CS60020: Foundations of
Algorithm Design and Machine
Learning

i Why study algorithms and
s performance?

 Algorithms help us to understand scalability.

* Performance often draws the line between what
1s feasible and what 1s impossible.

* Algorithmic mathematics provides a language
for talking about program behavior.

 Performance 1s the currency of computing.

* The lessons of program performance generalize
to other computing resources.

* Speed 1s fun!

“7.% The problem of sorting

\\\‘ \‘ ez

Input: sequence (a,, a», ..., a,) of numbers.

Output: permutation (a';, a’, ..., a’,) such
that o', <a’,<---<a’,.

Example:
Input: 8 2 49 3 6

Output: 2 3 4 6 8 9

L1.5

ALGORITHMS

Insertion sort

[INSERTION-SORT (4, n) ~ <U[l..n]
for; <— 2 ton
do ey «— A| J]
[—j—1
while ; > 0 and A[i]| > key
do A[i+1] — A
i—1i—1

\ Ali+1] = key

“nseudocode” <

L1.6

ALGORITHMS

Insertion sort

w S s

[INSERTION-SORT (4, n) ~ <U[l..n]
for; <— 2 ton
do ey «— A| J]
i—j—1
while ; > 0 and A[i]| > key
do A[i+1] — A[i]

[<—1—1
\ A[i+1] = key
1 l J n
A: > > > >
\WJ—I
ke
sorted Y

L1.7

Example of insertion sort

3 2 4 9 3 6

L1.8

Example of insertion sort

3 2 4 9 3 6

L1.9

LI1.10

LI1.11

A
2 8 4 9 3 6
A

L1.12

=% Example of insertion sort

\\\‘ \‘ ez

N

2 8 4 9 3 6
N

2 4 8 9 3 6

L1.13

Example of insertion sort

8 2 4 9 3 6
A
2 8 4 9 3 6
N
2 4 8 9 3 6
o/
2 4 8 9 3 6

L1.14

Example of insertion sort

8 2 4 9 3 6

A

2 8 4 9 3 6
A

2 4 8 9 3 6

o/

2 4 8 9 3 6

N— -

L1.15

Example of insertion sort

8 2 4 9 3 6
A

2 8 4 9 3 6
N

2 4 8 9 3 6

o/

2 4 8 9 3 6
N— B

2 3 4 8 9 6

LI1.16

Example of insertion sort

8 2 4 9 3 6
A
2 8 4 9 3 6
A
2 4 8 9 3 6
o/
2 4 8 9 3 6
N— -
2 3 4 8 9 6
N— -~

L1.17

8 2 4 9 3 6
N
2 8 4 9 3 6
N
2 4 8 9 3 6
o/
2 4 8 9 3 6
N— -
2 3 4 8 9 6
N— -
2 3 4 6 8 9

done

L1.18

ALGORITHMS
oy
n o

= 4+ Running time

il

* The running time depends on the mput: an
already sorted sequence 1s easier to sort.

» Parameterize the running time by the size of
the input, since short sequences are easier to
sort than long ones.

* Generally, we seek upper bounds on the
running time, because everybody likes a
guarantee.

L1.19

4+ Kinds of analyses

Worst-case: (usually)
* 7(n) = maximum time of algorithm
on any input of size .
Average-case: (sometimes)
» 7(n) = expected time of algorithm
over all inputs of size 7.
* Need assumption of statistical
distribution of inputs.
Best-case: (bogus)

* Cheat with a slow algorithm that
works fast on some 1nput.

L1.20

= .« Machine-independent time

\
\\\‘ \‘ s

What is insertion sort s worst-case time?

* It depends on the speed of our computer:
* relative speed (on the same machine),
* absolute speed (on different machines).

BIG IDEA:
* [gnore machine-dependent constants.

* Look at growth of 7(n) as n — o .

“Asymptotic Analysis”

L\"'\",' (®-notation

Math:

O(g(n)) = { f(n) : there exist positive constants c;, ¢,, and
nosuch that 0 < ¢, g(n) <f(n) <c,2(n)
for all n > n; }

Engineering:

* Drop low-order terms; 1gnore leading constants.

* Example: 373 + 90n? — 5n + 6046 = O(n?)

L1.22

=< Asymptotic performance

‘\“ i s

When n gets large enough, a ©(7n?) algorithm
always beats a ©(n?) algorithm.

* We shouldn’t 1ignore
asymptotically slower
algorithms, however.

 Real-world design
situations often call for a
careful balancing of
engineering objectives.

* Asymptotic analysis 1s a

- useful tool to help to

n o structure our thinking.

71 Insertion sort analysis

:\\‘ \‘ e
Worst case: Input reverse sorted.

T(n)=> ©(j)=0(n2) [arithmetic series]
j=2
Average case: All permutations equally likely.

T(n)=3.0(j/2) = 0(2)
=2

Is insertion sort a fast sorting algorithm?
* Moderately so, for small 7.
* Not at all, for large .

Analysis

INSERTION-SORT (A) cost times
1 for j = 2to A.length C1 n
2 key = A[j] Cy n—1
3 // Insert A[j]| into the sorted
sequence A[l..j —1]. 0 n—1
-+ I =j—1 Cq n—1
5 while i > 0 and A[i] > key Cs > iat
6 Ali +1] = A[i] 6 Xyt —1)
7 i=i—1 ¢, >, —1)
8 Ali + 1] = key Cg n—1

