
CS60020: Foundations of
Algorithm Design and Machine

Learning
Sourangshu Bhattacharya

Neural Network Basics

§ Given several inputs:
and several weights:
and a bias value:

§ A neuron produces a single output:

§ This sum is called the activation of the neuron
§ The function s is called the activation function

for the neuron
§ The weights and bias values are typically

initialized randomly and learned during training

McCulloch–Pitts “unit”

3

Output is a “squashed” linear function of the inputs:

Output

S

Input
Links

Activation
Function

Input
Function

Output
Links

a0 =-1 ai = g(ini)

ai

g
iniWj,i

W0,i

Bias Weight

aj

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Activation functions

4

+1 +1

iniini

g(ini) g(ini)

(a) (b)

(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location

Feed forward example

Expressiveness of perceptrons

Feed Forward Neural Networks

Hidden-Layer
• The hidden layer (L2, L3) represent learned non-linear

combination of input data
• For solving the XOR problem, we need a hidden layer
– some neurons in the hidden layer will activate only for some combination of

input features
– the output layer can represent combination of the activations of the hidden

neurons

• Neural network with one hidden layer is a universal
approximator
– Every function can be modeled as a shallow feed forward network
– Not all functions can be represented efficiently with a single hidden layer

Þ we still need deep neural networks

Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers
• Initializing the weights randomly and training all

layers at once does hardly work
• Instead we train layerwise on unannotated data

(a.k.a. pre-training):
– Train the first hidden layer
– Fix the parameters for the first layer and train the

second layer.
– Fix the parameters for the first & second layer, train the

third layer

Img-Source: http://neuralnetworksanddeeplearning.com

• After the pre-training, train all layers using your annotated data
• The pre-training on your unannotated data creates a high-level

abstractions of the input data
• The final training with annotated data fine tunes all parameters in the

network

How to learn the weights
• Initialise the weights i.e. Wk,j Wj,i with random values
• With input entries we calculate the predicted output
• We compare the prediction with the true output
• The error is calculated
• The error needs to be sent as feedback for updating the weights

Computation Graphs

BACKPROPAGATION

Slides from Intel

How to Train a Neural Net?

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output
• Compare output to correct answers: Look at loss function J
• Adjust and repeat!
• Backpropagation tells us how to make a single adjustment

using calculus.

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

		"#

Feedforward Neural Network

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

		"#

Forward Propagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

Pass in
Input

		"#

Forward Propagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

Calculate each Layer

		"#

Forward Propagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

Get Output

		"#

Forward Propagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

Evaluate:
) "*, "*,

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

How to Train a Neural Net?

• How could we change the weights to make our Loss
Function lower?

• Think of neural net as a function F: X -> Y
• F is a complex computation involving many weights W_k
• Given the structure, the weights “define” the function F (and

therefore define our model)
• Loss Function is J(y,F(x))

How to Train a Neural Net?

• Get	 "#"$%
for every weight in the network.

• This tells us what direction to adjust each Wk if we want to
lower our loss function.

• Make an adjustment and repeat!

		"#

Feedforward Neural Network

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

)* "+, "+-
)./

.(#) .(%) .(&) Want:

Calculus to the Rescue

• Use calculus, chain rule, etc. etc.
• Functions are chosen to have “nice” derivatives
• Numerical issues to be considered

Punchline

!"
!#(%) = (() − () ⋅ # , ⋅ -. /(,) ⋅ 0(%)

!"
!#(1) = () − (⋅ # , ⋅ -. /(,) ⋅ # % ⋅ -. / % ⋅ 2

!"
!#(,) = (() − () ⋅ 0(,)

• Recall that: -′ / = -(/)(1 − -(/))
• Though they appear complex, above are easy to compute!

		"#

Backpropagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

)* "+, "+-
)./

.(#) .(%) .(&) Want:

		"#

Backpropagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

)(#))(%) ,- "., ".0
,)&

		"#

Backpropagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

)* "+, "+-
).&

)* "+, "+-
).%

.(#)

		"#

Backpropagation

			$#

		$%

		$&
			'

			'

			'

			'

			'

			'

			'

			'
				"(#

			"(%

			"(&

		"%

		"&

)* "+, "+-
).&

)* "+, "+-
).%

)* "+, "+-
).#

How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite

direction
5. Iterate

Vanishing Gradients

!"
!#(%) = () − (⋅ # , ⋅ -. /(,) ⋅ # 0 ⋅ -. / 0 ⋅ 1

• Remember: -′ / = - / 1 − - / ≤ .25
• As we have more layers, the gradient gets very small at the

early layers.
• This is known as the “vanishing gradient” problem.
• For this reason, other activations (such as ReLU) have

become more common.

Recall that:

Neural Networks – What we learnt

• Neural networks for supervised learning
• Multiple Hidden layers as universal approximators
• Fully connected feed-forward networks for calssification
• Backpropagation for learning network parameters (Weights at

layers)

• Paradigms for Deep Learning Models
• CNNs
• RNNs

Up Next:

CONVOLUTIONAL NEURAL
NETWORKS

Motivation – Image Data

• So far, the structure of our neural network treats all inputs
interchangeably.

• No relationships between the individual inputs
• Just an ordered set of variables

• We want to incorporate domain knowledge into the
architecture of a Neural Network.

Motivation

• Image data has important structures, such as;

• ”Topology” of pixels
• Translation invariance
• Issues of lighting and contrast
• Knowledge of human visual system
• Nearby pixels tend to have similar values
• Edges and shapes
• Scale Invariance – objects may appear at different sizes in

the image.

Motivation – Image Data

• Fully connected would require a vast number of parameters
• MNIST images are small (32 x 32 pixels) and in grayscale
• Color images are more typically at least (200 x 200) pixels x

3 color channels (RGB) = 120,000 values.
• A single fully connected layer would require (200x200x3)2 =

14,400,000,000 weights!
• Variance (in terms of bias-variance) would be too high
• So we introduce “bias” by structuring the network to look

for certain kinds of patterns

Motivation

• Features need to be “built up”
• Edges -> shapes -> relations between shapes
• Textures

• Cat = two eyes in certain relation to one another + cat fur
texture.

• Eyes = dark circle (pupil) inside another circle.
• Circle = particular combination of edge detectors.
• Fur = edges in certain pattern.

Kernels

• A kernel is a grid of weights “overlaid” on image, centered
on one pixel

• Each weight multiplied with pixel underneath it
• Output over the centered pixel is ∑ "# ⋅ %&'()#*#+,
• Used for traditional image processing techniques:

o Blur
o Sharpen
o Edge detection
o Emboss

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output

Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

2

Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1

Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful
• Use same set of kernels across entire image (translation

invariance)
• Reduces number of parameters and “variance” (from bias-

variance point of view)

Convolutions

Convolution Settings – Grid Size

Grid Size (Height and Width):
• The number of pixels a kernel “sees” at once
• Typically use odd numbers so that there is a “center” pixel
• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Convolution Settings - Padding

Padding
• Using Kernels directly, there will be an “edge effect”
• Pixels near the edge will not be used as “center pixels” since

there are not enough surrounding pixels
• Padding adds extra pixels around the frame
• So every pixel of the original image will be a center pixel as

the kernel moves across the image
• Added pixels are typically of value zero (zero-padding)

Without Padding

With Padding

Convolution Settings

Stride
• The ”step size” as the kernel moves across the image
• Can be different for vertical and horizontal steps (but usually

is the same value)
• When stride is greater than 1, it scales down the output

dimension

Stride 2 Example – No Padding

3

0

Stride 2 Example – With Padding

-1 2

3

Convolutional Settings - Depth

• In images, we often have multiple numbers associated with
each pixel location.

• These numbers are referred to as “channels”
o RGB image – 3 channels
o CMYK – 4 channels

• The number of channels is referred to as the “depth”
• So the kernel itself will have a “depth” the same size as the

number of input channels
• Example: a 5x5 kernel on an RGB image

o There will be 5x5x3 = 75 weights

Convolutional Settings - Depth

• The output from the layer will also have a depth
• The networks typically train many different kernels
• Each kernel outputs a single number at each pixel location
• So if there are 10 kernels in a layer, the output of that layer

will have depth 10.

Pooling

• Idea: Reduce the image size by mapping a patch of pixels to
a single value.

• Shrinks the dimensions of the image.
• Does not have parameters, though there are different types

of pooling operations.

Pooling: Max-pool
• For each distinct patch, represent it by the maximum
• 2x2 maxpool shown below

Pooling: Average-pool
• For each distinct patch, represent it by the average
• 2x2 avgpool shown below.

ConvNet: CONV, RELU, POOL
and FC
Layers

Convolution Layer

Convolution Layer
consider a second,
green filter

Convolution
Layer

ReLU (Rectified Linear
Units) Layer

• This is a layer of neurons that
applies the activation
function f(x)=max(0,x).

• It increases the nonlinear
properties of the decision
function and of the overall
network without affecting the
receptive fields of the
convolution layer.

• Other functions are also used
to increase nonlinearity, for
example the hyperbolic
tangent f(x)=tanh(x), and the
sigmoid function.

• This is also known as a ramp
function.

A Basic ConvNet

What is convolution of an
image with a filter

Details about the
convolution layer

Details about the
convolution layer

Details about the
convolution layer

Convolution layer
examples

Pooling Layer

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
8Where ReLu is used as f.

Convolutional Neural Networks

+
ReLu

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
9

Kernel= [1,0,1
0,1,0
1,0,1]

Convolutional Neural Networks
1 0 1
0 1 0
1 0 1

Applications

Applications

Is deep learning all about CNNs?

• Consider a language modelling task
• Given a vocabulary, the task is to predict the

next word in a sentence
• Sequence information of words are important
• Typically in cases where sequential data is

involved, recurrent neural networks (RNNs)
are widely used

Recurrent neural networks

Recurrent neural networks

• Lots of information is sequential
and requires a memory for successful
processing

• Sequences as input, sequences as
output

• Recurrent neural networks(RNNs)
are called recurrent because they
perform same task for every element
of sequence, with output dependent
on previous computations

• RNNs have memory that
captures information about
what has been computed so far

• RNNs can make use of information
in arbitrarily long sequences – in
practice they limited to looking
back only few steps

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Topologies of Recurrent Neural Network

(1) (2) (3) (4) (5)

1) Common Neural Network (e.g. feed forward network)
2) Prediction of future states base on single observation
3) Sentiment classification
4) Machine translation
5) Simultaneous interpretation

Language Model

• Compute the probability of a sentence

• Useful in machine translation
– Word ordering: p(the cat is small) > p(small the cat is)
– Word choice: p(walking home after school) > p(walking

house after school)

Recurrent Neural Network

RNN
Cell

Recurrent Neural Network

RNN
Cell

Recurrent Neural Network

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ Recurrent Neural Network have an internal state
§ State is passed from input xt to xt+1

ot o0
o
1

o2 ot

Language Models with RNN

• Let x0, x1, x2… denote words (input)
• Let o0, o1, o2… denote the probability of the

sentence(output)
• Memory requirement scales nicely (linear with the

number of word embeddings / number of character)

ot o0 o1 o2 ot

Recurrent Neural Network
o0 o1 o2

o
3

X
0

X
1

X
2

X
3

• RNN being unrolled (or
unfolded) into full network

• Unrolling: write out
network for complete
sequence

• Image credits: Nature

Recurrent neural networks

Img Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN (Problem Revisited)
o0 o1 o2

o
3

X
0

X
1

X
2

X
3

No Magic Involved (in Theory)

• You unroll your data in time
• You compute the gradients
• You use back propagation to train your network
• Karpathy presents a Python implementation for Char-RNN

with 112 lines

• Training RNNs is hard:
– Inputs from many time steps ago can modify output
– Vanishing / Exploding Gradient Problem

• Vanishing gradients can be solved by Gated-RNNs like Long-
Short-Term-Memory (LSTM) Models
– LSTM became popular in NLP in 2015

Vanishing and exploding gradients

Li – Loss, U, V, W – Parameters, Si - states

Vanishing and exploding gradients

Heatmap

Vanishing and exploding gradients

LSTMs designed to combat vanishing gradients through gating
mechanism
How LSTM calculates hidden state st

Long Short Term Memory [Hochreiter and
Schmidhuber, 1997]

32

Long-Short-Term Memory (LSTM)

• Long-term dependencies:
I grew up in France and lived there until I was 18. Therefore I
speak fluent ???

• Presented (vanilla) RNN is unable to learn long term dependencies
– Issue: More recent input data has higher influence on the output

• Long-Short-Term Memory (LSTM) models solves this problem

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Model

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ The LSTM model implements a forget-gate and an add-
gate

§ The models learns when to forget something and when to
update internal storage

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ Core: Cell-state C (a vector of certain size)
§ The model has the ability to remove or add information

using Gates

LSTM Model

Forget-Gate

§ Sigmoid function σ output a value between 0 and 1
§ The output is point-wise multiplied with the cell state Ct-1
§ Interpretation:

§ 0: Let nothing through
§ 1: Let everything through

§ Example: When we see a new subject, forget gender of old subject

Set-Gate

§ Compute it which cells we want to update and to which
degree (σ: 0 … 1)

§ Compute the new cell value using the tanh function

Update Internal Cell State

Forget state cells

Update state cells

Compute Output ht

Img Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

§ We use the updated cell state Ct to compute the output
§ We might not need the complete cell state as output

§ Compute ot, defining how relevant each cell is for the output
§ Pointwise multiply ot with tanh(Ct)

§ Cell state Ct and output ht is passed to the next time step

Conclusion

• Deep learning approaches – Powerful mechanisms for introducing non-
linearity in learning

• Learning using backpropagation
• Embeddings for word representations
• Sequence Labelling using RNNs
• LSTMs, GRUs are special kind of RNNs
• CNNs for text and Image recognition.

References

• Deep Learning for NLP - Nils Reimers.
https://github.com/UKPLab/deeplearning4nlp-
tutorial/tree/master/2017-07_Seminar

• CS231n: Convolutional Neural Networks for Visual
Recognition. Andrej Karpathy
http://cs231n.github.io/convolutional-networks/

• http://karpathy.github.io/2015/05/21/rnn-effectiveness/

• Neural Networks for Information Retrieval. SIGIR 2017
Tutorial http://nn4ir.com/

• CSE 446 - Machine Learning - Spring 2015,
University of Washington. Pedro Domingos.
https://courses.cs.washington.edu/courses/cse446/15sp/

•Thanks

