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Recurrent neural networks



Recurrent neural networks

• Lots of information is sequential
and requires a memory for successful  
processing

• Sequences as input, sequences as  
output

• Recurrent neural networks(RNNs) 
are  called recurrent because they 
perform  same task for every element 
of  sequence, with output dependent 
on  previous computations

• RNNs have memory that 
captures  information about 
what has been  computed so far

• RNNs can make use of information 
in  arbitrarily long sequences – in 
practice  they limited to looking 
back only few  steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Topologies of Recurrent Neural Network

(1)                              (2)                             (3)                                   (4)                   (5)         

1) Common Neural Network (e.g. feed forward network)
2) Prediction of future states base on single observation 
3) Sentiment classification
4) Machine translation
5) Simultaneous interpretation



Language Model

• Compute the probability of a sentence

• Useful in machine translation
– Word ordering: p(the cat is small) > p(small the cat is)
– Word choice: p(walking home after school) > p(walking 

house after school)
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Recurrent Neural Network

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ Recurrent Neural Network have an internal state 
§ State is passed from input xt to xt+1
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Language Models with RNN

• Let x0, x1, x2… denote words (input)
• Let o0, o1, o2… denote the probability of the 

sentence(output)
• Memory requirement scales nicely (linear with the 

number of word embeddings / number of character)

ot o0 o1 o2 ot
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• RNN being unrolled (or 
unfolded) into  full network

• Unrolling: write out 
network for  complete
sequence

• Image credits: Nature

Recurrent neural networks



Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN (Problem Revisited)
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No Magic Involved (in Theory)

• You unroll your data in time
• You compute the gradients
• You use back propagation to train your network
• Karpathy presents a Python implementation for Char-RNN 

with 112 lines

• Training RNNs is hard:
– Inputs from many time steps ago can modify output
– Vanishing / Exploding Gradient Problem

• Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
– LSTM became popular in NLP in 2015



Vanishing and exploding gradients

Li – Loss, U, V, W – Parameters, Si - states



Vanishing and exploding gradients



Heatmap

Vanishing and exploding gradients



LSTMs designed to combat vanishing gradients through gating
mechanism
How LSTM calculates hidden state st

Long Short Term Memory [Hochreiter and 
Schmidhuber, 1997]

32



Long-Short-Term Memory (LSTM)

• Long-term dependencies: 
I grew up in France and lived there until I was 18. Therefore I
speak fluent ???

• Presented (vanilla) RNN is unable to learn long term dependencies
– Issue: More recent input data has higher influence on the output

• Long-Short-Term Memory (LSTM) models solves this problem

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM Model

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ The LSTM model implements a forget-gate and an add-
gate

§ The models learns when to forget something and when to 
update internal storage



§ Core: Cell-state C (a vector of certain size)
§ The model has the ability to remove or add information 

using Gates

LSTM Model



Forget-Gate

§ Sigmoid function σ output a value between 0 and 1
§ The output is point-wise multiplied with the cell state Ct-1
§ Interpretation:

§ 0: Let nothing through
§ 1: Let everything through

§ Example: When we see a new subject, forget gender of old subject



Set-Gate

§ Compute it which cells we want to update and to which 
degree (σ: 0 … 1)

§ Compute the new cell value using the tanh function



Update Internal Cell State

Forget state cells

Update state cells



Compute Output ht

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ We use the updated cell state Ct to compute the output
§ We might not need the complete cell state as output

§ Compute ot, defining how relevant each cell is for the output
§ Pointwise multiply ot with tanh(Ct)

§ Cell state Ct and output ht is passed to the next time step



Recursive Neural Networks
§ Socher et al., 2011, Semi-supervised recursive autoencoders for predicting sentiment

distributions
§ Socher et al., 2013, Recursive Deep Models for Semantic Compositionality over a 

Sentiment Treebank



Recursive Autoencoders

§ In a first step, words are mapped to dense vectors (word embeddings)
§ Iteratively they are combined and reduced to form a single compact representation 

of the sentence
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Recursive Autoencoders (RAE)

§ Given two embeddings             each with length n
§ The autoencoder takes as input and maps it to a hidden layer of size n:

§ The function is repeatedly applied for the whole sentence until we receive a 
single vector of size n, representing the semantic of this sentence



Selecting the nodes that should be 
combined

• The previous slides showed a joining of the vectors from right to
left

• However, we can define any tree structure for the combination of
two vectors, for example a parse tree

• Socher et al. present a greedy approach for the combination of
vectors
– Compute the reconstruction error for all neighboring vectors.
– The two neighbors with the lowest error are selected and their

nodes are replaced by the compressed representation.
– Repeat the previous two steps until we end up with a single vector

representing the semantics of the sentence
• A different, more recent approach, is to use parse trees

• The output of the recursive autoencoder can be used for a 
classification task by adding a final softmax layer:



Machine translation
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LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax

</s>

Encoder-decoder Models

I hate this movie

kono

(Sutskever et al. 2014)

eiga ga kirai

this movie

Encoder

argmax argmax

I hate
Decoder



Sentence Representations

• But what if we could use multiple vectors, based on  
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing  
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!



Attention - Basic Idea
(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of  
these vectors, weighted by “attention weights”

• Use this combination in picking the next word



Calculating Attention (1)

Query Vector

• Use “query” vector (decoder state) and “key” vectors (all encoder states)

• For each query-key pair, calculate weight

• Normalize to add to one using softmax

kono eiga ga kirai
Key  

Vectors

I hate

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03



Calculating Attention (2)
• Combine together value vectors (usually encoder  

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value  
Vectors

* * *
α1=0.76 α2=0.08 α3=0.13

*
α4=0.03

• Use this in any part of the model you like



A Graphical Example



Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

•

• Flexible, often very good with large data

Bilinear (Luong et al. 2015)

a(q, k)= q|W k



Attention Score Functions (2)
•

•

Dot Product (Luong et al. 2015)

a(q, k) =q|k

• No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get  
larger

• Fix: scale by size of the vector

q|k
a(q, k) = p

|k |
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