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Support vector machines
• Let {x1, ..., xn} be our data set and let yi Î {1,-1} be the class 

label of xi
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Large-margin Decision Boundary
• The decision boundary should be as far away 

from the data of both classes as possible
– We should maximize the margin, m
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Finding the Decision Boundary
• The decision boundary should classify all points correctly Þ

• The decision boundary can be found by solving the 
following constrained optimization problem

• This is a constrained optimization problem. Solving it 
requires to use Lagrange multipliers
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KKT Conditions

• Problem:
min$ %(') 		sub. to: g2 x ≤ 0		∀	7

• Lagrangian: 8 ', : = % ' − ∑ :>?>(')>
• Conditions:
– Stationarity: @AL x, : = 0.
– Primal feasibility: ?> ' ≤ 0			∀	7.
– Dual feasibility: :> ≥ 0.
– Complementary slackness: :>?> ' = 0.



• The Lagrangian is

– ai≥0
– Note that ||w||2 = wTw
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• Setting the gradient of     w.r.t. w and b to 
zero, we have
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The Dual Problem



The Dual Problem
• If we substitute                             to     , we have 

Since 

• This is a function of ai only
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The Dual Problem
• The new objective function is in terms of ai only
• It is known as the dual problem: if we know w, we know all ai; if we know 

all ai, we know w
• The original problem is known as the primal problem
• The objective function of the dual problem needs to be maximized (comes 

out from the KKT theory)
• The dual problem is therefore:

9

Properties of ai when we introduce 
the Lagrange multipliers

The result when we differentiate the 
original Lagrangian w.r.t. b



The Dual Problem

• This is a quadratic programming (QP) problem
– A global maximum of ai can always be found

• w can be recovered by
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Characteristics of the Solution
• Many of the ai are zero
– Complementary slackness: !"#1 − &"(()*" +
,). = 0

– Sparse representation: w is a linear combination 
of a small number of data points

• xi with non-zero ai are called support vectors (SV)
– The decision boundary is determined only by the 

SV
– Let tj (j=1, ..., s) be the indices of the s support 

vectors. We can write
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A Geometrical Interpretation
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Characteristics of the Solution
• For testing with a new data z
– Compute                                                      and 

classify z as class 1 if the sum is positive, and 
class 2 otherwise

– Note: w need not be formed explicitly
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Non-linearly Separable Problems
• We allow “error” xi in classification; it is based on the output 

of the discriminant function wTx + b
• xi approximates the number of misclassified samples
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Soft Margin Hyperplane
• The new conditions become

– xi are “slack variables” in optimization
– Note that xi=0 if there is no error for xi
– xi is an upper bound of the number of errors

• We want to minimize

• C : tradeoff parameter between error and margin
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The Optimization Problem
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The Dual Problem
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The Optimization Problem
• The dual of this new constrained optimization problem is

• New constraints derived from                            since μ and α are 
positive.

• w is recovered as

• This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on ai now

• Once again, a QP solver can be used to find ai
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• The algorithm try to keep ξ low, maximizing the 
margin

• The algorithm does not minimize the number of 
error. Instead, it minimizes the sum of distances from 
the hyperplane.

• When C increases the number of errors tend to 
lower. At the limit of C tending to infinite, the 
solution tend to that given by the hard margin 
formulation, with 0 errors
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Soft margin is more robust to outliers
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Extension to Non-linear Decision 

Boundary

• So far, we have only considered large-margin classifier with 

a linear decision boundary

• How to generalize it to become nonlinear?

• Key idea: transform xi to a higher dimensional space to 

“make life easier”

– Input space: the space the point xi are located

– Feature space: the space of f(xi) after transformation

• Why transform?

– Linear operation in the feature space is equivalent to non-linear 

operation in input space

– Classification can become easier with a proper transformation. 

In the XOR problem, for example, adding a new feature of x1x2

make the problem linearly separable
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XOR
X Y
0 0 0
0 1 1
1 0 1
1 1 0
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Is not linearly separable

X Y XY
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Is linearly separable



Find a feature space
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Transforming the Data 

• Computation in the feature space can be costly 
because it is high dimensional
– The feature space is typically infinite-dimensional!

• The kernel trick comes to rescue
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The Kernel Trick
• Recall the SVM optimization problem

• The data points only appear as inner product
• As long as we can calculate the inner product in the 

feature space, we do not need the mapping explicitly
• Many common geometric operations (angles, 

distances) can be expressed by inner products
• Define the kernel function K by
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An Example for f(.) and K(.,.)
• Suppose f(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out f(.) explicitly

• This use of kernel function to avoid carrying out f(.) 
explicitly is known as the kernel trick
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Kernels

• Given a mapping:
a kernel is represented as the inner product

A kernel must satisfy the Mercer’s condition:
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Modification Due to Kernel Function
• Change all inner products to kernel functions
• For training,
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Modification Due to Kernel Function
• For testing, the new data z is classified as class 

1 if f ³ 0, and as class 2 if f <0
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More on Kernel Functions
• Since the training of SVM only requires the value of 
K(xi, xj), there is no restriction of the form of xi and xj
– xi can be a sequence or a tree, instead of a feature vector

• K(xi, xj) is just a similarity measure comparing xi and 
xj

• For a test object z, the discriminant function 
essentially is a weighted sum of the similarity 
between z and a pre-selected set of objects (the 
support vectors)
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Kernel Functions
• In practical use of SVM, the user specifies the kernel 

function; the transformation f(.) is not explicitly stated
• Given a kernel function K(xi, xj), the transformation f(.) 

is given by its eigenfunctions (a concept in functional 
analysis)
– Eigenfunctions can be difficult to construct explicitly
– This is why people only specify the kernel function without 

worrying about the exact transformation
• Another view: kernel function, being an inner product, 

is really a similarity measure between the objects 
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A kernel is associated to a 
transformation

–Given a kernel, in principle it should be recovered the 
transformation in the feature space that originates it.

– K(x,y) = (xy+1)2= x2y2+2xy+1

It corresponds the transformation
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Examples of Kernel Functions
• Polynomial kernel of degree d

• Polynomial kernel up to degree d

• Radial basis function kernel with width s

– The feature space is infinite-dimensional
• Sigmoid with parameter k and q

– It does not satisfy the Mercer condition on all k and q
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Building new kernels
• If k1(x,y) and k2(x,y) are two valid kernels then the 

following kernels are valid
– Linear Combination

– Exponential

– Product

– Polynomial transformation (Q: polynomial with non 
negative coeffcients)

– Function product (f: any function)
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Polynomial kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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