Autoencoders & Attention.
Applications

Sourangshu Bhattacharya

Autoencoders

Autoencoders
= Unsupervised Learning Algorithm

= Given aninput x, we learn a compressed
representation of the input, which we then try to
reconstruct

* |nthe simpliest form: Feed forward network with
hidden size < input size.

= We then search for parameters such that:

r =~
for all training examples

= The error function is:

E(z, W,b) =

T — ||

= Once we finished training, we are interested in
the compressed representation, i.e. the values of Layer L,
the hidden units

Source: http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

LayerL,

—

Layer Ls

hy p(X)

Why would we use autoencoders?

* How does a randomly generated image look like?

Why would we use autoencoders?

* What would be the probability to get an image like this from random
sampling?

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 4

Why would we use autoencoders?

* Produce a compressed representation of a high-dimensional input
(for example images)

* The compression is lossy. Learning drives the encoder to be a good
compression in particular for training examples

* For random input, the reconstruction error will be high

* The autoencoder learns to abstract properties from the input. What
defines a natural image? Color gradients, straight lines, edges etc.

* The abstract representation of the input can make a further
classification task much easier

Dimension-Reduction can simplify
classifcation tasks — MINIST Task

. B
'
g

0.5t .Cs o
i ‘e °
0 o, °

—1r $.‘ °
lt o @
1 0 1

Dimension-Reduction can simplify
classifcation tasks — MINIST Task

< 1 layer without pretraining
(= 1 layer with pretraining

~ © <~ 4 layers without pretraining
@ a0} 1= 4 layers with pretraining
. 25
V|]
iH 1 .
E D o 20
5 D c
o ¢ 3 lip
o < 2 |
10 XN Q5 (o]
0 oy | e i b
1o} _
o :
S Bl HI

|H

test error

test error

* Histogram-plot of test error on the MNIST hand written digit recognition.
e Comparison of neural network with and without pretraining

Source: Erhan et al, 2010, Why Does Unsupervised Pre-training Help Deep Learning?

7

Autoencoders vs. PCA

* Principle component analysis (PCA) converts a set of correlated
variables to a set of linearly uncorrelated variables called principle
components

* PCA is a standard method to break down high-dimensional vector
spaces, e.g. for information extraction or visualization

* However, PCA can only capture linear correlations

PCA Autoencoders
Encoder: Encoder:

fo(x) = Wx fo(x) =s(Wx+b).
Decoder: Decoder:

=W’
9o0) =W 8o (y) = s(W'y+b)

8

Autoencoders vs. PCA - Example

= Articles from Reuter corpus were mapped to a 2000 dimensional vector, using the 2000 most
common word stems

European Community
Interbank markets monetary/economic

,

Disasters and
accidents

Leading economic® = 3. X T e T
g St . y) » ’i it “ Legal/judicial

indicators . ‘? ks 3. “
' SRR T ™™
' A S
3 V8.
A 3 % Government
W - St ;
Accounts/ . iy borrowings
et eamings ué’

Deep Autoencoder
Source: Hinton et al., Reducing the Dimensionality of Data with Neural Networks

9

How to ensure the encodes does not learn

the identity function?

Identify Function

* Learning the identity function
would not be helpful

* Different approaches to ensure
this:

* Bottleneck constraint: The
hidden layer is (much) smaller
than the input layer

e Sparse coding: Forcing many
hidden units to be zero or near
zero

* Denoising encoder: Add
randomness to the input and/or
the hidden values

Denoising Encoder

= Create some random noise ¢
» Compute = = f(z+¢)

= Reconstruction Error: 7 ~ z?

= Alternatively: Set some of the
neurons (e.g. 50%) to zero

® The noise forces the hidden layer
to learn more robust features

10

Stacking Autoencoders

* We can stack multiple hidden layers to create a deep autoencoder
* These are especially suitable for highly non-linear tasks
* The layers are trained layer-wise — one at a time

'~

reconstru_ction QOO Q - 000 @ input

of input |
features K I
Input \

Step 1: Train single layer autoencoder until convergence

11

Stacking Autoencoders
, 7
reconstruction _
® .. —

of features \ ‘ / \ , I

More abstract
features /’

features 0

./

Ll

Input

Step 2: Add additional hidden layer and train this layer by trying to
reconstruct the output of the previous hidden layer. Previous layers are
will not be changed. Error function: |h1 — ha|2 -

12

Stacking Autoencoders — Fine-tuning

* After pretraining all hidden layers, the deep autoencoder is fine-tuned

Unsupervised Fine-Tuning:

= Apply back propagation to the
complete deep autoencoder

" Error-Function:

B, WO, W),) = |

T — zl|o

= Further details, see Hinton et al.

= (It appears that supervised fine-
tuning is more common nowadays)

Supervised Fine-Tuning:

= Use your classification task to fine-
tune your autoencoders

= A softmax-layer is added after the
last hidden layer

= Weights are tuned by using back
prograpagtion.

= See next slides for an example or
http://ufldl.stanford.

edu/wiki/index.php/Stacked Autoe
ncoders

13

Stacking Autoencoders - Example

Pretrain first autoencoder

Train an autoencoder to get the first
weight matrix W and first bias
vector h(1)

The second weight matrix,
connecting the hidden and the
output units, will be disregarded
after the first pretraining step

Stop after a certain number of
iterations

Source: http://ufldl.stanford. edu/wiki/

Features |

14

Output

Stacking Autoencoders - Example

Pretrain second autoencoder

= Use the values of the previous
hidden units as input for the next
autoencoder.

" Train as before

Input Features Il Output

(Features 1)
Source: http://ufldl.stanford. edu/wiki/

15

Stacking Autoencoders - Example

Pretrain softmax layer

= After second pretraining finishes, add
a softmax layer for your classification
task

> P(y=0| x)

—> Ply=1]x)

= Pretrain this layer using back
propagation

—> Ply=2|x)

HE®E

Input Softmax
(Features Il) classifier

Source: http://ufldl.stanford. edu/wiki/

16

Stacking Autoencoders - Example

—> Ply=0|x)

—>Ply=11x

— Ply=2| x)

Input Features | Features Il Softmax
classifier

Source: http://ufldl.stanford. edu/wiki/

Fine-tuning
= Plug all layers together

= Compute the costs based on the
actual input

= Update all weights using
backpropagation

17

s pre-training really necessary?

 Xavier Glorot and Yoshua Bengio, 2010, Understanding the difficulty
of training deep feedforward neural networks

* With the right activation function and initialization, the importance
of pre-training decreases

80 r' — Sigmoid depth 5 ||
—— Sigmoid depth 4
o L‘\‘ Y J — Tanh
w \ ‘w\ Softsign
| " Softsign N
60 : ‘AL, ‘ \‘V - Tanh N
. y Wy I, | M — Pre-fcrammg
§50 \)q J.N J‘ ‘I M
o Ak WM, | M&k
a0 i 5 Ut '
M:lw | J.Ju\\wb i 'kau. o L W,JN
A J:"\Vﬂ\ b Wow “V*&"\ .
‘\'i)) e u";"w \‘ M_
30 \ Sy W \\W.r'w,w»n,,a"
‘\\‘U "
\JVM NI
20 N" " "*. A les u”.-.f ! v Ty |
“ka M) i o ZJ
A A A e
10 ; i | :
0.0 0.5 1.0 1.5 2.0

exemples seen

18

s pre-training really necessary?

* Pre-training achieves two things:
* It makes optimization easier
* It reduces overfitting

* Pre-training is not required to make optimization work, if you have

enough data
* Mainly due to a better understanding how initialization works

* Pre-training is still very effective on small datasets

* More information:
https://www.youtube.com/watch?v=vShMxxgtDDs

19

) TECHNISCHE
UNIVERSITAT

DARMSTADT

Inspired by Hinton
https://www.youtube.com/watch?v=vShMxxqtDDs

For details:
Srivastava, Hinton et al., 2014, Dropout: A Simple Way to Prevent Neural
Networks from Overtting

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 20

/{/(/

Ensemble Learning

» Create many different models and combine them at test time to make
prediction

» Averaging over different models is very effective against overfitting

» Random Forest
» A single decision trees is not very powerful
» Creating hundreds of different trees and combine them

» Random forests works really well
» Several Kaggle competitions, e.g. Netflix, were won by random forests

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 21

Model Averaging with Neural Nets

= We would like to do massive model averaging
= Average over 100, 1.000, 10.000 or 100.000 models

» Each net takes a long time to train
= \We don’t have enough time to learn so many models

* At test time, we don’t want to run lots of large neural nets

* We need something that is more efficient
= Use dropouts!

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 22

Dropout

» Each time present a training example, we dropout 50% of the hidden
units

= With this, we randomly sample over 2H differentarchitectures
= H: Number of hidden units

= All architectures share the
same weights

A

{/x
N
O
(e
V

\/
.
X
X

\/
D
A
VA
A
9%
£

Q)

\\6
"‘v’

MY)
A ()
XD /’0
/)

&

\
Qe

W
/\

/3
/;c

(a) Standard Neural Net (b) After applying dropout.

Img source: http://cs231n.github.io/
26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 23

Dropout

= With H hidden units, we sample from 2H different models

» Only few of the models get ever trained and they only get 1 training
example

» Sharing of weights means that every model is strongly
regularized

* Much better than L1 and L2 regularization, which pulls weights towards
zero

= |t pulls weights towards what other models need
» \Weights are pulled towards sensible values

= This works in experiments extremely well

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 24

Dropout — at test time

» \We could sample many different architectures and average the output
» This would be way too slow

» [nstead: Use all hidden units and half their outgoing weights
» Computes the geometric mean of the prediction of all 2H models
= \We can use other dropout rates than p=0.5. At test time, multiply weights by 1-p

» Using this trick, we train and use trillions of “different” models

= For the input layer:
= \We could apply dropout also to the input layer
» The probability should be then smaller than 0.5
» This is known as denoising autoencoder
= Currently this cannot be implemented in out-of-the-box Keras

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 25

How well does dropout work?

N\«\Arus,, VM.J"

Classification Error %

T
R

Wlth dropout

k ‘4 MAA \ Ve
*"@‘ ‘ *!". \"“ f/

1.0 ansasansaeannansanansan ‘...................-.....;...-........--.-.....-.. ; v - ";-_-_y{} < =

T
(S R -

1 A i i
0 200000 400000 600000 800000 1000000
Number of weight updates

Classification error on MNIST dataset

Source: Srivastava et al, 2014, Drouput A Simple Way to Prevent Neural Networks from Overtting
26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 26

How well does dropout work?

*|f your deep neural network is significantly
overfitting, dropout will reduce the number of errors
a lot

*|f your deep neural network is not overfitting, you
should be using a bigger one

= Qur brain: #parameters >> #experiences
» Synapses are much cheaper then experiences

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 27

Another way to think about Dropout

* |n a fully connected neural network, a hidden unit knows
which other hidden units are present

* The hidden unit co-adapt with them for the training data
» But big, complex conspiracies are not robust -> they fail at testtime

* |n the dropout scenario, each unit has to work with different
sets of co-workers

= |t is likely that the hidden unit does something individually useful
= |t still tries to be different from its co-workers

26.10.2015 | Computer Science Department | UKP Lab - Prof. Dr. Iryna Gurevych | Nils Reimers 28

Recursive Neural Networks

Socher et al., 2011, Semi-supervised recursive autoencoders for predicting
sentiment distributions

Socher et al., 2013, Recursive Deep Models for Semantic Compositionality
over a Sentiment Treebank

29

Recursive Autoencoders

Recursive Autoencoder

Predicted
m—] :
Sorry, Hugs YouRock Teehee |Understand Wow, Just Wow S(-.:‘ntl.merjt
Distribution
Semantic

Representations

Indices
[walked into a parked car Words

» |n a first step, words are mapped to dense vectors (word embeddings)
= |teratively they are combined and reduced to form a single compact
representation of the sentence

26.10.2015 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 30

Recursive Autoencoders (RAE)

Given two embeddings .22 each with length n
The autoencoder takes [71: 2] as input and maps it to a hidden layer of size n:

y1 = f(Wlx1;22] +b)

The function is repeatedly applied for the whole sentence until we receive a
single vector of size n, representing the semantic of this sentence

Semantic
Representations

Indices
[walked into a parked car Words

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 31

Selecting the nodes that should be combined

* The previous slides showed a joining of the vectors from right to left

* However, we can define any tree structure for the combination of
two vectors, for example a parse tree

* Socher et al. present a greedy approach for the combination of
vectors
* Compute the reconstruction error for all neighboring vectors.

* The two neighbors with the lowest error are selected and their nodes are
replaced by the compressed representation.

* Repeat the previous two steps until we end up with a single vector
representing the semantics of the sentence

A different, more recent approach, is to use parse trees

* The output of the recursive autoencoder can be used for a
classification task by adding a final softmax layer:

"1(11)('1

0= .S’Offl')l(l.l'(‘ ym)

32

Named Entity
Disambiguation

Introduction

 Named Entity Disambiguation is a central problem of Information
Extraction where the goal is to link entities in a knowledge base (KB)
to their mention spans in unstructured text.

A knowledge base (KB) is a technology used to store complex
structured and unstructured information used by a computer system.

Michael Michael
Jordan(Basketball Jordan(Statistician)
Player)

\\ /

Michael Jordan is an American retired professional basketball player,
businessman, and principal owner and chairman of the Charlotte
Hornets. Jordan played 15 seasons in the National Basketball
Association (NBA) for the Chicago Bulls and Washington Wizards.

34

Learning Entity Representation for Entity
Disambiguation [ACL’13]

* Deep Neural Network based approach to solve NED.
* Given a mention string m
with its context document d
a list of candidate entities C(m) are generated form
* for each candidate entity e, € C(m):
we compute a ranking score sim(d,,, e;) indicating how likely m refers

toe.

* The linking result is e = arg max,; sim(d,,, e)

35

Learning Entity Representation for Entity
Disambiguation [ACL’13]

The approach consists of two steps:

Step 1: Greedy Layer-wise Pre-training :

Goal is to minimize reconstruction error L(x, g(h(x))

Thus using Denoising Autoencoder to retain important information while

ignoring noise.

(ooooooooo) @ reconsruct input

reconstruct random
g(h(x” rzmzrtor:cognestmct
(e0000)
")A @ active
X active, but
O mask out
@O0000O@0O 00 O inactive
python coding .. snake phd

dragon delphs mount greece

36

Learning Entity Representation for Entity
Disambiguation [ACL’13]

* Supervised Fine Tuning :

1. Similarity score of (d,e) pair is
a. L(d, e)=max{0, 1 -sim(d, e) + sim(d, e’)}

2. Goal is to rank the correct entity higher than the rest candidates
relative to the context of the mention.

exp stm(d, e)
2 e, eXp sim(d, e;)

"

Lid.e) = —log

37

Learning Entity Representation for Entity
Disambiguation [ACL’13]

* Supervised Fine Tuning :

3. For each training instance (d, e), contrast it with one of its negative
candidate pair (d, €’). This gives the pairwise ranking criterion
a. sim(d,e)=dot(f(d),f(e))

4. Alternatively, we can contrast with all its candidate pairs (d, e,). That
is, we raise the similarity score of true pair sim(d, e) and penalize all
the rest sim(d, e,). Then the loss function becomes

Minimize the following training objective across all training instances:

L=5,.L(de)

38

Learning Entity Representation for Entity
Disambiguation [ACL’13]

sim(d.e)

f(d) fle)

(o000 0e) (000000 e)

hidden layer n
XXX XY IDOERCIIYXIXYY)
A A

1 1
) stacked auto-encoder |

(eeoeeee (e000000

Figure 2: Network structure of fine-tuning stage.

39

Multi-task learning [AAAI 2018]

e As multi-task learning, jointly learning models for performing
multiple labeling tasks.

@ As NED, classify a mention instance embedded in a document, say
“apple”, into one of its possible entities, say apple (fruit) or apple
(company).

@ In our setting, each mention corresponds to a task and each entity
corresponds to a label.

@ Our training data consists of gold mention contexts X, (for task u)
with D dimension.

@ Each gold mention also comes with a gold label y € Y, where Y, the
label set admissible for task u. E is the number of global entities.

@ Note that entities can be shared across multiple tasks.

40

Multi-task learning [AAAI 2018]

Table: Characteristics of AIDA-CoNLL testb data.

Unique mentions (tasks)
Testing instances

Training instances

Training instances / mention
Number of clusters

Max mentions in cluster
Min mentions in cluster
Training instances / cluster
Number of raw features
Number of entities

Avg entities / mention

1685
4485
10M
oK
314
11

2
34034
16M
69959
41

41

Multi-task learning [AAAI 2018]

@ The problem of MTL-SH is handled by representation learning
[Bengio et al., 2013] and multitask representation learning (MTRL)
[Maurer et al., 2016], for the multitask learning setting.

@ MTRL is two layer neural network which learns a shared
representation in the first layer and task specific classifier in the
second layer.

@ The scoring function g, = f, o h
e f,, the task specific scoring function defined by f, : RF — RVl
@ h, the representation function defined by h : RP — RR

@ We use RelL U activation functions in the first layer and L norm
regularization for task specific classifier.

42

Multi-task learning [AAAI 2018]

. U w
SEE
'3 sled=L.3
SHSH T
- -
SHY<SMY [
THIN

‘.t ‘e
S+ S
= =
[« |¢.M4+¢M
| Q——
S+ L
S EH e
S+ H o<
TSL

Multi-task learning [AAAI 2018]

Mention || Entity Important Features
River . .

Bank Bank breeze, view, bridge
Financial .

loan, account, transaction

Bank
Appl.e seed, sweet, sour

Apple (Fruit)
Apple mac, aesthetic, stock price
(Company)

@ Features should be dependent on a particular mention.

@ Make the representation function h, depend on the task wv.

44

Multi-task learning [AAAI 2018]

. U w
SEE
'3 sled=L.3
SHSH T
- -
SHY<SMY [
THIN

‘.t ‘e
S+ S
= =
[« |¢.M4+¢M
| Q——
S+ L
S EH e
S+ H o<
TSL

Multi-task learning [AAAI 2018]

o AIDA-CoNLL[Hoffart et al., 2011] testb dataset results ~70,000
number of global entities

@ In the first layer, task v cannot affect the representation of task u’.

@ In the second layer, if two tasks have overlapping set of candidate
entities, then two task can affect each other via shared classifier.

e By the above observation, we follow

© Choose a primary task, say wu.

@ Form a cluster of related tasks, C, which have overlapping of
candidate entities with u.

© Optimize (5) for only the subset of tasks C,, and use the resulting
model for task wv.

46

Multi-task learning [AAAI 2018]

Table: Accuracy on CoNLL testb dataset.

Method Micro-avg Macro-avg
Accuracy Accuracy
[Hoffart et al., 2011] 82.29 82.02
[He et al., 2013] 84.82 83.37
[Lazic et al., 2015] 86.4 -
[Globerson et al., 2016] 87.9 -
(Ganea and Hofmann, 2017] 88.8 -
PMC, gold mentions 85.9 89.1
MTL-SH, gold mentions 86.9 90.0
MTRL, gold mentions 82.0 86.7
TSRL, gold mentions 88.0 90.2
TSRL, gold+defn 89.4 91.9

e By adding entity definitions along with gold mentions gives the best
local algorithm for NED.

@ Improvement in Accuracy by using MTL-SH indicates benefits of task
sharing.

@ MTRL poor performance due to task clustering.

47

Multi-task learning [AAAI 2018]

Table: Accuracy with respect to prior wise sorted entity ranking

Model Acc in Bin-1 | Acc in Bin-2 | Acc in Bin-3 | Acc in Bin-4 | Acc in Bin-5
PMC 93.9 % 624% | 634% | 64% 3%
MTL-SH, gold mentions 94.5 % 67.3% 69.2% 64% -
TSRL, gold mentions 95.5% 68.53% 73% 64% -

@ Apart from retaining accuracy at large priors, TSRL shows clear

benefits for entities with lower priors.

48

Questions?

||
Attention

JfHou MUCH ATTENTION
— Do You NEED?
a AT

)
'/ 15 e
<1 i > E_ZH

"\,
‘:_,/'

=

.

Machine translation is a blackbox

02.09.2014 | Computer Science Department | UKP
Lab - Prof. Dr. Iryna Gurevych | Nils Reimers | 51

Encoder-decoder Models
- (Sutskever et al. 2014)
ncoder

(kono e*/g; ‘ k/ra/ < /s> %

|$ﬁ£$$ﬁ

hate | thls | mowe
argmax argmax argmax argmax argmax
v
I thls mowe </s>

hate

Decoder 52

Sentence Representations
Problem!
“You can’t cram the meaning of a whole %&!$ing

sentence into a single $&!*ing vector!”
— Ray Mooney

- But what if we could use multiple vectors, based on
the length of the sentence.

this is an example -

this is an example >

53

Attention - Basic Idea
(Bahdanau et al. 2015)

- Encode each word in the sentence into a vector

- When decoding, perform a linear combination of
these vectors, weighted by “attention weights”

- Use this combination in picking the next word

54

Calculating Attention (1)

- Use “query” vector (decoder state) and “key” vectors (all encoder states)

- For each query-key pair, calculate weight

- Normalize to add to one using softmax

kono g k/ral
Key *
\ectors |

N\ N\ N\
ai=2.1 a>=-0.1 ‘a3=0.3 as=-1.0

{
i
=)
Query Vector softmax

a1=0.76 a2=0.08 ‘0(3=O.13 04=0.03

Calculating Attention (2)

- Combine together value vectors (usually encoder
states, like key vectors) by taking the weighted sum

kono eiga Kiral

wee (—— ;~’]

L Ea 2 and ool 2

a1=0.76 a2=0.08 O(3=O.13 O(4=O.O3

o~
>«
-

- Use this in any part of the model you like

56

A Graphical Example

HEWVAPIY 2R L TORET T 2,

HNEEEEE EEEEEEEEE
you AEEENE EEEEEEEEE
recommend [[NI HEEEEEEER

could

an AN
inexpensive 1 A NN EERN
restaurant ([l AN EEEN
? I EENENEENEEEn

<s>

]

57

Attention Score Functions (1)

- qis the query and k is the key

- Multi-layer Perceptron (Bahdanau et al. 2015)

a(q, k)

w.) tanh(Wy[q: k])
- Flexible, often very good with large data

- Bilinear (Luong et al. 2015)
a(q. k)= q "Wk

58

Attention Score Functions (2)

- Dot Product (Luong et al. 2015)
a(q,.k) =q'k
- No parameters! But requires sizes to be the same.

- Scaled Dot Product (Vaswani et al. 2017)

- Problem: scale of dot product increases as dimensions get
larger

- Fix: scale by size of the vector

59

What do we Attend To?

Previously Generated Things

- In language modeling, attend to the previous words (Merity
et al. 2016)

(+—{}—{+—{+— ... {}—}———{F—

Fed Chair Janet Yellen ... raised rates . Ms. 297

' [} . . A a 4 ‘
| ™
k- |
= ' -+
<] X Sentinef
m I DY

Pp-(Yellen) g

ﬁ - aardvark Bernanke Rosenthal Yellen zebra
£l ¢ ' . ‘ ' .
o & i H !
UJ ‘ I o P 7 1 J I A »

Pvocab (Yel len)

p(Yellen) = g procan(Yellen) + (1 — g) pper (Yellen)

- In translation, attend to either input or previous output
(Vaswani et al. 2017)

61

Various Modalities

- Images (Xu et al. 2015)

A
bird
flying
over

a
body
of
water

L. Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word
generation

14x14 Feature Map

Audio

- Speech (Chan et al. 2015)

Hypothesis

- Encode with

Hierarchical Structures
(Yang et al. 2016)

senence
attentian

attention over each
sentence, then
attention over each
sentence in the
document

sentence
encoder

word
atention

word
encoder

Multiple Sources

- Attend to multiple sentences (Zoph et al. 2015)
Source 1: UNK Aspekte sind ebenfalls wichtig .

|/

Target: UNK aspects are important , tQo .

i T
— ol .y \\ — o
e / -

Source 2: Les aspects UNK sont également importants .

- Libovicky and Helcl (2017) compare multiple strategies

* Attend to a sentence and an image (Huang et al. 2016)

|
»__’, Im
b CNN ") —b — > R - - - - . R —_
I F ¥ ¥ ¥ ¥ T ¥ ¥

A man is osmiling ot o stuffed lion

e ? T L - -)
+ + + ‘ +

Mann lichelt einen ausgestopften Lowen an

Intra-Attention / Self Attention
(Cheng et al. 2016)

- Each element in the sentence attends to other
elements — context sensitive encodings!

this 1s an example
this []
IS

an
example

<
P -

000 +
[YY
(11
eee « B

65

Coverage

- Problem: Neural models tends to drop or repeat
content

- Solution: Model how many times words have been
covered

- Impose a penalty if attention not approx. 1 (Cohn
et al. 2015)

- Add embeddings indicating coverage (Mi et al.
20106)

66

Incorporating Markov Properties
(Cohn et al. 2015)

- Intuition: attention from last time tends to be
correlated with attention this time

LWVAPZ7Y 28N L T0EET X5,

cud NN HENEEEEEER
you AN EEEEEEEEE
recommend [IEEE HEEEEEEEE
an et
inexpensive [I NEEENENNN I R
restaurant [l HlEEEEEEEE
? L ENEEENEEEE
<s> L B]]

- Add information about the last attention when
making the next decision

67

Bidirectional Training .i :

(Cohn et al. 2015) SIEREEEES
. Intuition: Our attention should be | II LT

roughly similar in forward and EEES EEEEEN

based on the trace of the matrix = o f

.........

product for training in both directions H EEEEEEEEE

............

............

tr(Ax—y Ay) EENEENE EEN

............

............

68 I N N N N N A N

Supervised Trainin;
(Mi et al. 2016)

UQ

- Sometimes we can get “gold standard” alignments
a-priori

- Manual alignments

- Pre-trained with strong alignment model

* Train the model to match these strong alignments

69

An Interesting Case Study:

“Attention is All You Need”
(Vaswani et al. 2017)

Problem: RNN constrained by previous
timestep computation

@—>—®
@—>—®

@—>—@

®)
]
A
6

71

@—>—®

Target is to Improve the perofmrance and get
rid of sequential computation

"“"Vu“

: : yswﬂ’ﬂ-wnn nia r“ TW

Summary of the

“Transformer"
(Vaswani et al. 2017)

- A sequence-to-
sequence model based
entirely on attention

. Strong results on
standard WMT datasets

. Fast: only matrix
multiplications

Qutput
Probabilities
t

[Softmax |

| Lnear |

3

-
[Acd 8 Norm]4\\
Feed
Forward
|
- N | Acd 8 Norm Je—~
—~LAcd 3 Norm Multi-Head
Feed Attention
Forward T 57 Nx
A
Nix L Acd & Norm Je—
—Acd & Norm) Masked
Multi-Head Multi-Head
Attention Attention
L 1
S J _ ——
Positional A Positional
Encoding f & Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Attention Tricks

- Self Attention: Each layer combines words with
others

- Multi-headed Attention: 8 attention heads learned

iIndependently

- Normalized Dot-product Attention: Remove bias
In dot product when using large networks

- Positional Encodings: Make sure that even if we
don’t have RNN, can still distinguish positions

74

Self-Attention: focus on the important parts.

&> HMAFER -

network B

75

Model: Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residual
connection

Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feedforward

7

Add & Norm

|

Feed
Forward

|

'Y

Add & Norm

Multi-Head

Attention

|

.

A

'Y

v,

.

J

Positional A
Encoding ®_?

Input

Embedding

76

T

Inputs

Model: Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Multi-head Attention
LayerNorm(x +Sublayer(x))
e Position wise feed forward

PE(pos.2i) = sin(pos 10000/)
PE(p0s,2i+1) = cos(pos/ 10()()02’&'/dmodel)

7

Add & Norm

|

Feed
Forward

|

'Y

.

Add & Norm

Multi-Head

Attention

|

A

'Y

v,

.

J

Positional
Encoding

77

Oa

Input

Embedding

T

Inputs

Model:
Encoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residualconnection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward

7

Add & Norm

Feed
Forward

|

'Y

N Add & Norm

Multi-Head
Attention

|

. O, S

.

.

y,

Positional o
Encoding @V

Input
Embedding

T

Inputs
78

Model:
Decoder

N=6

All Layersoutput size 512
Embedding

Positional Encoding

Notice the Residualconnection
Multi-head Attention
LayerNorm(x +Sublayer(x))
Position wise feed forward

Output

Probabilities

t

| Softmax |

|

Linear

r

f
| Add & Norm h\

Feed
Forward

J

| Add & Norm Je=

Multi-Head
Attention

D) t Nx

LAdd & Norm Je—

Masked
Multi-Head
Attention

.

A%

J

J

G-

Output
Embedding

!

Outputs

(shifted right)

Positional
Encoding

Model:
Complete

Output

Probabilities
t
| Softmax)
| Linear
-
| Add & Norm]ﬂ\
Feed
Forward
_J
M
e ~ L Add & Norm Je=
—>(_Add & Norm J Multi-Head
Feed Attention
Forward | 7 7 7 N x
A []ﬁ
Add & Norm
N x I
~>| Add & Norm J Tasia
Multi-Head Multi-Head
Attention Attention
‘ A ’ & -, }
o J _)
Positional Positional
| D @ |
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Multi-Head Attention

|

Linear

1

Concat

p— I}

Scaled Dot-Product h
Attention
1 1) |

Linear Linear Linear

—

V K Q

MultiHead(Q, K, V) = Concat(head, ..., heady,)W
where head; = Attention(QW <, KWX viwY)

81

Scaled Dot-Product Attention

|

[Matmui

) A

[SoftMax]
4

[Mask (opt.)]

[MatMul]

1

Q KV

QK"

Attention(Q, K, V') = softmax(
vy,

1%

82

Q,KV

"encoder-decoder attention" layers, the queries (Q) come from
the previous decoder layer, and the memory keys (K) and values
(V) come from the output of the encoder.”

e Otherwise: all three come from previous layer (Hidden state)

Output
Probabilities

[}
"

Vs
Add & Norm

Feed
Forward

~ =\ Add & Norm
_ .
add & Houn Multi-Head
Feed - i
Forward Nx
| — |
&N
N x T
f—>| Add & Norm | Mecked
Multi-Head Multi-Head
Attention Attention
At At
1 J _ —)
Positional @—@ Positional
Encoding @ Encoding
Input Output
Embedding Embedding

I I

Inputs Outputs
(shifted right)

https://www.reddit.com/r/MachinelL earning/comments/6kc7py/d_where_does_the_query keys_and_values_come_from/

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logy(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

84

Position-wise Feed-Forward network

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention
; y Nx
e Add & Norm
f—>| Add & Norm | TR
Multi-Head Multi-Head
Attention Attention
L L
e J _ —)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

FFN(QZ) = maX(O, ZEWl ~+ bl)WQ + bz

85

Training

® Data sets:
o WMT 2014 English-German: 4.5 million sentences pairs
with 37K tokens.
o WMT 2014 English-French: 36M sentences, 32K tokens.
e Hardware:
o 8 Nvidia P100 GPus (Base model 12 hours, big model 3.5
days)

http://www.prioritiesusa.org/recommendations-for-sports-training/

Training Tricks

- Layer Normalization: Help ensure that layers

remain in reasonable range

- Specialized Training Schedule: Adjust default
learning rate of the Adam optimizer

- Label Smoothing: Insert some uncertainty in the
training process

- Masking for Efficient Training

87

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

. BLEU Training Cost (FLOPs)
. EN-DE EN-FR EN-DE EN-FR

ByteNet [17] DENA

Deep-Att + PosUnk [37] 39.2 1.0 -10%°
GNMT + RL [36] 24.6 39.92 2.3-101? 1.4.1020
ConvS2S [9] 25.16 40.46 9.6-1018 1.5.102%0
MOoE [31] 26.03 40.56 2.0-101% 1.2.10%
Deep-Att + PosUnk Ensemble [37] 40.4 8.0-10%°
GNMT + RL Ensemble [36] 26.30 41.16 1.8-1020 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 T7~-10% 19.710%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.0 2.3-10"

88

is is
Results n n
this this
spirit spirit
that that
a a
majority majority
of of
American American
governments governments
have have
passed passed
new new
laws laws
since since
2009 2009
making »making

the the
registration registration
or or
voting voting
process process
l : more
] difficult

<EOS> <EOS>

Results The

Law Law Law
will will will - ~will
never never never never
be be be \ "~ be
perfect perfect perfect perfect
but but but . \ but
its its its \ its
application application application application
should should should should
be be be ‘be
just just just just

this this this ~_~this

is is is
what what what
we we we ~we
are are are ' - -are
missing missing missing - missing
in in in % in
my my My —— my
opinion opinion opinion = e Opinion
<EOS> <EOS> <EOS> \ <EOS>
<pad> <pad> <pad> <pad>

90

Questions?

Opinion Dynamics
in Social Networks

Abir De, Isabel Valera, Sourangshu Bhattacharya, Niloy Ganguly and Manuel
Gomez Rodriguez

92

Use social media to sense opinions

@ \\ « o

| o o People’s opinion about
How social media is revolutionizing oy e .

debates political discourse

Ehe New ork Times
Campaigns Use Social Media to Lure Younger Voters

T Brand sentiment
Twitter Unveils A New Set Of Brand-Centric Analytics ahd reputation

Ehe New Jork Times
Social Media Are Giving a Voice to Taste Buds

Opinion evolves with time

|
Wf AN b B

Ser Mar Ser Mam Sep Mar Sep Mar

Opinion

Learning opinion dynamics

Can we design a realistic
model that fits real
fine-grained opinion
traces in a social network?

94

Opinion Dynamics in Social Network

[Premise]

i fi‘i‘-.;:;if’.'!:";i' 2i .
N P L | ,|il,
W VS TN DR
5 ¥ ol e
oo (W N ' ' : ' ®
' "n < a T M '
P w b
Peopleare
_____ conhected—

People Interact
with each other

They often influence
each others’ opinion

[Typical timeline]

95

”~

Objective

(u,-,ml,t)—) Time
\

Sentiment

User Message N
|99 T Tf TT TT”_ sentiments ™ Model +opmlons

t =]
i |
I l
- - [Forecast] [What it achieves?}

@
L (Learn O _0 R e ‘.‘fx‘ l

o ~ Forecasting

(|l i\ 'A‘ \
Sar Mas Sar Man

®
- e s s ™ o -
E -

QUALCOMM INNOVATION FELLOWSHIP INDIA 2017 96

Opinion Dynamics : Is it new ?

There are a lot of theoretical models of opinion dynamics, but...

. Voter Model, DeGroot Model,
1. Opinions are updated sequentially in discrete time Fiocking Model + Too many models!!

2. Difficult to learn from fine-grained data and thus inaccurate predictions

3. Models informational dynamics of opinion flow — ignores temporal influence.

lic

Jo 9

\a
Charlie

n has highest temporal influence 3 has highest informational influence

97

A Recent Approach: SLANT [NIPS ‘16]

* - . — 1.
X, (t — au + § Ay E ng(t tz)
‘_'_’ |'U EN(’U/) ; €; GHU (t) [
% Previous e'.pressed opin‘ons by user’s neighbors
t

User’s initial
opinion [nformational C . 4
Influence Times: t; ~ Hawkes(A,(t))
Temporal Influence

[Limitations of SLANT] A (t) = fulUpen(wyHo(t))

1. Linearity of influence 4 l
Fixed, linear,
semi-coupled

2. Fixed parameterized representations Set of past events

3. Semi-coupled dynamics of
temporal and informational influence N \

T, (t) = gu(UveN(u)Hv(t))
Covered by SIAM-News

98

Proposed Approach

Linearitvof infl

Nonlinear influence structure

Fived rod :

Generalized representation yet driven by data

Coupled influence

99

SLANT+: A nonlinear departure from SLANT

| SLANT |

/\:(t) - fu(UveN(u)Hv(t))
Va }

Fixed, linear,
semi-coupled

\

."I?Z(t) - gu(UUEN(u)Hv (t))

Set of past events

Informational
Influence

]

Temporal
Influence

)| -

Nonlinear
Modeling

| Deep-SLANT |

Ault) =

Nonlinear
Modeling

100

fu(veN’(u)Hv (t))

/7

o

(Uven () Ho(t))

SLANT+: An intuitive approach

recurrent neural network

7,+1)fc tit1) 1 1

[Capturing nonlinearity via}

Coupling A single RNN for Small RNNs
whole network per user
I 1. Expressivity issues 1. Explainable
T 2. Training issues 2. Decentralized

RMTPP, Du et al. 16, In KDD 2016

101

Nonlinear Modeling:
A networked guided RNN approach

Opinion and
message generation

t
ma(tisn) ~ N (2 (teer). 0) A*,,(t,“) »(t) = tanh(V whiv1 +v (t —t;)+ k")
| /\ (t) = exp(whisy + Wi (t —t;) + b)
“a Vu Output layer
A A Embedding history:
hi(u) = hiy(u) captures coupling
Coupling gidden layer ‘ : :
L’ History embedding hi+1(U) =0y w.{:h;(U) -+ wg.y:‘ . 2 wg.e:‘
Input layer

Influence dynamics

- y:‘ = Auu.-mi + ., 011; - b“"iti + BU

102

Temporal]N [Capturing Influence]

RNN for user u

Explainability: A data driven construction

-
(4]

Construction of disagreement function from data

Intensity
=)

‘:llll.(fi) = (l“rlv' “,l(ll) |A"I”ll |) + “.;27, (T Ml |A"I”“ |))
7 - . . :
Curation of embedding functions

hiv1(u) = oy, (u'fjh,-(u) +wlyl, + w0, +w) :,,,-(f,)>

v

t

($))

Emperical

%

0.2

Change of
opinion
o

0
Diftsrenice of opinfon « Temporal data is usually limited, Twitter only allows 1% samples
A prior embedding structure helps to learn from limited data.

Analysis on conversations
Y — works best for users who makes few comments

on Delhi Election 2015

103

Datasets

We evaluate our model on several

real-world stories:

Delhi Assembly Election, 12/2013

The Avengers: Age of Ultron, 05/2015
Mayweather vs Pacquiao, 05/2015
Salman Khan hit and run verdict , 05/2015

Games of Thrones , 05/2016

104

Experimental Results

Mean Squared Error
Dataset SLANT+ SLANT | BVoter | Voter AsLM | DeGroot| Flocking
Movie 0.007 (90.79) 0.076 0.755 0.822 1.367 0.499 0.69
Politics 0.038 (82.16) 0.213 0.771 0.670 1.023 0.875 0.76
Fight 0.045 (79.82) 0.223 1.351 1.477 1.514 0.963 1.31
Bollywood || 0.049 (88.71) 0.434 2.015 2.132 3.579 1.724 1.94
Series 0.049 (32.88) 0.073 0.287 0.536 0.796 0.533 0.49
Failure Rate

Movie 0.00 (-) 0.0 0.0 0.0 0.0 0.0 0.0
Politics 0.03 (80.0) 0.15 0.51 0.51 0.51 0.46 0.58
Fight 0.06 (53.85) 0.13 0.59 0.59 0.54 0.43 0.54
Bollywood || 0.01 (93.33) 0.15 0.43 0.44 0.50 0.42 0.43
Series 0.01 (66.67) 0.03 0.31 0.41 0.33 0.47 0.48

105

Disagreement fitting

[)

=002

dm
dt

)
—
Ll —

A

dx
dt

0 1
|‘2s117f5——> |Am| —

(a) Movie (b) Fight

106

Summary

Dynamics of and on temporality]

Ve

Joint nonlinear generative model of temporal and informational dynamics}

|\

RNN based approach of a continuous system without loss of information]

1. Knowledge acquisition dynamics §

2. Popularity dynamics of hashtags y [Applications

107

Sources

« Deep Learning for NLP - Lecture October 2015 by Nils Reimers.
https://github.com/UKPLab/deeplearning4nlp-tutorial/tree/master/2015-
10 Lecture

« CMU CS 11-747, Fall 2017 Neural Networks for NLP by Graham Neubig
http://www.phontron.com/class/nn4nlp2017/schedule.html

« Computational Neuroscience Seminar (MTAT.03.292) by Ageel Labash
https://courses.cs.ut.ee/MTAT.03.292/2017 fall/uploads/Main/Attention%20
1IS%20AIll%20you®%20need.pdf

* Learning Nonlinear Opinion Dynamics in Social Networks”. B. Kulkarni, S.
Agarwal, A. De, S. Bhattacharya, and N. Ganguly. Accepted in IEEE
International Conference on Data Mining (ICDM ‘17). Short paper. New
Orleans, USA, 2017

108

