
1

Autoencoders & Attention.
Applications
Sourangshu Bhattacharya

2

Autoencoders
Autoencoders
§ Unsupervised Learning Algorithm

§ Given an input x, we learn a compressed
representation of the input, which we then try to
reconstruct

§ In the simpliest form: Feed forward network with
hidden size < input size.

§ We then search for parameters such that:

for all training examples
§ The error function is:

§ Once we finished training, we are interested in
the compressed representation, i.e. the values of
the hidden units

Source: http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

3

Why would we use autoencoders?

• How does a randomly generated image look like?

4
02.09.2014 | Computer Science Department | UKP

Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Why would we use autoencoders?

• What would be the probability to get an image like this from random
sampling?

5

Why would we use autoencoders?

• Produce a compressed representation of a high-dimensional input
(for example images)
• The compression is lossy. Learning drives the encoder to be a good

compression in particular for training examples
• For random input, the reconstruction error will be high
• The autoencoder learns to abstract properties from the input. What

defines a natural image? Color gradients, straight lines, edges etc.
• The abstract representation of the input can make a further

classification task much easier

6

Dimension-Reduction can simplify
classifcation tasks – MNIST Task

7

Dimension-Reduction can simplify
classifcation tasks – MNIST Task

• Histogram-plot of test error on the MNIST hand written digit recognition.
• Comparison of neural network with and without pretraining

Source: Erhan et al, 2010, Why Does Unsupervised Pre-training Help Deep Learning?

8

Autoencoders vs. PCA

• Principle component analysis (PCA) converts a set of correlated
variables to a set of linearly uncorrelated variables called principle
components
• PCA is a standard method to break down high-dimensional vector

spaces, e.g. for information extraction or visualization
• However, PCA can only capture linear correlations

PCA

Encoder:
!" # = %#

Decoder:
&" ' = %('

Autoencoders

Encoder:

Decoder:

9

Autoencoders vs. PCA - Example

LSA
Deep Autoencoder

§ Articles from Reuter corpus were mapped to a 2000 dimensional vector, using the 2000 most
common word stems

Source: Hinton et al., Reducing the Dimensionality of Data with Neural Networks

10

How to ensure the encodes does not learn
the identity function?

Identify Function
• Learning the identity function

would not be helpful
• Different approaches to ensure

this:
• Bottleneck constraint: The

hidden layer is (much) smaller
than the input layer

• Sparse coding: Forcing many
hidden units to be zero or near
zero

• Denoising encoder: Add
randomness to the input and/or
the hidden values

Denoising Encoder
§ Create some random noise
§ Compute
§ Reconstruction Error:

§ Alternatively: Set some of the
neurons (e.g. 50%) to zero

§ The noise forces the hidden layer
to learn more robust features

11

Stacking Autoencoders

• We can stack multiple hidden layers to create a deep autoencoder
• These are especially suitable for highly non-linear tasks
• The layers are trained layer-wise – one at a time

Step 1: Train single layer autoencoder until convergence

12

Stacking Autoencoders

Step 2: Add additional hidden layer and train this layer by trying to
reconstruct the output of the previous hidden layer. Previous layers are

will not be changed. Error function: .

13

Stacking Autoencoders – Fine-tuning

• After pretraining all hidden layers, the deep autoencoder is fine-tuned

Unsupervised Fine-Tuning:
§ Apply back propagation to the

complete deep autoencoder
§ Error-Function:

§ Further details, see Hinton et al.
§ (It appears that supervised fine-

tuning is more common nowadays)

Supervised Fine-Tuning:
§ Use your classification task to fine-

tune your autoencoders
§ A softmax-layer is added after the

last hidden layer
§ Weights are tuned by using back

prograpagtion.
§ See next slides for an example or

http://ufldl.stanford.
edu/wiki/index.php/Stacked_Autoe
ncoders

14

Stacking Autoencoders - Example

Pretrain first autoencoder
§ Train an autoencoder to get the first

weight matrix and first bias
vector

§ The second weight matrix,
connecting the hidden and the
output units, will be disregarded
after the first pretraining step

§ Stop after a certain number of
iterations

Source: http://ufldl.stanford. edu/wiki/

15

Stacking Autoencoders - Example

Pretrain second autoencoder
§ Use the values of the previous

hidden units as input for the next
autoencoder.

§ Train as before

Source: http://ufldl.stanford. edu/wiki/

16

Stacking Autoencoders - Example

Pretrain softmax layer
§ After second pretraining finishes, add

a softmax layer for your classification
task

§ Pretrain this layer using back
propagation

Source: http://ufldl.stanford. edu/wiki/

17

Stacking Autoencoders - Example

Fine-tuning
§ Plug all layers together
§ Compute the costs based on the

actual input
§ Update all weights using

backpropagation

Source: http://ufldl.stanford. edu/wiki/

18

Is pre-training really necessary?

• Xavier Glorot and Yoshua Bengio, 2010, Understanding the difficulty
of training deep feedforward neural networks
• With the right activation function and initialization, the importance

of pre-training decreases

19

Is pre-training really necessary?

• Pre-training achieves two things:
• It makes optimization easier
• It reduces overfitting

• Pre-training is not required to make optimization work, if you have
enough data
• Mainly due to a better understanding how initialization works

• Pre-training is still very effective on small datasets

• More information:
https://www.youtube.com/watch?v=vShMxxqtDDs

20

Dropout in Neural Networks

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Inspired by Hinton
https://www.youtube.com/watch?v=vShMxxqtDDs

For details:
Srivastava, Hinton et al., 2014, Dropout: A Simple Way to Prevent Neural
Networks from Overtting

21

Ensemble Learning

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

§ Create many different models and combine them at test time to make
prediction

§ Averaging over different models is very effective against overfitting

§ Random Forest
§ A single decision trees is not very powerful
§ Creating hundreds of different trees and combine them

§ Random forests works really well
§ Several Kaggle competitions, e.g. Netflix, were won by random forests

22

Model Averaging with Neural Nets

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

§We would like to do massive model averaging

§ Average over 100, 1.000, 10.000 or 100.000 models

§Each net takes a long time to train

§ We don’t have enough time to learn so many models

§At test time, we don’t want to run lots of large neural nets

§We need something that is more efficient

§ Use dropouts!

23

Dropout

Img source: http://cs231n.github.io/

§ Each time present a training example, we dropout 50% of the hidden
units

§ With this, we randomly sample over 2H differentarchitectures
§ H: Number of hidden units

§ All architectures share the
same weights

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

24

Dropout

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

§With H hidden units, we sample from 2H different models
§ Only few of the models get ever trained and they only get 1 training

example

§Sharing of weights means that every model is strongly
regularized
§ Much better than L1 and L2 regularization, which pulls weights towards

zero
§ It pulls weights towards what other models need
§ Weights are pulled towards sensible values

§This works in experiments extremely well

25

Dropout – at test time

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

§ We could sample many different architectures and average the output
§ This would be way too slow

§ Instead: Use all hidden units and half their outgoing weights
§ Computes the geometric mean of the prediction of all 2H models
§ We can use other dropout rates than p=0.5. At test time, multiply weights by 1-p

§ Using this trick, we train and use trillions of “different” models

§ For the input layer:
§ We could apply dropout also to the input layer
§ The probability should be then smaller than 0.5
§ This is known as denoising autoencoder
§ Currently this cannot be implemented in out-of-the-box Keras

26

How well does dropout work?

Source: Srivastava et al, 2014, Drouput A Simple Way to Prevent Neural Networks from Overtting
26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Classification error on MNIST dataset

27

How well does dropout work?

§If your deep neural network is significantly
overfitting, dropout will reduce the number of errors
a lot

§If your deep neural network is not overfitting, you
should be using a bigger one
§Our brain: #parameters >> #experiences
§Synapses are much cheaper then experiences

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

28

Another way to think about Dropout

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

§ In a fully connected neural network, a hidden unit knows
which other hidden units are present
§ The hidden unit co-adapt with them for the training data
§ But big, complex conspiracies are not robust -> they fail at test time

§ In the dropout scenario, each unit has to work with different
sets of co-workers
§ It is likely that the hidden unit does something individually useful
§ It still tries to be different from its co-workers

29

Recursive Neural Networks
§ Socher et al., 2011, Semi-supervised recursive autoencoders for predicting

sentiment distributions
§ Socher et al., 2013, Recursive Deep Models for Semantic Compositionality

over a Sentiment Treebank

30
26.10.2015 | Computer Science Department | UKP

Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Recursive Autoencoders

§ In a first step, words are mapped to dense vectors (word embeddings)

§ Iteratively they are combined and reduced to form a single compact

representation of the sentence

31
02.09.2014 | Computer Science Department | UKP

Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

Recursive Autoencoders (RAE)

§ Given two embeddings each with length n
§ The autoencoder takes as input and maps it to a hidden layer of size n:

§ The function is repeatedly applied for the whole sentence until we receive a
single vector of size n, representing the semantic of this sentence

32

Selecting the nodes that should be combined

• The previous slides showed a joining of the vectors from right to left
• However, we can define any tree structure for the combination of

two vectors, for example a parse tree
• Socher et al. present a greedy approach for the combination of

vectors
• Compute the reconstruction error for all neighboring vectors.
• The two neighbors with the lowest error are selected and their nodes are

replaced by the compressed representation.
• Repeat the previous two steps until we end up with a single vector

representing the semantics of the sentence
• A different, more recent approach, is to use parse trees

• The output of the recursive autoencoder can be used for a
classification task by adding a final softmax layer:

33

Named Entity
Disambiguation

34

Introduction

• Named Entity Disambiguation is a central problem of Information
Extraction where the goal is to link entities in a knowledge base (KB)
to their mention spans in unstructured text.

• A knowledge base (KB) is a technology used to store complex
structured and unstructured information used by a computer system.

35

Learning Entity Representation for Entity
Disambiguation [ACL’13]

• Deep Neural Network based approach to solve NED.

• Given a mention string m
with its context document d
a list of candidate entities C(m) are generated form

• for each candidate entity ei⋲ C(m):
we compute a ranking score sim(dm, ei) indicating how likely m refers
to ei.

• The linking result is e = arg maxei sim(dm, ei)

36

Learning Entity Representation for Entity
Disambiguation [ACL’13]

• The approach consists of two steps:
• Step 1: Greedy Layer-wise Pre-training :
• Goal is to minimize reconstruction error L(x, g(h(x))
• Thus using Denoising Autoencoder to retain important information while

ignoring noise.

37

Learning Entity Representation for Entity
Disambiguation [ACL’13]

• Supervised Fine Tuning :

1. Similarity score of (d,e) pair is
a. L(d, e) = max{0, 1 − sim(d, e) + sim(d, e’)}

2. Goal is to rank the correct entity higher than the rest candidates
relative to the context of the mention.

38

Learning Entity Representation for Entity
Disambiguation [ACL’13]

• Supervised Fine Tuning :

3. For each training instance (d, e), contrast it with one of its negative
candidate pair (d, e’). This gives the pairwise ranking criterion
a. sim(d,e)=dot(f(d),f(e))

4. Alternatively, we can contrast with all its candidate pairs (d, ei). That
is, we raise the similarity score of true pair sim(d, e) and penalize all
the rest sim(d, ei). Then the loss function becomes

Minimize the following training objective across all training instances:

L = ∑d,e L(d,e)

39

Learning Entity Representation for Entity
Disambiguation [ACL’13]

40

Multi-task learning [AAAI 2018]

41

Multi-task learning [AAAI 2018]

42

Multi-task learning [AAAI 2018]

43

Multi-task learning [AAAI 2018]

44

Multi-task learning [AAAI 2018]

45

Multi-task learning [AAAI 2018]

46

Multi-task learning [AAAI 2018]

47

Multi-task learning [AAAI 2018]

48

Multi-task learning [AAAI 2018]

49

Questions?

50

!!Attention

51

Machine translation is a blackbox

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers |

52

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax

</s>

Encoder-decoder Models

I hate this movie

kono

(Sutskever et al. 2014)

eiga ga kirai

this movie

Encoder

argmax argmax

I hate
Decoder

53

Sentence Representations

• But what if we could use multiple vectors, based on
the length of the sentence.

this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing
sentence into a single $&!*ing vector!”

— Ray Mooney

Problem!

54

Attention - Basic Idea
(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

• Use this combination in picking the next word

55

Calculating Attention (1)

Query Vector

• Use “query” vector (decoder state) and “key” vectors (all encoder states)

• For each query-key pair, calculate weight

• Normalize to add to one using softmax

kono eiga ga kirai
Key

Vectors

I hate

a1=2.1 a2=-0.1 a3=0.3 a4=-1.0

softmax

α1=0.76 α2=0.08 α3=0.13 α4=0.03

56

Calculating Attention (2)
• Combine together value vectors (usually encoder

states, like key vectors) by taking the weighted sum
kono eiga ga kirai

Value
Vectors

* * *
α1=0.76 α2=0.08 α3=0.13

*
α4=0.03

• Use this in any part of the model you like

57

A Graphical Example

58

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

•

• Flexible, often very good with large data

Bilinear (Luong et al. 2015)

a(q, k)= q|W k

59

Attention Score Functions (2)
•

•

Dot Product (Luong et al. 2015)

a(q, k) =q|k

• No parameters! But requires sizes to be the same.

Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

q|k
a(q, k) = p

|k |

60

What do we Attend To?

61

Previously Generated Things
• In language modeling, attend to the previous words (Merity

et al. 2016)

• In translation, attend to either input or previous output
(Vaswani et al. 2017)

62

Various Modalities
• Images (Xu et al. 2015)

• Speech (Chan et al. 2015)

63

Hierarchical Structures
(Yang et al. 2016)

• Encode with
attention over each
sentence, then
attention over each
sentence in the
document

64

Multiple Sources
• Attend to multiple sentences (Zoph et al. 2015)

•

• Libovicky and Helcl (2017) compare multiple strategies

Attend to a sentence and an image (Huang et al. 2016)

65

Intra-Attention / Self Attention
(Cheng et al. 2016)

• Each element in the sentence attends to other
elements → context sensitive encodings!

this is an example
this
is
an

example

66

Coverage
• Problem: Neural models tends to drop or repeat

content

• Solution: Model how many times words have been
covered

• Impose a penalty if attention not approx. 1 (Cohn
et al. 2015)

• Add embeddings indicating coverage (Mi et al.
2016)

67

Incorporating Markov Properties
(Cohn et al. 2015)

• Intuition: attention from last time tends to be
correlated with attention this time

• Add information about the last attention when
making the next decision

68

Bidirectional Training
(Cohn et al. 2015)

• Intuition: Our attention should be
roughly similar in forward and
backward directions

• Method: Train so that we get a bonus
based on the trace of the matrix
product for training in both directions

X ! Y� � �A A|Y X �

69

Supervised Training
(Mi et al. 2016)

•

•

Sometimes we can get “gold standard” alignments
a-priori

• Manual alignments

• Pre-trained with strong alignment model

Train the model to match these strong alignments

70

An Interesting Case Study:
“Attention is All You Need”

(Vaswani et al. 2017)

71

Problem: RNN constrained by previous
timestep computation

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

72

Target is to Improve the perofmrance and get
rid of sequential computation

73

• A sequence-to-
sequence model based
entirely on attention

• Strong results on
standard WMT datasets

• Fast: only matrix
multiplications

Summary of the
“Transformer"
(Vaswani et al. 2017)

74

Attention Tricks
• Self Attention: Each layer combines words with

others

• Multi-headed Attention: 8 attention heads learned
independently

• Normalized Dot-product Attention: Remove bias
in dot product when using large networks

• Positional Encodings: Make sure that even if we
don’t have RNN, can still distinguish positions

75

Self-Attention: focus on the important parts.

https://deepage.net/deep_learning/2017/03/03/attention-augmented-recurrent-neural-networks.html#attention��������

76

Model: Encoder

● N=6
● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual

connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward

https://arxiv.org/abs/1706.03762

77

Model: Encoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward

https://arxiv.org/abs/1706.03762

78

Model:
Encoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attentiond Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward

https://arxiv.org/abs/1706.03762

79

Model:
Decoder

● N=6
● All Layersoutput size 512
● Embedding
● Positional Encoding
● Notice the Residual connection
● Multi-head Attention
● LayerNorm(x +Sublayer(x))
● Position wise feed forward
● Softmax

https://arxiv.org/abs/1706.03762

80

Model:
Complete

https://arxiv.org/abs/1706.03762

81
https://arxiv.org/abs/1706.03762

82
https://arxiv.org/abs/1706.03762

83

Q,K,V
● "encoder-decoder attention" layers, the queries (Q) come from

the previous decoder layer, and the memory keys (K) and values
(V) come from the output of the encoder.”

● Otherwise: all three come from previous layer (Hidden state)

https://www.reddit.com/r/MachineLearning/comments/6kc7py/d_where_does_the_query_keys_and_values_come_from/
https://arxiv.org/abs/1706.03762

84

Complexity

https://arxiv.org/abs/1706.03762

85

Position-wise Feed-Forward network

https://arxiv.org/abs/1706.03762

86

Training

● Data sets:
○ WMT 2014 English-German: 4.5 million sentences pairs

with 37K tokens.
○ WMT 2014 English-French: 36M sentences, 32K tokens.

● Hardware:
○ 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5

days)

http://www.prioritiesusa.org/recommendations-for-sports-training/

87

Training Tricks

• Layer Normalization: Help ensure that layers
remain in reasonable range

• Specialized Training Schedule: Adjust default
learning rate of the Adam optimizer

• Label Smoothing: Insert some uncertainty in the
training process

• Masking for Efficient Training

88

Results

https://arxiv.org/abs/1706.03762

89

Results

https://arxiv.org/abs/1706.03762

90

Results

https://arxiv.org/abs/1706.03762

91

Questions?

92

Abir De, Isabel Valera, Sourangshu Bhattacharya, Niloy Ganguly and Manuel
Gomez Rodriguez

Opinion Dynamics
in Social Networks

93

Use social media to sense opinions

93

People’s opinion about
political discourse

Brand sentiment
and reputation

SEP MAR SEP MAR SEP MAR SEP MAR

Op
in

io
n

Opinion evolves with time

94

94

Learning opinion dynamics

Can we design a realistic
model that fits real
fine-grained opinion
traces in a social network?

95

Opinion Dynamics in Social Network

People Interact
with each other

They often influence
each others’ opinion

People are
connected

t = Top
in

io
n

Premise

Typical timeline

96

Objective

QUALCOMM INNOVATION FELLOWSHIP INDIA 2017

opinions

Time

User

Sentiment

Model Forecast

Learn

Message
sentiments Model

What it achieves?

Forecasting

97

Opinion Dynamics : Is it new ?

1. Opinions are updated sequentially in discrete time

2. Difficult to learn from fine-grained data and thus inaccurate predictions

There are a lot of theoretical models of opinion dynamics, but…

3. Models informational dynamics of opinion flow — ignores temporal influence.

t = Top
in
i

on

t = Top
in

i
on

Alic
eJoe

Bob

Charlie

has highest temporal influence has highest informational influence

Voter Model, DeGroot Model,
Flocking Model + Too many models!!

98

A Recent Approach: SLANT [NIPS ‘16]

tt
Times:

User’s initial
opinion

Previous expressed opinions by user’s neighbors

ti ⇠ Hawkes(�u(t))
Informational

Influence
Temporal Influence

1. Linearity of influence

2. Fixed parameterized representations

3. Semi-coupled dynamics of
temporal and informational influence

Limitations of SLANT

Fixed, linear,
semi-coupled Set of past events

Covered by SIAM-News

99

Proposed Approach

• Linearity of influence

• Fixed parameterized representations

• Semi-coupled dynamics of temporal and informational influence

Nonlinear influence structure

Generalized representation yet driven by data

Coupled influence

100

SLANT+: A nonlinear departure from SLANT

Informational
Influence

Temporal
Influence

Nonlinear
ModelingCoupling Coupling

SLANT

Fixed, linear,
semi-coupled Set of past events

Nonlinear
Modeling

Deep-SLANT

101

SLANT+: An intuitive approach

Capturing nonlinearity via
recurrent neural network

Coupling

,

,

A single RNN for
whole network

Small RNNs
per user

1. Expressivity issues
2. Training issues

1. Explainable
2. Decentralized

RMTPP, Du et al. 16, In KDD 2016

102

Nonlinear Modeling:
A networked guided RNN approach

RNN for user u

Coupling

Informational
Influence

Temporal
Influence

Capturing Influence
dynamics

Embedding history:
captures coupling

Opinion and
message generation

103

Explainability: A data driven construction

Analysis on conversations
on Delhi Election 2015

Construction of disagreement function from data

Curation of embedding functions

• Temporal data is usually limited, Twitter only allows 1% samples

• A prior embedding structure helps to learn from limited data.
─ works best for users who makes few comments

104

Datasets

We evaluate our model on several
real-world stories:

Delhi Assembly Election, 12/2013
The Avengers: Age of Ultron, 05/2015
Mayweather vs Pacquiao, 05/2015
Salman Khan hit and run verdict , 05/2015
Games of Thrones , 05/2016

105

Experimental Results

106

Disagreement fitting

Actual
disagreement

Estimated
Disagreement

107

Summary

1. Knowledge acquisition dynamics

2. Popularity dynamics of hashtags

Joint nonlinear generative model of temporal and informational dynamics

Dynamics of and on temporality

Applications

RNN based approach of a continuous system without loss of information

108

Sources

• Deep Learning for NLP - Lecture October 2015 by Nils Reimers.

https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2015-

10_Lecture

• CMU CS 11-747, Fall 2017 Neural Networks for NLP by Graham Neubig

http://www.phontron.com/class/nn4nlp2017/schedule.html

• Computational Neuroscience Seminar (MTAT.03.292) by Aqeel Labash

https://courses.cs.ut.ee/MTAT.03.292/2017_fall/uploads/Main/Attention%20

is%20All%20you%20need.pdf

• Learning Nonlinear Opinion Dynamics in Social Networks”. B. Kulkarni, S.

Agarwal, A. De, S. Bhattacharya, and N. Ganguly. Accepted in IEEE
International Conference on Data Mining (ICDM ‘17). Short paper. New

Orleans, USA, 2017

