
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Recurrent neural networks

Recurrent neural networks

• Lots of information is sequential
and requires a memory for successful
processing

• Sequences as input, sequences as
output

• Recurrent neural networks(RNNs)
are called recurrent because they
perform same task for every element
of sequence, with output dependent
on previous computations

• RNNs have memory that
captures information about
what has been computed so far

• RNNs can make use of information
in arbitrarily long sequences – in
practice they limited to looking
back only few steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Topologies of Recurrent Neural Network

(1) (2) (3) (4) (5)

1) Common Neural Network (e.g. feed forward network)
2) Prediction of future states base on single observation
3) Sentiment classification
4) Machine translation
5) Simultaneous interpretation

Language Model

• Compute the probability of a sentence

• Useful in machine translation
– Word ordering: p(the cat is small) > p(small the cat is)
– Word choice: p(walking home after school) > p(walking

house after school)

Recurrent Neural Network

RNN
Cell

Recurrent Neural Network

RNN
Cell

Recurrent Neural Network

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ Recurrent Neural Network have an internal state
§ State is passed from input xt to xt+1

ot o0
o
1

o2 ot

Language Models with RNN

• Let x0, x1, x2… denote words (input)
• Let o0, o1, o2… denote the probability of the

sentence(output)
• Memory requirement scales nicely (linear with the

number of word embeddings / number of character)

ot o0 o1 o2 ot

Recurrent Neural Network
o0 o1 o2

o
3

X
0

X
1

X
2

X
3

• RNN being unrolled (or
unfolded) into full network

• Unrolling: write out
network for complete
sequence

• Image credits: Nature

Recurrent neural networks

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN (Problem Revisited)
o0 o1 o2

o
3

X
0

X
1

X
2

X
3

No Magic Involved (in Theory)

• You unroll your data in time
• You compute the gradients
• You use back propagation to train your network
• Karpathy presents a Python implementation for Char-RNN

with 112 lines

• Training RNNs is hard:
– Inputs from many time steps ago can modify output
– Vanishing / Exploding Gradient Problem

• Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
– LSTM became popular in NLP in 2015

Vanishing and exploding gradients

Li – Loss, U, V, W – Parameters, Si - states

Vanishing and exploding gradients

Heatmap

Vanishing and exploding gradients

LSTMs designed to combat vanishing gradients through gating
mechanism
How LSTM calculates hidden state st

Long Short Term Memory [Hochreiter and
Schmidhuber, 1997]

32

Long-Short-Term Memory (LSTM)

• Long-term dependencies:
I grew up in France and lived there until I was 18. Therefore I
speak fluent ???

• Presented (vanilla) RNN is unable to learn long term dependencies
– Issue: More recent input data has higher influence on the output

• Long-Short-Term Memory (LSTM) models solves this problem

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ The LSTM model implements a forget-gate and an add-
gate

§ The models learns when to forget something and when to
update internal storage

§ Core: Cell-state C (a vector of certain size)
§ The model has the ability to remove or add information

using Gates

LSTM Model

Forget-Gate

§ Sigmoid function σ output a value between 0 and 1
§ The output is point-wise multiplied with the cell state Ct-1
§ Interpretation:

§ 0: Let nothing through
§ 1: Let everything through

§ Example: When we see a new subject, forget gender of old subject

Set-Gate

§ Compute it which cells we want to update and to which
degree (σ: 0 … 1)

§ Compute the new cell value using the tanh function

Update Internal Cell State

Forget state cells

Update state cells

Compute Output ht

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ We use the updated cell state Ct to compute the output
§ We might not need the complete cell state as output

§ Compute ot, defining how relevant each cell is for the output
§ Pointwise multiply ot with tanh(Ct)

§ Cell state Ct and output ht is passed to the next time step

Recursive Neural Networks
§ Socher et al., 2011, Semi-supervised recursive autoencoders for predicting sentiment

distributions
§ Socher et al., 2013, Recursive Deep Models for Semantic Compositionality over a

Sentiment Treebank

Recursive Autoencoders

§ In a first step, words are mapped to dense vectors (word embeddings)
§ Iteratively they are combined and reduced to form a single compact representation

of the sentence

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Recursive Autoencoders (RAE)

§ Given two embeddings each with length n
§ The autoencoder takes as input and maps it to a hidden layer of size n:

§ The function is repeatedly applied for the whole sentence until we receive a
single vector of size n, representing the semantic of this sentence

Selecting the nodes that should be
combined

• The previous slides showed a joining of the vectors from right to
left

• However, we can define any tree structure for the combination of
two vectors, for example a parse tree

• Socher et al. present a greedy approach for the combination of
vectors
– Compute the reconstruction error for all neighboring vectors.
– The two neighbors with the lowest error are selected and their

nodes are replaced by the compressed representation.
– Repeat the previous two steps until we end up with a single vector

representing the semantics of the sentence
• A different, more recent approach, is to use parse trees

• The output of the recursive autoencoder can be used for a
classification task by adding a final softmax layer:

Machine translation

02.09.2014 | Computer Science
Department | UKP Lab - Prof. Dr. Iryna

Gurevych | Nils Reimers |

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax

</s>

Encoder-decoder Models

I hate this movie

kono

(Sutskever et al. 2014)

eiga ga kirai

this movie

Encoder

argmax argmax

I hate
Decoder

Sentence Representations

• But what if we could use multiple vectors, based on
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!

Attention - Basic Idea
(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

• Use this combination in picking the next word

Calculating Attention (1)

Query Vector

• Use “query” vector (decoder state) and “key” vectors (all encoder states)

• For each query-key pair, calculate weight

• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

* * *
α1=0.76 α2=0.08 α3=0.13

*
α4=0.03

• Use this in any part of the model you like

A Graphical Example

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

•

• Flexible, often very good with large data

Bilinear (Luong et al. 2015)

a(q, k)= q|W k

Attention Score Functions (2)
•

•

Dot Product (Luong et al. 2015)

a(q, k) =q|k

• No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

q|k
a(q, k) = p

|k |

References

• Deep Learning for NLP - Nils Reimers.
https://github.com/UKPLab/deeplearning4nlp-
tutorial/tree/master/2017-07_Seminar

• CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy
http://cs231n.github.io/convolutional-networks/

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Neural Networks for Information Retrieval. SIGIR 2017
Tutorial http://nn4ir.com/

• CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

https://www.ukp.tu-darmstadt.de/people/doctoral-researchers/nils-reimers/
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2017-07_Seminar
http://cs231n.stanford.edu/
http://cs.stanford.edu/people/karpathy/
http://cs231n.github.io/convolutional-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://nn4ir.com/
http://www.cs.washington.edu/homes/pedrod/
https://courses.cs.washington.edu/courses/cse446/15sp/

