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Regularized Least Squares (1)

• Consider the error function:

• With the sum-of-squares error function and a 
quadratic regularizer, we get  

• which is minimized by

Data term + Regularization term

λ¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

• With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)
•Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



The Squared Loss Function



The Bias-Variance Decomposition 
(1)

• Recall the expected squared loss,

• where

• The second term of E[L] corresponds to the noise 
inherent in the random variable t.

• What about the first term?



The Bias-Variance Decomposition 
(2)

• Suppose we were given multiple data sets, each of 
size N. Any particular data set, D, will give a 
particular function y(x;D). We then have



The Bias-Variance Decomposition 
(3)

• Taking the expectation over D yields



The Bias-Variance Decomposition 
(4)

• Thus we can write

• where 



The Bias-Variance Decomposition 
(5)

• Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, λ.



The Bias-Variance Decomposition 
(6)

• Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, λ.



The Bias-Variance Decomposition 
(7)

• Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, λ.



The Bias-Variance Trade-off

•From these plots, we 
note that an over-
regularized model (large 
λ) will have a high  bias, 
while an under-
regularized model (small 
λ) will have a high 
variance.



Bias-Variance Tradeoff



Effect of Model Complexity

• If we allow very complicated predictors, we 
could overfit the training data.



Model Selection

• We can select the model with right complexity 
in an adaptive way

• Standard practice: using Hold-out method



Hold-out method
• We would like to pick the model that has smallest generalization error.
• Can judge generalization error by using an independent sample of data.



Hold-out method



Hold-out method
Drawbacks:
• May not have enough data to afford setting one 

subset aside for getting a sense of generalization 
abilities

• Validation error may be misleading (bad estimate 
of generalization  error) if we get an 
“unfortunate” split

Limitations of hold-out can be overcome by a family 
of random sub-sampling methods at the expense of 
more computation.



Cross-Validation



Cross-Validation



Cross-Validation



Model Selection by Cross-Validation



Discrete and Continuous Labels

Sports  
Science  
News

Classification

Regression

Anemic cell  
Healthy cell

Stock Market  
Prediction Y = ?

X = Feb01

X = Document Y = Topic X = Cell Image Y = Diagnosis



An example application
• An emergency room in a hospital measures 17 

variables (e.g., blood pressure, age, etc) of newly 
admitted patients. 

• A decision is needed: whether to put a new patient 
in an intensive-care unit. 

• Due to the high cost of ICU, those patients who 
may survive less than a month are given higher 
priority. 

• Problem: to predict high-risk patients and 
discriminate them from low-risk patients. 



Another application
• A credit card company receives thousands of 

applications for new cards. Each application 
contains information about an applicant, 
– age 
– Marital status
– annual salary
– outstanding debts
– credit rating
– etc. 

• Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved. 



• Data: A set of data records (also called 
examples, instances or cases) described 
by
– k attributes: A1, A2, … Ak. 
– a class: Each example is labelled with a pre-

defined class. 
• Goal: To learn a classification model from 

the data that can be used to predict the 
classes of new (future, or test) 
cases/instances.

The data and the goal



Supervised learning process: two steps
n Learning (training): Learn a model using the 

training data
n Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Least squares classification
• Binary classification.
• Each class is described by it’s own linear model:

! " = $%" + $'
• Compactly written as:

y ) = *%)
• W is [$	$'].
• ./ * = 0 1⁄ 3*− 5 %(3*− 5)
• 89: row of 3 is ";, the 89: datapoint.
• 5 is vector of +1, -1.



Least squares classification

• Least squares ! is:
! = #$# %&#$'

• Problem is affected by outliers.



Least squares classification



Fisher’s linear discriminant

• Predictor: ! = #$%.
• If ! ≻ #' predict () else (*.
• Training dataset has +)points from () and +*

points from (*.

• ,- = )
./
∑ %12∈4/ and ,5 = )

.6
∑ %12∈46

• Maximize separation of projected means:
7* −7) = #$(,5 −,-)



Fisher’s linear discriminant

• This measure can increase arbitrarily by 
increasing ! .

• Constrain: ! " = 1
• Lagrangian: % !, ' = !( )* −), +
'( ! *−,).

• Solution: ! ∝ ()* −),).



Fisher linear discriminant



Fisher’s linear discriminant

• Maximize separation between means while 
minimizing within class variance.

• Within class variance:

!"# = % &' −)" #

'∈+,
• Objective:

- . = )# −)/ #

!/# + !##



Fisher’s linear Discriminant
• Same as:

! " = "$%&"
"$%"'

• Between class variance:
%& = () −(+ () −(+ $

• Within class variance:
%, 	
= . /0 −(+ /0 −(+ $

0∈2+
+ . /0 −() /0 −() $

0∈2)



Fisher’s linear discriminant

• Same as:
m"#$ 	$&'($
). +. $&',$ = .

• Solution given by generalized eigenvalue problem:
'($ = /'$$

• Or
', 01'($ = /$

• 	Solution:
$ ∝ ', 0.(45 −4.)



From Linear to Logistic Regression
Assumes the following functional form for P(Y|X):

Logistic function applied to a linear  
function of the data

Logistic  
function
(or Sigmoid):

z

lo
gi

t(
z)

Features can be discrete or continuous!



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression

• Label t ∈ {+1,−1}modeled as:
) * = 1 ,,- = . -/,

• ) 0 ,,- = . 0-/, , 0 ∈ {+1,−1}
• Given a set of parameters w, the probability or 

likelihood of a datapoint (x,t):
) * ,,- = .(*-/,)



Logistic Regression

• Given a training dataset { "#, %# , … , "', %' }, 
log likelihood of a model w is given by:

) * =,ln	(1 %2 "2, * )
2

• Using principle of maximum likelihood, the 
best w is given by:w*= argmaxw L(w)



Logistic Regression
• Final Problem:

m"#
$

%−log	(1 + exp	(−1234#2))
2

678

Or,         min
$
∑ log	(1 + exp −1234#2 )2
678

• Error function:

< 3 =%log	(1 + exp −1234#2 )
2

678
• <(3) is convex.



Properties of Error function

• Derivatives:

!" # =	&− 1 − ) *+#,-+ *+-+
.

+/0
	

!" # =& ) #,-+ − *+ -+
.

+/0
	

!1" # =	&) *+#,-+ 1 − ) *+#,-+ -+-+,
.

+/0



Gradient Descent
• Problem: min f(x)
• f(x): differentiable
• g(x): gradient of f(x)
• Negative gradient is

steepest descent
direction. 

• At each step move in
the gradient direction
so that there is 
“sufficient decrease”.



Gradient Descent



Generative vs. Discriminative  
Classifiers

Discriminative classifiers (e.g. Logistic Regression)

•Assume some functional form for P(Y|X) or for the 
decision boundary
•Estimate parameters of P(Y|X) directly from training data

Generative classifiers (e.g. Naïve Bayes)

• Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))
• Estimate parameters of P(X|Y), P(Y) directly from training data

arg max_Y P(Y|X) = arg max_Y P(X|Y) P(Y)



Logistic Regression is a Linear  
Classifier!

Assumes the following functional form for P(Y|X):

1

1



Logistic Regression for more than 
2  classes

• Logistic regression in more general case, where
Y {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)



Multiple classes

• One-vs-all: ! − 1 hyperplanes each separating 
$%,… , $()% classes from rest.

• Otherwise $(
• Low number of

classifiers.



Multiple classes

• One-vs-one: Every pair !" − !$ get a boundary.
• Final by majority vote.
• High number of

classifiers.



Multiple classes

• K-linear discriminant functions: 
!" # = %"&' + %")

• Assign # to *" if !"(#) ≥ !.(#) for all / ≠ 1
• Decision boundary:

%" − %.
&' + %") − %.) = 0

• Decision region is singly connected:
# = 4#5 + 1 − 4 #7

• If #5 and #7 have same label, so does #.



Multiple Classes



55

A text classification task: Email spam filtering

55

From: ‘‘’’ <takworlld@hotmail.com>
Subject: real estate is the only way... gem oalvgkay
Anyone can buy real estate with no money down
Stop paying rent TODAY !
There is no need to spend hundreds or even thousands for 
similar courses
I am 22 years old and I have already purchased 6 properties 
using the
methods outlined in this truly INCREDIBLE ebook.
Change your life NOW !
=================================================
Click Below to order:
http://www.wholesaledaily.com/sales/nmd.htm
=================================================
How would you write a program that would automatically detect
and delete this type of message?



56

Formal definition of TC: Training

56

Given:
§A document set X

§Documents are represented typically in some type of high-
dimensional space.

§A fixed set of classes C = {c1, c2, . . . , cJ}

§The classes are human-defined for the needs of an application 
(e.g., relevant vs. nonrelevant).

§A training set D of labeled documents with each labeled document <d, c> ∈ X � C
Using a learning method or learning algorithm, we then wish to
learn a classifier ϒ that maps documents to classes:

ϒ : X → C



57

Formal definition of TC: Application/Testing

57

Given: a description d ∈ X of a document Determine: ϒ (d) ∈ C, 
that is, the class that is most appropriate for d 



58

Examples of how search engines use classification

58

§Language identification (classes: English vs. French etc.)
§The automatic detection of spam pages (spam vs. nonspam)
§Topic-specific or vertical search – restrict search to a “vertical” like “related to 
health” (relevant to vertical vs. not)



59

Derivation of Naive Bayes rule

59

We want to find the class that is most likely given the document:

Apply Bayes rule

Drop denominator since P(d) is the same for all classes:



60

Too many parameters / sparseness 

60

§There are too many parameters                                             , one for each unique 
combination of a class and a sequence of words.
§We would need a very, very large number of training examples to estimate that 
many parameters.
§This is the problem of data sparseness.



61

Naive Bayes conditional independence assumption

61

To reduce the number of parameters to a manageable size, we

make the Naive Bayes conditional independence assumption:

We assume that the probability of observing the conjunction of

attributes is equal to the product of the individual probabilities

P(Xk = tk |c). 



62

The Naive Bayes classifier

62

§ The Naive Bayes classifier is a probabilistic classifier.
§ We compute the probability of a document d being in a class c

as follows:

§nd is the length of the document. (number of tokens)
§P(tk |c) is the conditional probability of term tk occurring in a

document of class c
§P(tk |c) is a measure of how much evidence tk contributes

that c is the correct class.
§P(c) is the prior probability of c.
§If a document’s terms do not provide clear evidence for one

class vs. another, we choose the c with highest P(c).



63

Maximum a posteriori class

63

§Our goal in Naive Bayes classification is to find the “best” class.

§The best class is the most likely or maximum a posteriori (MAP) class cmap:



64

Taking the log

64

§Multiplying lots of small probabilities can result in floating point underflow.
§Since log(xy) = log(x) + log(y), we can sum log probabilities instead of multiplying
probabilities.
§Since log is a monotonic function, the class with the highest score does not change.

§So what we usually compute in practice is:



65

Naive Bayes classifier

65

§Classification rule:

§Simple interpretation:

§Each conditional parameter log                 is a weight that 
indicates how good an indicator tk is for c.
§The prior log           is a weight that indicates the relative 
frequency of c.
§The sum of log prior and term weights is then a measure of how 
much evidence there is for the document being in the class.
§We select the class with the most evidence.



66

Parameter estimation take 1: Maximum likelihood

66

§Estimate parameters           and                from train data: How?
§Prior:

§Nc : number of docs in class c; N: total number of docs
§Conditional probabilities:

§Tct is the number of tokens of t in training documents from class c (includes multiple 
occurrences)
§We’ve made a Naive Bayes independence assumption here:



67

The problem with maximum likelihood estimates: Zeros

67

P(China|d) ∝ P(China) � P(BEIJING|China) � P(AND|China)
� P(TAIPEI|China) � P(JOIN|China) � P(WTO|China)

§If WTO never occurs in class China in the train set:



68

The problem with maximum likelihood estimates: Zeros
(cont)

68

§If there were no occurrences of WTO in documents in class China, we’d get a zero
estimate:

§→ We will get P(China|d) = 0 for any document that contains WTO!

§Zero probabilities cannot be conditioned away.



69

To avoid zeros: Add-one smoothing

69

§Before:

§Now: Add one to each count to avoid zeros:

§B is the number of different words (in this case the size of the vocabulary: |V | = B)



70

To avoid zeros: Add-one smoothing

70

§Estimate parameters from the training corpus using add-one smoothing
§For a new document, for each class, compute sum of (i) log of prior and (ii) logs of 
conditional probabilities of the terms
§Assign the document to the class with the largest score



71

Exercise

71

§Estimate parameters of Naive Bayes classifier
§Classify test document



72

Example: Parameter estimates

72

The denominators are (8 + 6) and (3 + 6) because the lengths of
textc and are 8 and 3, respectively, and because the constant
B is 6 as the vocabulary consists of six terms.



73

Example: Classification

73

Thus, the classifier assigns the test document to c = China. The
reason for this classification decision is that the three occurrences

of the positive indicator CHINESE in d5 outweigh the occurrences

of the two negative indicators JAPAN and TOKYO.



74

Generative model

74

§Generate a class with probability P(c)
§Generate each of the words (in their respective positions), 
conditional on the class, but independent of each other, with 
probability P(tk |c)
§To classify docs, we “reengineer” this process and find the class that 
is most likely to have generated the doc.



On naïve Bayesian classifier
• Advantages: 

– Easy to implement
– Very efficient
– Good results obtained in many applications

• Disadvantages
– Assumption: class conditional 

independence, therefore loss of accuracy 
when the assumption is seriously violated 
(those highly correlated data sets)



NON-PARAMETRIC MODELS



Instance-Based Classifiers

Atr1 ……... AtrN Class
A

B

B

C

A

C

B

Set of Stored Cases

Atr1 ……... AtrN

Unseen Case

• Store the training records 

• Use training records to 
predict the class label of 
unseen cases



Instance Based Classifiers

• Examples:
– Rote-learner
• Memorizes entire training data and performs 

classification only if attributes of record match one of 
the training examples exactly

– Nearest neighbor
• Uses k “closest” points (nearest neighbors) for 

performing classification



Nearest Neighbor Classifiers

• Basic idea:
– If it walks like a duck, quacks like a duck, then it’s 

probably a duck

Training 
Records

Test Record
Compute 
Distance

Choose k of the 
“nearest” records



Nearest-Neighbor Classifiers
● Requires three things

– The set of stored records
– Distance Metric to compute 

distance between records
– The value of k, the number of 

nearest neighbors to retrieve

● To classify an unknown record:
– Compute distance to other 

training records
– Identify k nearest neighbors 
– Use class labels of nearest 

neighbors to determine the 
class label of unknown record 
(e.g., by taking majority vote)

Unknown record



Definition of Nearest Neighbor

X X X

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have 
the k smallest distance to x



Nearest Neighbor Classification
• Compute distance between two points:
– Euclidean distance 

• Determine the class from nearest neighbor list
– take the majority vote of class labels among the k-

nearest neighbors
– Weigh the vote according to distance

• weight factor, w = 1/d2

å -=
i ii

qpqpd 2)(),(



Nearest Neighbor Classification…

• Choosing the value of k:
– If k is too small, sensitive to noise points
– If k is too large, neighborhood may include points from 

other classes

X



Nearest Neighbor Classification…

• Scaling issues
– Attributes may have to be scaled to prevent 

distance measures from being dominated by one 
of the attributes

– Example of an attribute dominating distance 
computation:
• height of a person may vary from 1.5m to 1.8m
• weight of a person may vary from 90lb to 300lb
• income of a person may vary from $10K to $1M



The K-Nearest Neighbor Method
• K neighbors in 

training data to the 
input data x: break 
ties arbitrarily

• All k neighbors will 
vote: majority wins

• Extension:
–Weighted KNN

“K” is a variable: 
– Often we experiment 

with different values of 
K=1, 3, 5, to find out the 
optimal one

• Why is KNN important?
– Often a baseline 
– Must beat this one to 

claim innovation
• Applications of KNN
– Document similarity



Decision Tree

• Setting:
– Instances describable by attribute value pair.
– Target function is discrete valued.
– Disjunctive hypothesis is required.
– Training data may contain errors.
– Training data may contain missing attribute values.



Decision Tree

• Each internal node tests an attribute.
• Each branch corresponds to a value of an 

attribute.
• Each leaf node assigns a classification.



Decision tree - Example



Decision tree learning

• For a test datapoint:
– Determine the branches to take at each level  

based on attribute value.
– At a leaf level, return the label of current node.

• For training, at each level:
– Select an attribute split the training dataset on.
– Examine the purity of data at each splitted node 

and determine whether it is a leaf node.
– Determine the label at each node



What attribute to select ?

• Entropy:



What attribute to select ?

• Entropy:



What attribute to select ?



Information Gain



ID3 Algorithm



ID3 example



Root level choice

• Gain(S,outlook) = 0.246
• Gain(S, Humidity) = 0.151
• Gain(S, Wind) = 0.048
• Gain(S, Temperature) = 0.029



Root level tree



Tree



ID3
• Hypothesis space: set of all finite discrete valued 

functions.
– The hypothesis space contains all functions.

• ID3 maintains a single hypothesis.
– Does not enumerate all consistent hypothesis – cannot 

recommend best training example.
• Utilizes all the data at each stage.
– Higher computational cost compared to one pass 

algorithms.
• Performs hill climbing without backtracking
– Can converge to a local minimum.

• Feature selection criteria robust to errors in data.



Inductive Bias

• Shorter trees are preferred over longer trees.
• Occam’s razor: “Simpler” hypothesis are 

better than more complex hypothesis.
• Shorter trees are “simpler” because there are 

less number of them.

• Actually: shorter trees with attributes having 
more information gain are preferred.



Occam’s razor



Overfitting



Overfitting



Overfitting



Avoiding overfitting

• Which is computationally better ?



Avoiding overfitting

Which tree is best ?
• Measure the accuracy over a separate 

validation set.
• Perform statistical tests over training data, e.g. 

chi square tests.
• Minimize an explicit performance measure 

which comprises of training set performance 
and “complexity” of the model, e.g. MDL.



Reduced error pruning



Reduced error pruning



Rule post pruning



Other issues

• Handling continuous valued attribute.
– Create a split which produces the highest 

information gain.
• Handling large number of discrete valued 

attributes.



Other issues

• Handling missing attributes.
• Training set:
– Assign a distribution based on exiting values.
– Default branch for the set of attributed.

• Test set:
– Default branch which is populated using missing 

values.



BAGGING



Ensemble methods

• A single decision tree does not perform well

• But, it is super fast

• What if we learn multiple trees?

We need to make sure they do not all just learn the same



Bagging
If we split the data in random different ways, decision trees 
give different results, high variance.

Bagging: Bootstrap aggregating is a method that result in 
low variance. 

If we had multiple realizations of the data (or multiple 
samples) we could calculate the predictions multiple times 
and take the average of the fact that averaging  multiple 
onerous estimations produce less uncertain results



Bagging
Say for each sample b, we calculate fb(x), then:

How? 

Bootstrap 
Construct B (hundreds) of trees (no pruning) 
Learn a classifier for each bootstrap sample and 
average them
Very effective



X1

X2



Out-of-Bag Error Estimation 
• No cross validation?
• Remember, in bootstrapping we sample with 

replacement, and therefore not all observations are 
used for each bootstrap sample. On average 1/3 of them 
are not used! 

• We call them out-of-bag samples (OOB)
• We can predict the response for the i-th observation 

using each of the trees in which that observation was 
OOB and do this for n observations

• Calculate overall OOB MSE or classification error



Bagging

• Reduces overfitting (variance)

• Normally uses one type of classifier

• Decision trees are popular

• Easy to parallelize



Bagging - issues

Each tree is identically distributed (i.d.)
è the expectation of the average of B such 
trees is the same as the expectation of any one 
of them 
èthe bias of bagged trees is the same as that of 

the individual trees

i.d. and not i.i.d



Bagging - issues
An average of B i.i.d. random variables, each with variance 
σ2, has variance: σ2/B
If i.d. (identical but not independent) and pair correlation r 
is present, then the variance is: 

As B increases the second term disappears but the first 
term remains 

Why does bagging generate correlated trees?



Bagging - issues

Suppose that there is one very strong predictor in the 
data set, along with a number of other moderately 
strong predictors. 

Then all bagged trees will select the strong predictor at 
the top of the tree and therefore all trees will look 
similar. 

How do we avoid this? 



RANDOM FORESTS



Random Forests 

As in bagging, we build a number of decision trees on 
bootstrapped training samples each time a split in a 
tree is considered, a random sample of m predictors is 
chosen as split candidates from the full set of p 
predictors. 

Note that if m = p, then this is bagging. 



Random Forests 

Random forests are popular. Leo Breiman’s and Adele 
Cutler maintains a random forest website where the 
software is freely available, and of course it is included 
in every ML/STAT package

http://www.stat.berkeley.edu/~breiman/RandomFores
ts/



Random Forests Algorithm 
For b = 1 to B: 

(a) Draw a bootstrap sample Z∗ of size N from the training data. 
(b) Grow a random-forest tree  to the bootstrapped data, by 

recursively repeating the following steps for each terminal node of the 
tree, until the minimum node size nmin is reached. 

i. Select m variables at random from the p variables. 
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes. 

Output the ensemble of trees. 

To make a prediction at a new point x we do:
For regression: average the results 
For classification: majority vote 



Random Forests Tuning
The inventors make the following recommendations: 
• For classification, the default value for m is  √p and the minimum 

node size is one. 
• For regression, the default value for m is p/3 and the minimum 

node size is five. 

In practice the best values for these parameters will depend on the 
problem, and they should be treated as tuning parameters. 

Like with Bagging, we can use OOB and therefore  RF can be fit in one 
sequence, with cross-validation being performed along the way. Once 
the OOB error stabilizes, the training can be terminated. 



Example
• 4,718 genes measured on tissue samples from 349 patients.
• Each gene has different expression 
• Each of the patient samples has a qualitative label with 15 

different levels: either normal or 1 of 14 different types of 
cancer. 

Use random forests to predict cancer type based on the 500 
genes that have the largest variance in the training set. 
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Random Forests Issues
When the number of variables is large, but the fraction of 
relevant variables is small, random forests are likely to perform 
poorly when m is small 

Why? 

Because: 
At each split the chance can be small that the relevant variables 
will be selected 

For example, with 3 relevant and 100 not so relevant variables 
the probability of any of the relevant variables being selected at 
any split is ~0.25



Probability of being selected



Can RF overfit?

Random forests “cannot overfit” the data wrt to 
number of trees.

Why? 

The number of trees, B does not mean increase 
in the flexibility of the model 
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Constructing Confusion Matrix for multiple classes
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Averaging: Micro vs. Macro

134

§We now have an evaluation measure (F1) for one class.
§But we also want a single number that measures the aggregate performance over 
all classes in the collection.
§Macroaveraging

§Compute F1 for each of the C classes
§Average these C numbers

§Microaveraging

§Compute TP, FP, FN for each of the C classes
§Sum these C numbers (e.g., all TP to get aggregate TP)
§Compute F1 for aggregate TP, FP, FN
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Micro- vs. Macro-average: Example


