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Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E Í V ´ V of edges.
In an undirected graph G = (V, E), the edge  
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(V 2). Moreover,  
if G is connected, then | E | ³ | V | – 1, which  
implies that lg |E | = Q(lgV).
(Review CLRS, Appendix B.)
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Adjacency-matrix  
representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.
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Adjacency-matrix  
representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where  
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]  
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.

22 11

33 44

November 9, 2005

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Q(V 2) storage
Þ dense
representation.
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Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]  
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44
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Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]  
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).  
For digraphs, |Adj[v] | = out-degree(v).



Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]  
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44
For undirected graphs, |Adj[v] | = degree(v).  
For digraphs, |Adj[v] | = out-degree(v).
Handshaking Lemma: åvÎV Adj[v] = 2 |E| for 
undirected  graphs Þ adjacency lists use Q(V + E) 
storage — a sparse representation (for either type 
of graph).
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Minimum spanning trees

Input: A connected, undirected graph G = (V, E)  
with weight function w : E ® R.
• For simplicity, assume that all edge weights are  

distinct. (CLRS covers the general case.)
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Minimum spanning trees

w(T )= åw(u,v) .
(u,v)ÎT

Input: A connected, undirected graph G = (V, E)  
with weight function w : E ® R.
• For simplicity, assume that all edge weights are  

distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects  
all vertices — of minimum weight:
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Example of MST
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Example of MST
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Optimal substructure
MST T:

(Other edges of G
are not shown.)
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Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.
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Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.
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Remove any edge (u, v) Î T. Then, T is partitioned  
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)



T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)

Remove any edge (u, v) Î T. Then, T is partitioned  
into two subtrees T1 and T2.
Theorem. The subtree T1 is an MST of G1 = (V1, E1),  
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = {(x, y) Î E : x, y Î V1 }.

Similarly for T2.
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Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1¢were a lower-weight spanning tree than T1 for
G1, then T ¢= {(u, v)} È T1¢È T2 would bea  
lower-weight spanning tree than T for G.
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Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1¢were a lower-weight spanning tree than T1 for
G1, then T ¢= {(u, v)} È T1¢È T2 would bea  
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.



Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).

If T1¢were a lower-weight spanning tree than T1 for

G1, then T ¢= {(u, v)} È T1¢È T2 would bea  
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

•Yes.

Great, then dynamic programming may work!

•Yes, but MST exhibits another powerful property  
which leads to an even more efficient algorithm.
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Hallmark for “greedy”  
algorithms

Greedy-choice property  
A locally optimal choice  

is globally optimal.
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Hallmark for “greedy”  
algorithms

Greedy-choice property  
A locally optimal choice  

is globally optimal.

Theorem. Let T be the MST of G = (V, E),  
and let A Í V. Suppose that (u, v) Î E is the  
least-weight edge connecting A to V – A.  
Then, (u, v) Î T.
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Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge  
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v
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Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge  
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.
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Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge  
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that  
connects a vertex in A to a vertex in V – A.
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Proof of theorem
Proof. Suppose (u, v) Ï T. Cut and paste.

u
(u, v) = least-weight edge  
connecting A to V – A

vT ¢:

Î A
Î V – A

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that  
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.
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Kruskal’s Algorithm
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Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key  
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
⊳DECREASE-KEYthen key[v] ¬ w(u, v)

p[v] ¬ u
At the end, {(v, p[v])} forms the MST.
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm

Î A
Î V – A
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Example of Prim’s algorithm
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Î V – A
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Example of Prim’s algorithm
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Example of Prim’s algorithm

Î A
Î V – A
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Analysis of Prim
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u
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Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total
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Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total

|V |
times
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Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)  
times

|V |
times

Q ¬ V
Q(V)
total
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Analysis of Prim

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)

• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)  

times

|V |
times

Q ¬ V
Q(V)

total
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Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)  
times

|V |
times

Q ¬ V
Q(V)
total

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY
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Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY
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Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total
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Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total 

array O(V) O(1) O(V2)
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Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array
binary  
heap

O(V) O(1) O(V2)

O(lg V) O(lg V) O(E lg V)
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Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

O(V) O(1) O(V2)array

binary  
heap

Fibonacci  
heap

O(lg V)

O(lg V)  
amortized

O(lg V)

O(1)

amortized

O(E lgV)

O(E + V lg V)

worst case
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MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 10).
• Running time = O(E lgV).
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MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 10).
• Running time = O(E lgV).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.


