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An example application
• An emergency room in a hospital measures 17 

variables (e.g., blood pressure, age, etc) of newly 
admitted patients. 

• A decision is needed: whether to put a new patient 
in an intensive-care unit. 

• Due to the high cost of ICU, those patients who 
may survive less than a month are given higher 
priority. 

• Problem: to predict high-risk patients and 
discriminate them from low-risk patients. 



Another application
• A credit card company receives thousands of 

applications for new cards. Each application 
contains information about an applicant, 
– age 
– Marital status
– annual salary
– outstanding debts
– credit rating
– etc. 

• Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved. 



• Data: A set of data records (also called 
examples, instances or cases) described 
by
– k attributes: A1, A2, … Ak. 
– a class: Each example is labelled with a pre-

defined class. 
• Goal: To learn a classification model from 

the data that can be used to predict the 
classes of new (future, or test) 
cases/instances.

The data and the goal



Supervised learning process: two steps
n Learning (training): Learn a model using the 

training data
n Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Least squares classification
• Binary classification.
• Each class is described by it’s own linear model:

! " = $%" + $'
• Compactly written as:

y ) = *%)
• W is [$ $'].
• -. * = ⁄0 1 2*− 4 %(2*− 4)
• 789 row of 2 is ":, the 789 datapoint.
• 4 is vector of +1, -1.



Least squares classification

• Least squares ! is:
! = #$# %&#$'

• Problem is affected by outliers.



Least squares classification



Fisher’s linear discriminant

• Predictor: ! = #$%.
• If ! ≻ #' predict () else (*.
• Training dataset has +)points from () and +*

points from (*.

• ,- = )
./
∑1∈3/ %4 and ,5 = )

.6
∑1∈36 %4

• Maximize separation of projected means:
7* −7) = #$(,5 −,-)



Fisher’s linear discriminant

• This measure can increase arbitrarily by 
increasing ! .

• Constrain: ! " = 1
• Lagrangian: % !, ' = !( )* −), +
'( ! *−,).

• Solution: ! ∝ ()* −),).



Fisher linear discriminant



Fisher’s linear discriminant

• Maximize separation between means while 
minimizing within class variance.

• Within class variance:

!"# = %
&∈()

*& − ," #

• Objective:

- . = ,# −,/ #

!/# + !##



Fisher’s linear Discriminant
• Same as:

! " = "$%&"
"$%"'

• Between class variance:
%& = () −(+ () −(+ $

• Within class variance:
%,
= -

.∈0+
1. −(+ 1. −(+ $ + -

.∈0)
1. −() 1. −() $



Fisher’s linear discriminant

• Same as:
m"#
$

$%&'$
(. *. $%&+$ = -

• Solution given by generalized eigenvalue problem:
&'$ = .&$$

• Or
&+ /0&'$ = .$

• Solution:
$ ∝ &+ /-(34 −3-)



From Linear to Logistic Regression
Assumes the following functional form for P(Y|X):

Logistic function applied to a linear  
function of the data

Logistic  
function
(or Sigmoid):

z

lo
gi

t(
z)

Features can be discrete or continuous!



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression

• Label t ∈ {+1,−1}modeled as:
) * = 1 ,, - = . -/,

• ) 0 ,, - = . 0-/, , 0 ∈ {+1,−1}
• Given a set of parameters w, the probability or 

likelihood of a datapoint (x,t):
) * ,, - = .(*-/,)



Logistic Regression

• Given a training dataset { "#, %# , … , "', %' }, 
log likelihood of a model w is given by:

) * =,
-
ln(1 %- "-, * )

• Using principle of maximum likelihood, the 
best w is given by:

w*= argmaxw L(w)



Logistic Regression
• Final Problem:

m"#$ %
&'(

)
−log(1 + exp(−4)56#)))

Or,         min$ ∑&'() log(1 + exp −4)56#) )
• Error function:

; 5 =%
&'(

)
log(1 + exp −4)56#) )

• ;(5) is convex.



Logistic Regression
• Final Problem:

m"#$ %
&'(

)
−log(1 + exp(−4)56#)))

• Regularized Version: 

8"#%
&'(

)
−log(1 + exp(−4)56#))) − 9565

Or,         min$ ∑&'() log(1 + exp −4)56#) ) + 9 5 =



Properties of Error function

• Derivatives:

!" # = %
&'(

)
− 1 − , -&#./& -&/&

!" # =%
&'(

)
, #./& − -& /&

!0" # = %
&'(

)
, -&#./& 1 − , -&#./& /&/&.



Gradient Descent
• Problem: min f(x)
• f(x): differentiable
• g(x): gradient of f(x)
• Negative gradient is

steepest descent
direction. 

• At each step move in
the gradient direction
so that there is 
“sufficient decrease”.



Gradient Descent



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression for more than 
2  classes

• Logistic regression in more general case, where
Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)



Multiple classes

• One-vs-all: ! − 1 hyperplanes each separating 
$%, … , $()% classes from rest.

• Otherwise $(
• Low number of

classifiers.



Multiple classes

• One-vs-one: Every pair !" − !$ get a boundary.
• Final by majority vote.
• High number of

classifiers.



Multiple classes

• K-linear discriminant functions: 
!" # = %"&' + %")

• Assign # to *" if !"(#) ≥ !.(#) for all / ≠ 1
• Decision boundary:

%" − %.
&' + %") − %.) = 0

• Decision region is singly connected:
# = 4#5 + 1 − 4 #7

• If #5 and #7 have same label, so does #.



Multiple Classes



NAÏVE BAYES



Generative vs. Discriminative  

Classifiers

Discriminative classifiers (e.g. Logistic Regression)

•Assume some functional form for P(Y|X) or for the 

decision boundary

•Estimate parameters of P(Y|X) directly from training data

Generative classifiers (e.g. Naïve Bayes)

• Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))

• Estimate parameters of P(X|Y), P(Y) directly from training data

arg max_Y P(Y|X) = arg max_Y P(X|Y) P(Y)



34

A text classification task: Email spam filtering

34

From: ‘‘’’ <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay
Anyone can buy real estate with no money down
Stop paying rent TODAY !
There is no need to spend hundreds or even thousands for 
similar courses
I am 22 years old and I have already purchased 6 properties 
using the
methods outlined in this truly INCREDIBLE ebook.
Change your life NOW !
=================================================
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
=================================================
How would you write a program that would automatically detect
and delete this type of message?



35

Formal definition of TC: Training

35

Given:
§A document set X

§Documents are represented typically in some type of high-
dimensional space.

§A fixed set of classes C = {c1, c2, . . . , cJ}

§The classes are human-defined for the needs of an application 
(e.g., relevant vs. nonrelevant).

§A training set D of labeled documents with each labeled document <d, c> ∈ X � C
Using a learning method or learning algorithm, we then wish to
learn a classifier ϒ that maps documents to classes:

ϒ : X → C



36

Formal definition of TC: Application/Testing

36

Given: a description d ∈ X of a document Determine: ϒ (d) ∈ C, 
that is, the class that is most appropriate for d 



37

Examples of how search engines use classification

37

§Language identification (classes: English vs. French etc.)
§The automatic detection of spam pages (spam vs. nonspam)
§Topic-specific or vertical search – restrict search to a “vertical” like “related to 
health” (relevant to vertical vs. not)



38

Derivation of Naive Bayes rule

38

We want to find the class that is most likely given the document:

Apply Bayes rule

Drop denominator since P(d) is the same for all classes:



39

Too many parameters / sparseness 

39

§There are too many parameters                                             , one for each unique 
combination of a class and a sequence of words.
§We would need a very, very large number of training examples to estimate that 
many parameters.
§This is the problem of data sparseness.



40

Naive Bayes conditional independence assumption

40

To reduce the number of parameters to a manageable size, we

make the Naive Bayes conditional independence assumption:

We assume that the probability of observing the conjunction of

attributes is equal to the product of the individual probabilities

P(Xk = tk |c). 



41

The Naive Bayes classifier

41

§ The Naive Bayes classifier is a probabilistic classifier.
§ We compute the probability of a document d being in a class c

as follows:

§nd is the length of the document. (number of tokens)
§P(tk |c) is the conditional probability of term tk occurring in a

document of class c
§P(tk |c) is a measure of how much evidence tk contributes

that c is the correct class.
§P(c) is the prior probability of c.
§If a document’s terms do not provide clear evidence for one

class vs. another, we choose the c with highest P(c).



42

Maximum a posteriori class

42

§Our goal in Naive Bayes classification is to find the “best” class.

§The best class is the most likely or maximum a posteriori (MAP) class cmap:



43

Taking the log

43

§Multiplying lots of small probabilities can result in floating point underflow.
§Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying
probabilities.
§Since log is a monotonic function, the class with the highest score does not change.

§So what we usually compute in practice is:



44

Naive Bayes classifier

44

§Classification rule:

§Simple interpretation:

§Each conditional parameter log                 is a weight that 
indicates how good an indicator tk is for c.
§The prior log           is a weight that indicates the relative 
frequency of c.
§The sum of log prior and term weights is then a measure of how 
much evidence there is for the document being in the class.
§We select the class with the most evidence.



45

Parameter estimation take 1: Maximum likelihood

45

§Estimate parameters           and                from train data: How?

§Prior:

§Nc : number of docs in class c; N: total number of docs

§Conditional probabilities:

§Tct is the number of tokens of t in training documents from class c (includes multiple 
occurrences)

§We’ve made a Naive Bayes independence assumption here:



46

The problem with maximum likelihood estimates: Zeros

46

P(China|d) ∝ P(China) � P(BEIJING|China) � P(AND|China)
� P(TAIPEI|China) � P(JOIN|China) � P(WTO|China)

§If WTO never occurs in class China in the train set:



47

The problem with maximum likelihood estimates: Zeros
(cont)

47

§If there were no occurrences of WTO in documents in class China, we’d get a zero
estimate:

§→ We will get P(China|d) = 0 for any document that contains WTO!

§Zero probabilities cannot be conditioned away.



48

To avoid zeros: Add-one smoothing

48

§Before:

§Now: Add one to each count to avoid zeros:

§B is the number of different words (in this case the size of the vocabulary: |V | = B)



49

To avoid zeros: Add-one smoothing

49

§Estimate parameters from the training corpus using add-one smoothing
§For a new document, for each class, compute sum of (i) log of prior and (ii) logs of 
conditional probabilities of the terms
§Assign the document to the class with the largest score



50

Exercise

50

§Estimate parameters of Naive Bayes classifier
§Classify test document



51

Example: Parameter estimates

51

The denominators are (8 + 6) and (3 + 6) because the lengths of
textc and are 8 and 3, respectively, and because the constant
B is 6 as the vocabulary consists of six terms.
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Example: Classification

52

Thus, the classifier assigns the test document to c = China. The
reason for this classification decision is that the three occurrences

of the positive indicator CHINESE in d5 outweigh the occurrences

of the two negative indicators JAPAN and TOKYO.



Class Conditional Probabilities



54

Generative model

54

§Generate a class with probability P(c)
§Generate each of the words (in their respective positions), 
conditional on the class, but independent of each other, with 
probability P(tk |c)
§To classify docs, we “reengineer” this process and find the class that 
is most likely to have generated the doc.



On naïve Bayesian classifier
• Advantages: 

– Easy to implement
– Very efficient
– Good results obtained in many applications

• Disadvantages
– Assumption: class conditional 

independence, therefore loss of accuracy 
when the assumption is seriously violated 
(those highly correlated data sets)


