CS60020: Foundations of
Algorithm Design and Machine
Learning

’L\‘"‘ Graphs (review)

U=
\\\‘ \‘ s

Definition. A directed graph (digraph)
G = (V, E) 1s an ordered pair consisting of
* a set J of vertices (singular: vertex),
caset £ < V' x Vof edges.

In an undirected graph G = (V, E), the edge
set £ consists of unordered pairs of vertices.

In either case, we have | E£| = O()'?). Moreover,
if G 1s connected, then | £ |>|)| — 1, which
implies that Ig | £| = O(lg V).

(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

== Adjacency-matrix
g /diacency-m:
« " representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1s the matrix A[1 .. n, 1..n]

given by
-4 J 1 af(i,)) € E,
Ali, /] { 0 if(i,/) ¢ E.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.3

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},1s the matrix A[1 .. n, 1..n]

given by
-4 J 1 af(i,)) € E,
AlJ] { 0 if (i,) ¢ E.

ALGORITHMS
T

- |
\\\‘ \‘ s

A1 2 3 4
@ @ 110 1 1 0 O(V?)storage
' 210 0 1 0 = dense
@ @ 310 0 0 O representation.
410 0 1 O

S0 Adjacency-list representation

- |
\\\‘ \‘ coee

An adjacency list of a vertex v € V' 1s the list Adj|V]
of vertices adjacent to v.

Adi[1]= {2, 3}
@'@ Adi2)= 131
Adj[3] = {}

33— agm- 5

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

ALGORITHMS
T

- |
\\\‘ \‘ coee

Adjacency-list representation

Anddjacency list of a vertex v € V'1s the list Adj|[v]

of vertices adjacent to v.
Adj

N
@’ﬂ Adj2
AdJ[3

OO Adj[4

=12, 3}
=13}
=
=13}

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

S0 Adjacency-list representation

e
\\\‘ \‘ e

Anadjacency list of a vertex v € J'1s the list Adj|V]
of vertices adjacent to v.

Adj[1]= {2, 3}
@’ﬂ Adil2] = 13}

Adj[3]= 4}
G—® -0

For undirected graphs, | Adj[v]| = degree(v).
For digraphs, |Adj[v]| = out-degree(v).

Handshaking Lemma: >, _, Adj[v] =2 |E| for
undirected graphs = adjacency lists use O(}) + E)
storage — a sparse representation (for either type
of graph).

S0 Minimum spanning trees

«
WY

Input: A connected, undirected graph G = (V, E)
with weight function w : £ — R.

* For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.8

S0 Minimum spanning trees

o
Y o

Input: A connected, undirected graph G = (V, E)
with weight function w : £ — R.

* For simplicity, assume that all edge weights are
distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

w(T')= Z w(u,v).

(uv)eT

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.9

ALGORITHMS

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.10

Example of MIST

9

J
150

6 12
5
14]
o

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.11

~ 4+ Optimal substructure

MST T

(Other edges of &
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.12

S0 Optimal substructure

\ \‘

\\\‘

MST T U

(Other edges of
are not shown.)

Remove any edge (u, v) € T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.13

ALC

=1 Optimal substructure
MST T U
(Other edges of G
are not shown.) .

Remove any edge (u, v) € T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.14

MST T

(Other edges of &
are not shown.)

Remove any edge (1, v) € 7. Then, 7 1s partitioned
into two subtrees 7', and 7>.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.15

‘_\

\‘ \‘

Optimal substructure

MST T U

(Other edges of & T,
are not shown.) °

1

V

Remove any edge (#, v) € 7. Then, 7'is partitioned
into two subtrees 7, and 7>.

Theorem. The subtree 7,1s an MST of G, = (V, E)),
the subgraph of G induced by the vertices of 77:
), = vertices of 77,
={(x,y) e E:x,yelV;}.
Similarly for 7.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.16

S0 Proof of optimal substructure

=
"y ™ \‘ e

Proof. Cut and paste:
w(T) = w(u, v) + w(T) + w(T3).
If 7Twere a lower-weight spanning tree than 7', for

Gy, then 7''= {(u, v)} W U T, would bea
lower-weight spanning tree than 7 for G.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.17

=71 Proof of optimal substructure

\
‘\“ \‘ iy

Proof. Cut and paste:
w(T) = w(u, v) + w(T) + w(T3).
If 7Twere a lower-weight spanning tree than 7', for

Gy, then 7''= {(u, v)} W U T, would bea
lower-weight spanning tree than 7 for G.

Do we also have overlapping subproblems?
*Yes.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.18

S0 Proof of optimal substructure

\
AR \‘

Proof. Cut and paste:
w(T) = w(u, v) + w(T) + w(T3).
If 7Twere a lower-weight spanning tree than 7', for

Gy, then 7''= {(u, v)} W U T, would bea
lower-weight spanning tree than 7 for G.

Do we also have overlapping subproblems?
* Yes.
Great, then dynamic programming may work!

*Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.19

m Hallmark for “greedy”
o algorithms

9

Greedy-choice property
A locally optimal choice
is globally optimal.

o)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.20

m Hallmark for “greedy”
o algorithms

9

Greedy-choice property
A locally optimal choice
is globally optimal.

o)

N

Theorem. Let 7'be the MST of G = (V, E),
and let 4 < V. Suppose that (i, v) € £ 1s the
least-weight edge connecting 4 to /' — A.

Then, (1, v) € T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.21

.'\l.(i()i{

"’""‘ Proof of theorem

\
-
L

Pmof Suppose (1, v) ¢ T. Cut and paste.

T: \
Q eAk/

e c A4

(u, v) = least-weight edge
connecting 4 to V' — A4

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.22

’“""‘ Proof of theorem

-
WYY e

Pmof Suppose (1, v) ¢ T. Cut and paste.

T: \

0 €4
e c A4

(u, v) = least-weight edge
connecting 4 to V' — A4

Consider the unique simple path from # to v in 7.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.23

”""‘ Proof of theorem

-
“

Pmof Suppose (1, v) ¢ T. Cut and paste.

T: \
0 €4
e c /-4

(u, v) = least-weight edge
connecting 4 to V' — A4

Consider the unique simple path from # to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in /' — A.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.24

- " Proof of theorem

\‘ \‘

Pmof Suppose (1, v) ¢ T. Cut and paste.

T
>
o € A

e c /-4

(u, v) = least-weight edge
connecting 4 to V' — A4

Consider the unique simple path from # to v in 7.

Swap (u, v) with the first edge on this path that
connects a vertex in 4 to a vertex in /' — A.

A lighter-weight spanning tree than 7 results.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.25

Kruskal’s Algorithm

MST-KRUSKAL(G, w)

A=10
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FIND-SET(u) # FIND-SET(V)
A= AU{u,v)}
UNION(u, v)
return A

OO0 N B W =

g“;;': Prim’s algorithm
IDEA: Maintain /' — 4 as a priority queue 0. Key
each vertex in O with the weight of the least-
weight edge connecting 1t to a vertex in A.

Q«V
key[v] «— o forallv e V
key|s] <— 0 for some arbitrary s € V/
while O = &
do u < EXTRACT-MIN(Q)
for each v € Adj|u]
doif v € O and w(u, v) < key|V]
then key[v] < w(u,v) SDECREASE-KEY
n[v] < u

At the end, {(v, [v])} forms the MST.

L16.26

Example of Prim’s algorithm

0 € 4
e cJ—A4

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27

Example of Prim’s algorithm

0 € 4
e cJ—A4

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.28

Example of Prim’s algorithm

0 € 4
e cJ—A4

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.29

Example of Prim’s algorithm

0 € 4
e cJ—A4

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.30

Example of Prim’s algorithm

0 € 4
e cJ—A4

12
DR
O

10

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.31

Example of Prim’s algorithm

0 € 4
e cJ—A4

12
DR
O

10

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.32

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.33

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.34

Example of Prim’s algorithm

T\
W

0 € 4
oeV—A

12

”O

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.35

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.36

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.37

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.38

Example of Prim’s algorithm

% e

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.39

Analysis of Prim

Q«V
key|v] «— o forallv e IV
key|s| <— 0 for some arbitrary s € V/
while O # &

do 1 < EXTRACT-MIN(Q)

for each v € Adj[u]
do if v € O and w(u, v) < key[Vv]
then key|[v] < w(u, v)
nv] < u

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.40

Analysis of Prim

CO<«V
o) key|v] «<-—ccforallv e V'
total _ key[s] < 0 for some arbitrary s € V/
while O # &

do 1 < EXTRACT-MIN(O)

for each v € Adj[u]
do if v € O and w(u, v) < key[Vv]
then key|[v] < w(u, v)
n[v] <« u

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.41

o) .
total

-

V] y

times

November 9, 2005

Analysis of Prim

CO<«V
key|v] «— o forallv e I/
_ key[s] < 0 for some arbitrary s € V/
while O # &

do 1 < EXTRACT-MIN(Q)

for each v € Adj[u]
do if v € O and w(u, v) < key[Vv]
then key|[v] < w(u, v)
nv] < u

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.42

;";;"" Analysis of Prim

-0V
o)) J key|v] «<-—ccforallv e V'

total _ key[s] < 0 for some arbitrary s € V/
- while O #
do u <~ EXTRACT-MIN(Q)
14 y [« for each v € Adj[u]
times | degree(u) J ¢ do if v e O and w(u, v) < key[v]
times
* then key[v] < w(u, v)
\ \ e [v] < u

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.43

S Analysis of Prim

C O«
OV) key[v] <— o forallv eV

total _ key[s] < 0 for some arbitrary s € V/
s while O # &
do 1 < EXTRACT-MIN(O)
V] e for each v e Adju]
times< degree(u)) * doifv e Qandw(u, v) < key[v]
times * then key[v] < w(u, v)

N N . / n[v] < u
Handshaking Lemma = ©(£) implicit DECREASE-KEY’s.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.44

S+ Analysis of Prim

o) key|v]<— oo forallv e

total _ key[s] < 0 for some arbitrary s € V/
s while O # &
do 1 < EXTRACT-MIN(O)
14 e for each v € Adj[u]
times< degree(u) * doifv e Qandw(u, v) < key[v]
times 3
* then key[v] < w(u, v)
\ g e Im[v] < u

Handshaking Lemma = ©(£) implicit DECREASE-KEY’s.

Time = O(V) Textract-Min T OE) TDEcrEASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.45

\
\\\‘ S

=+ Analysis of Prim (continued)

Time = O(V) Texrract-Mn T OE) T DrcrEASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.46

Analysis of Prim (continued)

-
W

Time = O(V) Texrract-Mn T OE) T DrcrEASE-KEY

0 TextraCcT-MIN I DECrREASE-KEY — Total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.47

Analysis of Prim (continued)

R
-
W

Time = O(V) Texrract-Mn T OE) T DrcrEASE-KEY

0 TextracT-MiN I DecrEASE-KEY — Total

array o)) O(1) O(2)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.48

Analysis of Prim (continued)

R
-
W

Time = O(V) Texrract-Mn T OE) T DrcrEASE-KEY

0 TextraCcT-MIN I DECrREASE-KEY — Total

array o)) O(1) O(17?)
ey Ogh) O(gh) OElgh

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.49

Analysis of Prim (continued)

Time = O(V) Tgxrract-Min T O(E) TDEcrEASEKEY

0 TextraCcT-MIN I DECrREASE-KEY — Total

array o) O(1) O(1?)
binary
heap U Olgh) O lgh)
Fibonacci O(lg 1) O(1) O(E+ Vigh)
heap amortized amortized worst case

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.50

=1 MST algorithms

B

Kruskal’s algorithm (see CLRS):
 Uses the disjoint-set data structure (Lecture 10).
* Running time = O(E£ 1g V).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.51

ALGORITHMS

=71 MST algorithms

\
Y \‘

Kruskal’s algorithm (see CLRS):
 Uses the disjoint-set data structure (Lecture 10).
* Running time = O(E£ 1g V).

Best to date:

» Karger, Klein, and Tarjan [1993].
» Randomized algorithm.

* O(V + E) expected time.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.52

