
>
y > That in turn evaluates to a value function
™ : : »
3 evaluate which can in turn be greedified...
N
e@(‘;\’\\J
= Each policy is strictly better than the
. previous, until eventually both are optimal
A/ . .
T —6val There are no local optima
\g q*
ée

The dance converges in a finite number
Tx of steps, usually very few

The dance is very robust

e to initial conditions

e to delayed and asynchronous updating, as in parallel and distributed
implementations

e toincomplete evaluation and greedification
updating only some states but not others

updating only part of the way
e to randomization and noise

e In particular, it works if only a single state is updated at a time by a
random amount that is only correct in expectation

The Explore/Exploit dilemma

e You can't do the action that you think is best all the time
because you will miss out big—forever—if you are wrong

to find the real best action, you must explore them all...an
Infinite number of times!

e You also can't explore all the time

because then you would never get any advantage of your
learning

e Thus you must both explore and exploit, but neither to excess.
What is the right balance?

How did Q-learning escape the dilemma?

2.Choose actions in any way, perhaps based on @, such that all
actions are taken in all states (infinitely often in the limit)

Deep RL

* Use deep neural networks to represent
* Value function
* Policy
* Model

* Optimize loss function by stochastic gradient
descent

Deep RL in Atari

e) -V\ ~
Az N\ \
/T \ F \ %
/« =, y v\
4 b action
' (— ,\\; _
f %\ LA /

a,
A4 ¥
&4
reward r,

Value-based Deep RL

* An example is Deep Q-Networks (DQN)

* Q-Learning with experience replay

* To remove correlations, build dataset from agent’s
owhn experience

* Sample experiences from dataset and apply update

* To deal with non-stationarity, target parameters are
held fixed

* DQN paper:
http://www.nature.com/articles/nature14236

http://www.nature.com/articles/nature14236

DQN in Atari

* End-to-end learning of values Q(s; a) from pixels s

* |Input state s is stack of raw pixels from last 4 frames
* Qutputis Q(s; a) for 18 joystick/button positions
 Reward is change in score for that step

32 4x4 filcers 256 hidden units Fully-connected linear
output layer
1 6 8x8 filters
4x84x84
I~
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

RL Algorithms Landscape

Policy Optimization Dynamic Programming

modified
policy iteration
DFO / Evolution Policy Gradients Policy Iteration Value Iteration

\ Q-Learning

Actor-Critic
Methods

*Thanks

