
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E Í V ´ V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(V 2). Moreover,
if G is connected, then | E | ³ | V | – 1, which
implies that lg |E | = Q(lgV).
(Review CLRS, Appendix B.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.2

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.3

Adjacency-matrix
representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.4

Adjacency-matrix
representation

A[i, j] =

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

1 if (i, j) Î E,
0 if (i, j) Ï E.

22 11

33 44

November 9, 2005

A 1 2 3 4
1 0 1 1 0
2 0 0 1 0
3 0 0 0 0
4 0 0 1 0

Q(V 2) storage
Þ dense
representation.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.5

Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.6

Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).

Adjacency-list representation
An adjacency list of a vertex v Î V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

22 11

33 44
For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).
Handshaking Lemma: åvÎV Adj[v] = 2 |E| for
undirected graphs Þ adjacency lists use Q(V + E)
storage — a sparse representation (for either type
of graph).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.8

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E ® R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.9

Minimum spanning trees

w(T)= åw(u,v) .
(u,v)ÎT

Input: A connected, undirected graph G = (V, E)
with weight function w : E ® R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.10

Example of MST

6 12
5

14

3

8

10

9

157

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.11

Example of MST

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.12

Optimal substructure
MST T:

(Other edges of G
are not shown.)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.13

Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.14

Optimal substructure

u

v

MST T:
(Other edges of G

are not shown.)

Remove any edge (u, v) Î T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.15

Remove any edge (u, v) Î T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)

T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)

Remove any edge (u, v) Î T. Then, T is partitioned
into two subtrees T1 and T2.
Theorem. The subtree T1 is an MST of G1 = (V1, E1),
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = {(x, y) Î E : x, y Î V1 }.

Similarly for T2.
November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.16

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.17

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1¢were a lower-weight spanning tree than T1 for
G1, then T ¢= {(u, v)} È T1¢È T2 would bea
lower-weight spanning tree than T for G.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.18

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).
If T1¢were a lower-weight spanning tree than T1 for
G1, then T ¢= {(u, v)} È T1¢È T2 would bea
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.

Proof of optimal substructure
Proof. Cut and paste:

w(T) = w(u, v) + w(T1) + w(T2).

If T1¢were a lower-weight spanning tree than T1 for

G1, then T ¢= {(u, v)} È T1¢È T2 would bea
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?

•Yes.

Great, then dynamic programming may work!

•Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.19

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.20

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.21

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A Í V. Suppose that (u, v) Î E is the
least-weight edge connecting A to V – A.
Then, (u, v) Î T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.22

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.23

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.24

Proof of theorem

Î A
Î V – A

u
(u, v) = least-weight edge
connecting A to V – A

Proof. Suppose (u, v) Ï T. Cut and paste.

T: v

Consider the unique simple path from u to v in T.

Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

L16.25

Proof of theorem
Proof. Suppose (u, v) Ï T. Cut and paste.

u
(u, v) = least-weight edge
connecting A to V – A

vT ¢:

Î A
Î V – A

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Kruskal’s Algorithm

L16.26

Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
⊳DECREASE-KEYthen key[v] ¬ w(u, v)

p[v] ¬ u
At the end, {(v, p[v])} forms the MST.

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.27

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ ¥

¥

¥

¥

¥

6 12
5

14

3

8

10

9

00
157

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.28

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ ¥

¥

¥

¥

¥

6 12
5

14

3

8

10

9

00
157

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.29

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ 7

¥ 00

10

¥

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.30

Example of Prim’s algorithm

Î A
Î V – A

¥

¥ 7

¥ 00

10

¥

15

6 12
5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.31

Example of Prim’s algorithm

Î A
Î V – A

5 7

¥ 00

10

9

15

6 1212

5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.32

Example of Prim’s algorithm

Î A
Î V – A

5 7

¥ 00

10

9

15

6 1212

5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.33

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.34

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.35

Example of Prim’s algorithm

Î A
Î V – A

5 7

00

8

9

15

6 126

5

14
14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.36

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.37

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.38

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

15

6 126

5

14

3

8

10

15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.39

Example of Prim’s algorithm

Î A
Î V – A

5 7

3 00

8

9

6 126

5

14

3

8

10

15 15

9

7

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.40

Analysis of Prim
Q ¬ V
key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.41

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.42

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
for each v Î Adj[u]

do if v Î Q and w(u, v) < key[v]
then key[v] ¬ w(u, v)

p[v] ¬ u

Q ¬ V
Q(V)
total

|V |
times

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.43

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)
times

|V |
times

Q ¬ V
Q(V)
total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.44

Analysis of Prim

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)

• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)

times

|V |
times

Q ¬ V
Q(V)

total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.45

Analysis of Prim

key[v] ¬¥ for all v Î V
key[s] ¬ 0 for some arbitrary s Î V
while Q ¹ Æ

do u ¬ EXTRACT-MIN(Q)
• for each v Î Adj[u]
• do if v Î Q and w(u, v) < key[v]

• then key[v] ¬ w(u, v)
• p[v] ¬ u

degree(u)
times

|V |
times

Q ¬ V
Q(V)
total

Handshaking Lemma ÞQ(E) implicit DECREASE-KEY’s.

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.46

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.47

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.48

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.49

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array
binary
heap

O(V) O(1) O(V2)

O(lg V) O(lg V) O(E lg V)

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.50

Analysis of Prim (continued)

Time = Q(V)·TEXTRACT-MIN + Q(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

O(V) O(1) O(V2)array

binary
heap

Fibonacci
heap

O(lg V)

O(lg V)
amortized

O(lg V)

O(1)

amortized

O(E lgV)

O(E + V lg V)

worst case

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.51

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 10).
• Running time = O(E lgV).

November 9, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L16.52

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 10).
• Running time = O(E lgV).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.

